ff7d067ffa
Call the function now logwrap_fork_execvp() and fix const correctness issues, so no longer do callers need to const_cast<> their args. Test: logwrapper still works Change-Id: Iea34f5cae90a06a37d395bf9a91e01fb38c35fa6
615 lines
19 KiB
C++
615 lines
19 KiB
C++
/*
|
|
* Copyright (C) 2008 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <libgen.h>
|
|
#include <poll.h>
|
|
#include <pthread.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/types.h>
|
|
#include <sys/wait.h>
|
|
#include <unistd.h>
|
|
|
|
#include <algorithm>
|
|
|
|
#include <android-base/macros.h>
|
|
#include <cutils/klog.h>
|
|
#include <log/log.h>
|
|
#include <logwrap/logwrap.h>
|
|
|
|
static pthread_mutex_t fd_mutex = PTHREAD_MUTEX_INITIALIZER;
|
|
// Protected by fd_mutex. These signals must be blocked while modifying as well.
|
|
static pid_t child_pid;
|
|
static struct sigaction old_int;
|
|
static struct sigaction old_quit;
|
|
static struct sigaction old_hup;
|
|
|
|
#define ERROR(fmt, args...) \
|
|
do { \
|
|
fprintf(stderr, fmt, ##args); \
|
|
ALOG(LOG_ERROR, "logwrapper", fmt, ##args); \
|
|
} while (0)
|
|
|
|
#define FATAL_CHILD(fmt, args...) \
|
|
do { \
|
|
ERROR(fmt, ##args); \
|
|
_exit(-1); \
|
|
} while (0)
|
|
|
|
#define MAX_KLOG_TAG 16
|
|
|
|
/* This is a simple buffer that holds up to the first beginning_buf->buf_size
|
|
* bytes of output from a command.
|
|
*/
|
|
#define BEGINNING_BUF_SIZE 0x1000
|
|
struct beginning_buf {
|
|
char* buf;
|
|
size_t alloc_len;
|
|
/* buf_size is the usable space, which is one less than the allocated size */
|
|
size_t buf_size;
|
|
size_t used_len;
|
|
};
|
|
|
|
/* This is a circular buf that holds up to the last ending_buf->buf_size bytes
|
|
* of output from a command after the first beginning_buf->buf_size bytes
|
|
* (which are held in beginning_buf above).
|
|
*/
|
|
#define ENDING_BUF_SIZE 0x1000
|
|
struct ending_buf {
|
|
char* buf;
|
|
ssize_t alloc_len;
|
|
/* buf_size is the usable space, which is one less than the allocated size */
|
|
ssize_t buf_size;
|
|
ssize_t used_len;
|
|
/* read and write offsets into the circular buffer */
|
|
int read;
|
|
int write;
|
|
};
|
|
|
|
/* A structure to hold all the abbreviated buf data */
|
|
struct abbr_buf {
|
|
struct beginning_buf b_buf;
|
|
struct ending_buf e_buf;
|
|
int beginning_buf_full;
|
|
};
|
|
|
|
/* Collect all the various bits of info needed for logging in one place. */
|
|
struct log_info {
|
|
int log_target;
|
|
char klog_fmt[MAX_KLOG_TAG * 2];
|
|
const char* btag;
|
|
bool abbreviated;
|
|
FILE* fp;
|
|
struct abbr_buf a_buf;
|
|
};
|
|
|
|
/* Forware declaration */
|
|
static void add_line_to_abbr_buf(struct abbr_buf* a_buf, char* linebuf, int linelen);
|
|
|
|
/* Return 0 on success, and 1 when full */
|
|
static int add_line_to_linear_buf(struct beginning_buf* b_buf, char* line, ssize_t line_len) {
|
|
int full = 0;
|
|
|
|
if ((line_len + b_buf->used_len) > b_buf->buf_size) {
|
|
full = 1;
|
|
} else {
|
|
/* Add to the end of the buf */
|
|
memcpy(b_buf->buf + b_buf->used_len, line, line_len);
|
|
b_buf->used_len += line_len;
|
|
}
|
|
|
|
return full;
|
|
}
|
|
|
|
static void add_line_to_circular_buf(struct ending_buf* e_buf, char* line, ssize_t line_len) {
|
|
ssize_t free_len;
|
|
ssize_t needed_space;
|
|
int cnt;
|
|
|
|
if (e_buf->buf == nullptr) {
|
|
return;
|
|
}
|
|
|
|
if (line_len > e_buf->buf_size) {
|
|
return;
|
|
}
|
|
|
|
free_len = e_buf->buf_size - e_buf->used_len;
|
|
|
|
if (line_len > free_len) {
|
|
/* remove oldest entries at read, and move read to make
|
|
* room for the new string */
|
|
needed_space = line_len - free_len;
|
|
e_buf->read = (e_buf->read + needed_space) % e_buf->buf_size;
|
|
e_buf->used_len -= needed_space;
|
|
}
|
|
|
|
/* Copy the line into the circular buffer, dealing with possible
|
|
* wraparound.
|
|
*/
|
|
cnt = std::min(line_len, e_buf->buf_size - e_buf->write);
|
|
memcpy(e_buf->buf + e_buf->write, line, cnt);
|
|
if (cnt < line_len) {
|
|
memcpy(e_buf->buf, line + cnt, line_len - cnt);
|
|
}
|
|
e_buf->used_len += line_len;
|
|
e_buf->write = (e_buf->write + line_len) % e_buf->buf_size;
|
|
}
|
|
|
|
/* Log directly to the specified log */
|
|
static void do_log_line(struct log_info* log_info, const char* line) {
|
|
if (log_info->log_target & LOG_KLOG) {
|
|
klog_write(6, log_info->klog_fmt, line);
|
|
}
|
|
if (log_info->log_target & LOG_ALOG) {
|
|
ALOG(LOG_INFO, log_info->btag, "%s", line);
|
|
}
|
|
if (log_info->log_target & LOG_FILE) {
|
|
fprintf(log_info->fp, "%s\n", line);
|
|
}
|
|
}
|
|
|
|
/* Log to either the abbreviated buf, or directly to the specified log
|
|
* via do_log_line() above.
|
|
*/
|
|
static void log_line(struct log_info* log_info, char* line, int len) {
|
|
if (log_info->abbreviated) {
|
|
add_line_to_abbr_buf(&log_info->a_buf, line, len);
|
|
} else {
|
|
do_log_line(log_info, line);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The kernel will take a maximum of 1024 bytes in any single write to
|
|
* the kernel logging device file, so find and print each line one at
|
|
* a time. The allocated size for buf should be at least 1 byte larger
|
|
* than buf_size (the usable size of the buffer) to make sure there is
|
|
* room to temporarily stuff a null byte to terminate a line for logging.
|
|
*/
|
|
static void print_buf_lines(struct log_info* log_info, char* buf, int buf_size) {
|
|
char* line_start;
|
|
char c;
|
|
int i;
|
|
|
|
line_start = buf;
|
|
for (i = 0; i < buf_size; i++) {
|
|
if (*(buf + i) == '\n') {
|
|
/* Found a line ending, print the line and compute new line_start */
|
|
/* Save the next char and replace with \0 */
|
|
c = *(buf + i + 1);
|
|
*(buf + i + 1) = '\0';
|
|
do_log_line(log_info, line_start);
|
|
/* Restore the saved char */
|
|
*(buf + i + 1) = c;
|
|
line_start = buf + i + 1;
|
|
} else if (*(buf + i) == '\0') {
|
|
/* The end of the buffer, print the last bit */
|
|
do_log_line(log_info, line_start);
|
|
break;
|
|
}
|
|
}
|
|
/* If the buffer was completely full, and didn't end with a newline, just
|
|
* ignore the partial last line.
|
|
*/
|
|
}
|
|
|
|
static void init_abbr_buf(struct abbr_buf* a_buf) {
|
|
char* new_buf;
|
|
|
|
memset(a_buf, 0, sizeof(struct abbr_buf));
|
|
new_buf = static_cast<char*>(malloc(BEGINNING_BUF_SIZE));
|
|
if (new_buf) {
|
|
a_buf->b_buf.buf = new_buf;
|
|
a_buf->b_buf.alloc_len = BEGINNING_BUF_SIZE;
|
|
a_buf->b_buf.buf_size = BEGINNING_BUF_SIZE - 1;
|
|
}
|
|
new_buf = static_cast<char*>(malloc(ENDING_BUF_SIZE));
|
|
if (new_buf) {
|
|
a_buf->e_buf.buf = new_buf;
|
|
a_buf->e_buf.alloc_len = ENDING_BUF_SIZE;
|
|
a_buf->e_buf.buf_size = ENDING_BUF_SIZE - 1;
|
|
}
|
|
}
|
|
|
|
static void free_abbr_buf(struct abbr_buf* a_buf) {
|
|
free(a_buf->b_buf.buf);
|
|
free(a_buf->e_buf.buf);
|
|
}
|
|
|
|
static void add_line_to_abbr_buf(struct abbr_buf* a_buf, char* linebuf, int linelen) {
|
|
if (!a_buf->beginning_buf_full) {
|
|
a_buf->beginning_buf_full = add_line_to_linear_buf(&a_buf->b_buf, linebuf, linelen);
|
|
}
|
|
if (a_buf->beginning_buf_full) {
|
|
add_line_to_circular_buf(&a_buf->e_buf, linebuf, linelen);
|
|
}
|
|
}
|
|
|
|
static void print_abbr_buf(struct log_info* log_info) {
|
|
struct abbr_buf* a_buf = &log_info->a_buf;
|
|
|
|
/* Add the abbreviated output to the kernel log */
|
|
if (a_buf->b_buf.alloc_len) {
|
|
print_buf_lines(log_info, a_buf->b_buf.buf, a_buf->b_buf.used_len);
|
|
}
|
|
|
|
/* Print an ellipsis to indicate that the buffer has wrapped or
|
|
* is full, and some data was not logged.
|
|
*/
|
|
if (a_buf->e_buf.used_len == a_buf->e_buf.buf_size) {
|
|
do_log_line(log_info, "...\n");
|
|
}
|
|
|
|
if (a_buf->e_buf.used_len == 0) {
|
|
return;
|
|
}
|
|
|
|
/* Simplest way to print the circular buffer is allocate a second buf
|
|
* of the same size, and memcpy it so it's a simple linear buffer,
|
|
* and then cal print_buf_lines on it */
|
|
if (a_buf->e_buf.read < a_buf->e_buf.write) {
|
|
/* no wrap around, just print it */
|
|
print_buf_lines(log_info, a_buf->e_buf.buf + a_buf->e_buf.read, a_buf->e_buf.used_len);
|
|
} else {
|
|
/* The circular buffer will always have at least 1 byte unused,
|
|
* so by allocating alloc_len here we will have at least
|
|
* 1 byte of space available as required by print_buf_lines().
|
|
*/
|
|
char* nbuf = static_cast<char*>(malloc(a_buf->e_buf.alloc_len));
|
|
if (!nbuf) {
|
|
return;
|
|
}
|
|
int first_chunk_len = a_buf->e_buf.buf_size - a_buf->e_buf.read;
|
|
memcpy(nbuf, a_buf->e_buf.buf + a_buf->e_buf.read, first_chunk_len);
|
|
/* copy second chunk */
|
|
memcpy(nbuf + first_chunk_len, a_buf->e_buf.buf, a_buf->e_buf.write);
|
|
print_buf_lines(log_info, nbuf, first_chunk_len + a_buf->e_buf.write);
|
|
free(nbuf);
|
|
}
|
|
}
|
|
|
|
static void signal_handler(int signal_num);
|
|
|
|
static void block_signals(sigset_t* oldset) {
|
|
sigset_t blockset;
|
|
|
|
sigemptyset(&blockset);
|
|
sigaddset(&blockset, SIGINT);
|
|
sigaddset(&blockset, SIGQUIT);
|
|
sigaddset(&blockset, SIGHUP);
|
|
pthread_sigmask(SIG_BLOCK, &blockset, oldset);
|
|
}
|
|
|
|
static void unblock_signals(sigset_t* oldset) {
|
|
pthread_sigmask(SIG_SETMASK, oldset, nullptr);
|
|
}
|
|
|
|
static void setup_signal_handlers(pid_t pid) {
|
|
struct sigaction handler = {.sa_handler = signal_handler};
|
|
|
|
child_pid = pid;
|
|
sigaction(SIGINT, &handler, &old_int);
|
|
sigaction(SIGQUIT, &handler, &old_quit);
|
|
sigaction(SIGHUP, &handler, &old_hup);
|
|
}
|
|
|
|
static void restore_signal_handlers() {
|
|
sigaction(SIGINT, &old_int, nullptr);
|
|
sigaction(SIGQUIT, &old_quit, nullptr);
|
|
sigaction(SIGHUP, &old_hup, nullptr);
|
|
child_pid = 0;
|
|
}
|
|
|
|
static void signal_handler(int signal_num) {
|
|
if (child_pid == 0 || kill(child_pid, signal_num) != 0) {
|
|
restore_signal_handlers();
|
|
raise(signal_num);
|
|
}
|
|
}
|
|
|
|
static int parent(const char* tag, int parent_read, pid_t pid, int* chld_sts, int log_target,
|
|
bool abbreviated, const char* file_path, bool forward_signals) {
|
|
int status = 0;
|
|
char buffer[4096];
|
|
struct pollfd poll_fds[] = {
|
|
{
|
|
.fd = parent_read,
|
|
.events = POLLIN,
|
|
},
|
|
};
|
|
int rc = 0;
|
|
int fd;
|
|
|
|
struct log_info log_info;
|
|
|
|
int a = 0; // start index of unprocessed data
|
|
int b = 0; // end index of unprocessed data
|
|
int sz;
|
|
bool found_child = false;
|
|
// There is a very small chance that opening child_ptty in the child will fail, but in this case
|
|
// POLLHUP will not be generated below. Therefore, we use a 1 second timeout for poll() until
|
|
// we receive a message from child_ptty. If this times out, we call waitpid() with WNOHANG to
|
|
// check the status of the child process and exit appropriately if it has terminated.
|
|
bool received_messages = false;
|
|
char tmpbuf[256];
|
|
|
|
log_info.btag = basename(tag);
|
|
if (!log_info.btag) {
|
|
log_info.btag = tag;
|
|
}
|
|
|
|
if (abbreviated && (log_target == LOG_NONE)) {
|
|
abbreviated = 0;
|
|
}
|
|
if (abbreviated) {
|
|
init_abbr_buf(&log_info.a_buf);
|
|
}
|
|
|
|
if (log_target & LOG_KLOG) {
|
|
snprintf(log_info.klog_fmt, sizeof(log_info.klog_fmt), "<6>%.*s: %%s\n", MAX_KLOG_TAG,
|
|
log_info.btag);
|
|
}
|
|
|
|
if ((log_target & LOG_FILE) && !file_path) {
|
|
/* No file_path specified, clear the LOG_FILE bit */
|
|
log_target &= ~LOG_FILE;
|
|
}
|
|
|
|
if (log_target & LOG_FILE) {
|
|
fd = open(file_path, O_WRONLY | O_CREAT, 0664);
|
|
if (fd < 0) {
|
|
ERROR("Cannot log to file %s\n", file_path);
|
|
log_target &= ~LOG_FILE;
|
|
} else {
|
|
lseek(fd, 0, SEEK_END);
|
|
log_info.fp = fdopen(fd, "a");
|
|
}
|
|
}
|
|
|
|
log_info.log_target = log_target;
|
|
log_info.abbreviated = abbreviated;
|
|
|
|
while (!found_child) {
|
|
int timeout = received_messages ? -1 : 1000;
|
|
if (TEMP_FAILURE_RETRY(poll(poll_fds, arraysize(poll_fds), timeout)) < 0) {
|
|
ERROR("poll failed\n");
|
|
rc = -1;
|
|
goto err_poll;
|
|
}
|
|
|
|
if (poll_fds[0].revents & POLLIN) {
|
|
received_messages = true;
|
|
sz = TEMP_FAILURE_RETRY(read(parent_read, &buffer[b], sizeof(buffer) - 1 - b));
|
|
|
|
sz += b;
|
|
// Log one line at a time
|
|
for (b = 0; b < sz; b++) {
|
|
if (buffer[b] == '\r') {
|
|
if (abbreviated) {
|
|
/* The abbreviated logging code uses newline as
|
|
* the line separator. Lucikly, the pty layer
|
|
* helpfully cooks the output of the command
|
|
* being run and inserts a CR before NL. So
|
|
* I just change it to NL here when doing
|
|
* abbreviated logging.
|
|
*/
|
|
buffer[b] = '\n';
|
|
} else {
|
|
buffer[b] = '\0';
|
|
}
|
|
} else if (buffer[b] == '\n') {
|
|
buffer[b] = '\0';
|
|
log_line(&log_info, &buffer[a], b - a);
|
|
a = b + 1;
|
|
}
|
|
}
|
|
|
|
if (a == 0 && b == sizeof(buffer) - 1) {
|
|
// buffer is full, flush
|
|
buffer[b] = '\0';
|
|
log_line(&log_info, &buffer[a], b - a);
|
|
b = 0;
|
|
} else if (a != b) {
|
|
// Keep left-overs
|
|
b -= a;
|
|
memmove(buffer, &buffer[a], b);
|
|
a = 0;
|
|
} else {
|
|
a = 0;
|
|
b = 0;
|
|
}
|
|
}
|
|
|
|
if (!received_messages || (poll_fds[0].revents & POLLHUP)) {
|
|
int ret;
|
|
sigset_t oldset;
|
|
|
|
if (forward_signals) {
|
|
// Our signal handlers forward these signals to 'child_pid', but waitpid() may reap
|
|
// the child, so we must block these signals until we either 1) conclude that the
|
|
// child is still running or 2) determine the child has been reaped and we have
|
|
// reset the signals to their original disposition.
|
|
block_signals(&oldset);
|
|
}
|
|
|
|
int flags = (poll_fds[0].revents & POLLHUP) ? 0 : WNOHANG;
|
|
ret = TEMP_FAILURE_RETRY(waitpid(pid, &status, flags));
|
|
if (ret < 0) {
|
|
rc = errno;
|
|
ALOG(LOG_ERROR, "logwrap", "waitpid failed with %s\n", strerror(errno));
|
|
goto err_waitpid;
|
|
}
|
|
if (ret > 0) {
|
|
found_child = true;
|
|
}
|
|
|
|
if (forward_signals) {
|
|
if (found_child) {
|
|
restore_signal_handlers();
|
|
}
|
|
unblock_signals(&oldset);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (chld_sts != nullptr) {
|
|
*chld_sts = status;
|
|
} else {
|
|
if (WIFEXITED(status))
|
|
rc = WEXITSTATUS(status);
|
|
else
|
|
rc = -ECHILD;
|
|
}
|
|
|
|
// Flush remaining data
|
|
if (a != b) {
|
|
buffer[b] = '\0';
|
|
log_line(&log_info, &buffer[a], b - a);
|
|
}
|
|
|
|
/* All the output has been processed, time to dump the abbreviated output */
|
|
if (abbreviated) {
|
|
print_abbr_buf(&log_info);
|
|
}
|
|
|
|
if (WIFEXITED(status)) {
|
|
if (WEXITSTATUS(status)) {
|
|
snprintf(tmpbuf, sizeof(tmpbuf), "%s terminated by exit(%d)\n", log_info.btag,
|
|
WEXITSTATUS(status));
|
|
do_log_line(&log_info, tmpbuf);
|
|
}
|
|
} else {
|
|
if (WIFSIGNALED(status)) {
|
|
snprintf(tmpbuf, sizeof(tmpbuf), "%s terminated by signal %d\n", log_info.btag,
|
|
WTERMSIG(status));
|
|
do_log_line(&log_info, tmpbuf);
|
|
} else if (WIFSTOPPED(status)) {
|
|
snprintf(tmpbuf, sizeof(tmpbuf), "%s stopped by signal %d\n", log_info.btag,
|
|
WSTOPSIG(status));
|
|
do_log_line(&log_info, tmpbuf);
|
|
}
|
|
}
|
|
|
|
err_waitpid:
|
|
err_poll:
|
|
if (log_target & LOG_FILE) {
|
|
fclose(log_info.fp); /* Also closes underlying fd */
|
|
}
|
|
if (abbreviated) {
|
|
free_abbr_buf(&log_info.a_buf);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static void child(int argc, const char* const* argv) {
|
|
// create null terminated argv_child array
|
|
char* argv_child[argc + 1];
|
|
memcpy(argv_child, argv, argc * sizeof(char*));
|
|
argv_child[argc] = nullptr;
|
|
|
|
if (execvp(argv_child[0], argv_child)) {
|
|
FATAL_CHILD("executing %s failed: %s\n", argv_child[0], strerror(errno));
|
|
}
|
|
}
|
|
|
|
int logwrap_fork_execvp(int argc, const char* const* argv, int* status, bool forward_signals,
|
|
int log_target, bool abbreviated, const char* file_path) {
|
|
pid_t pid;
|
|
int parent_ptty;
|
|
sigset_t oldset;
|
|
int rc = 0;
|
|
|
|
rc = pthread_mutex_lock(&fd_mutex);
|
|
if (rc) {
|
|
ERROR("failed to lock signal_fd mutex\n");
|
|
goto err_lock;
|
|
}
|
|
|
|
/* Use ptty instead of socketpair so that STDOUT is not buffered */
|
|
parent_ptty = TEMP_FAILURE_RETRY(posix_openpt(O_RDWR | O_CLOEXEC));
|
|
if (parent_ptty < 0) {
|
|
ERROR("Cannot create parent ptty\n");
|
|
rc = -1;
|
|
goto err_open;
|
|
}
|
|
|
|
char child_devname[64];
|
|
if (grantpt(parent_ptty) || unlockpt(parent_ptty) ||
|
|
ptsname_r(parent_ptty, child_devname, sizeof(child_devname)) != 0) {
|
|
ERROR("Problem with /dev/ptmx\n");
|
|
rc = -1;
|
|
goto err_ptty;
|
|
}
|
|
|
|
if (forward_signals) {
|
|
// Block these signals until we have the child pid and our signal handlers set up.
|
|
block_signals(&oldset);
|
|
}
|
|
|
|
pid = fork();
|
|
if (pid < 0) {
|
|
ERROR("Failed to fork\n");
|
|
rc = -1;
|
|
goto err_fork;
|
|
} else if (pid == 0) {
|
|
pthread_mutex_unlock(&fd_mutex);
|
|
if (forward_signals) {
|
|
unblock_signals(&oldset);
|
|
}
|
|
|
|
setsid();
|
|
|
|
int child_ptty = TEMP_FAILURE_RETRY(open(child_devname, O_RDWR | O_CLOEXEC));
|
|
if (child_ptty < 0) {
|
|
FATAL_CHILD("Cannot open child_ptty: %s\n", strerror(errno));
|
|
}
|
|
close(parent_ptty);
|
|
|
|
dup2(child_ptty, 1);
|
|
dup2(child_ptty, 2);
|
|
close(child_ptty);
|
|
|
|
child(argc, argv);
|
|
} else {
|
|
if (forward_signals) {
|
|
setup_signal_handlers(pid);
|
|
unblock_signals(&oldset);
|
|
}
|
|
|
|
rc = parent(argv[0], parent_ptty, pid, status, log_target, abbreviated, file_path,
|
|
forward_signals);
|
|
|
|
if (forward_signals) {
|
|
restore_signal_handlers();
|
|
}
|
|
}
|
|
|
|
err_fork:
|
|
if (forward_signals) {
|
|
unblock_signals(&oldset);
|
|
}
|
|
err_ptty:
|
|
close(parent_ptty);
|
|
err_open:
|
|
pthread_mutex_unlock(&fd_mutex);
|
|
err_lock:
|
|
return rc;
|
|
}
|