platform_system_core/debuggerd/crash_dump.cpp
Peter Collingbourne ebc78cc852 Switch to the new kernel API for obtaining fault address tag bits.
The discussion on LKML is converging on v16 of the fault address tag
bits patch [1]. In this version of the patch the presence of the tag
bits in si_addr is controlled by a sa_flags bit, and a protocol is
introduced to allow userspace to detect kernel support for sa_flags
bits. Update the tombstone signal handler to use this API to read
the tag bits, update the interceptors in libsigchain to implement
the flag support detection protocol and hide the tag bits in si_addr
from chained signal handlers that did not request them to match the
kernel behavior.

[1] https://lore.kernel.org/linux-arm-kernel/cover.1605235762.git.pcc@google.com/

Change-Id: I57f24c07c01ceb3e5b81cfc15edf559ef7dfc740
2020-11-13 16:08:27 -08:00

647 lines
21 KiB
C++

/*
* Copyright 2016, The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <arpa/inet.h>
#include <dirent.h>
#include <fcntl.h>
#include <stdlib.h>
#include <sys/prctl.h>
#include <sys/ptrace.h>
#include <sys/types.h>
#include <sys/un.h>
#include <sys/wait.h>
#include <syscall.h>
#include <unistd.h>
#include <limits>
#include <map>
#include <memory>
#include <set>
#include <vector>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/macros.h>
#include <android-base/parseint.h>
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <android-base/unique_fd.h>
#include <bionic/mte_kernel.h>
#include <bionic/reserved_signals.h>
#include <cutils/sockets.h>
#include <log/log.h>
#include <private/android_filesystem_config.h>
#include <procinfo/process.h>
#define ATRACE_TAG ATRACE_TAG_BIONIC
#include <utils/Trace.h>
#include <unwindstack/DexFiles.h>
#include <unwindstack/JitDebug.h>
#include <unwindstack/Maps.h>
#include <unwindstack/Memory.h>
#include <unwindstack/Regs.h>
#include <unwindstack/Unwinder.h>
#include "libdebuggerd/backtrace.h"
#include "libdebuggerd/tombstone.h"
#include "libdebuggerd/utility.h"
#include "debuggerd/handler.h"
#include "tombstoned/tombstoned.h"
#include "protocol.h"
#include "util.h"
using android::base::unique_fd;
using android::base::StringPrintf;
static bool pid_contains_tid(int pid_proc_fd, pid_t tid) {
struct stat st;
std::string task_path = StringPrintf("task/%d", tid);
return fstatat(pid_proc_fd, task_path.c_str(), &st, 0) == 0;
}
static pid_t get_tracer(pid_t tracee) {
// Check to see if the thread is being ptraced by another process.
android::procinfo::ProcessInfo process_info;
if (android::procinfo::GetProcessInfo(tracee, &process_info)) {
return process_info.tracer;
}
return -1;
}
// Attach to a thread, and verify that it's still a member of the given process
static bool ptrace_seize_thread(int pid_proc_fd, pid_t tid, std::string* error, int flags = 0) {
if (ptrace(PTRACE_SEIZE, tid, 0, flags) != 0) {
if (errno == EPERM) {
pid_t tracer = get_tracer(tid);
if (tracer != -1) {
*error = StringPrintf("failed to attach to thread %d, already traced by %d (%s)", tid,
tracer, get_process_name(tracer).c_str());
return false;
}
}
*error = StringPrintf("failed to attach to thread %d: %s", tid, strerror(errno));
return false;
}
// Make sure that the task we attached to is actually part of the pid we're dumping.
if (!pid_contains_tid(pid_proc_fd, tid)) {
if (ptrace(PTRACE_DETACH, tid, 0, 0) != 0) {
PLOG(WARNING) << "failed to detach from thread " << tid;
}
*error = StringPrintf("thread %d is not in process", tid);
return false;
}
return true;
}
static bool wait_for_stop(pid_t tid, int* received_signal) {
while (true) {
int status;
pid_t result = waitpid(tid, &status, __WALL);
if (result != tid) {
PLOG(ERROR) << "waitpid failed on " << tid << " while detaching";
return false;
}
if (WIFSTOPPED(status)) {
if (status >> 16 == PTRACE_EVENT_STOP) {
*received_signal = 0;
} else {
*received_signal = WSTOPSIG(status);
}
return true;
}
}
}
// Interrupt a process and wait for it to be interrupted.
static bool ptrace_interrupt(pid_t tid, int* received_signal) {
if (ptrace(PTRACE_INTERRUPT, tid, 0, 0) == 0) {
return wait_for_stop(tid, received_signal);
}
PLOG(ERROR) << "failed to interrupt " << tid << " to detach";
return false;
}
static bool activity_manager_notify(pid_t pid, int signal, const std::string& amfd_data) {
ATRACE_CALL();
android::base::unique_fd amfd(socket_local_client(
"/data/system/ndebugsocket", ANDROID_SOCKET_NAMESPACE_FILESYSTEM, SOCK_STREAM));
if (amfd.get() == -1) {
PLOG(ERROR) << "unable to connect to activity manager";
return false;
}
struct timeval tv = {
.tv_sec = 1,
.tv_usec = 0,
};
if (setsockopt(amfd.get(), SOL_SOCKET, SO_SNDTIMEO, &tv, sizeof(tv)) == -1) {
PLOG(ERROR) << "failed to set send timeout on activity manager socket";
return false;
}
tv.tv_sec = 3; // 3 seconds on handshake read
if (setsockopt(amfd.get(), SOL_SOCKET, SO_RCVTIMEO, &tv, sizeof(tv)) == -1) {
PLOG(ERROR) << "failed to set receive timeout on activity manager socket";
return false;
}
// Activity Manager protocol: binary 32-bit network-byte-order ints for the
// pid and signal number, followed by the raw text of the dump, culminating
// in a zero byte that marks end-of-data.
uint32_t datum = htonl(pid);
if (!android::base::WriteFully(amfd, &datum, 4)) {
PLOG(ERROR) << "AM pid write failed";
return false;
}
datum = htonl(signal);
if (!android::base::WriteFully(amfd, &datum, 4)) {
PLOG(ERROR) << "AM signal write failed";
return false;
}
if (!android::base::WriteFully(amfd, amfd_data.c_str(), amfd_data.size() + 1)) {
PLOG(ERROR) << "AM data write failed";
return false;
}
// 3 sec timeout reading the ack; we're fine if the read fails.
char ack;
android::base::ReadFully(amfd, &ack, 1);
return true;
}
// Globals used by the abort handler.
static pid_t g_target_thread = -1;
static bool g_tombstoned_connected = false;
static unique_fd g_tombstoned_socket;
static unique_fd g_output_fd;
static void DefuseSignalHandlers() {
// Don't try to dump ourselves.
struct sigaction action = {};
action.sa_handler = SIG_DFL;
debuggerd_register_handlers(&action);
sigset_t mask;
sigemptyset(&mask);
if (sigprocmask(SIG_SETMASK, &mask, nullptr) != 0) {
PLOG(FATAL) << "failed to set signal mask";
}
}
static void Initialize(char** argv) {
android::base::InitLogging(argv);
android::base::SetAborter([](const char* abort_msg) {
// If we abort before we get an output fd, contact tombstoned to let any
// potential listeners know that we failed.
if (!g_tombstoned_connected) {
if (!tombstoned_connect(g_target_thread, &g_tombstoned_socket, &g_output_fd,
kDebuggerdAnyIntercept)) {
// We failed to connect, not much we can do.
LOG(ERROR) << "failed to connected to tombstoned to report failure";
_exit(1);
}
}
dprintf(g_output_fd.get(), "crash_dump failed to dump process");
if (g_target_thread != 1) {
dprintf(g_output_fd.get(), " %d: %s\n", g_target_thread, abort_msg);
} else {
dprintf(g_output_fd.get(), ": %s\n", abort_msg);
}
_exit(1);
});
}
static void ParseArgs(int argc, char** argv, pid_t* pseudothread_tid, DebuggerdDumpType* dump_type) {
if (argc != 4) {
LOG(FATAL) << "wrong number of args: " << argc << " (expected 4)";
}
if (!android::base::ParseInt(argv[1], &g_target_thread, 1, std::numeric_limits<pid_t>::max())) {
LOG(FATAL) << "invalid target tid: " << argv[1];
}
if (!android::base::ParseInt(argv[2], pseudothread_tid, 1, std::numeric_limits<pid_t>::max())) {
LOG(FATAL) << "invalid pseudothread tid: " << argv[2];
}
int dump_type_int;
if (!android::base::ParseInt(argv[3], &dump_type_int, 0, 1)) {
LOG(FATAL) << "invalid requested dump type: " << argv[3];
}
*dump_type = static_cast<DebuggerdDumpType>(dump_type_int);
}
static void ReadCrashInfo(unique_fd& fd, siginfo_t* siginfo,
std::unique_ptr<unwindstack::Regs>* regs, ProcessInfo* process_info) {
std::aligned_storage<sizeof(CrashInfo) + 1, alignof(CrashInfo)>::type buf;
CrashInfo* crash_info = reinterpret_cast<CrashInfo*>(&buf);
ssize_t rc = TEMP_FAILURE_RETRY(read(fd.get(), &buf, sizeof(buf)));
if (rc == -1) {
PLOG(FATAL) << "failed to read target ucontext";
} else {
ssize_t expected_size = 0;
switch (crash_info->header.version) {
case 1:
case 2:
case 3:
expected_size = sizeof(CrashInfoHeader) + sizeof(CrashInfoDataStatic);
break;
case 4:
expected_size = sizeof(CrashInfoHeader) + sizeof(CrashInfoDataDynamic);
break;
default:
LOG(FATAL) << "unexpected CrashInfo version: " << crash_info->header.version;
break;
};
if (rc < expected_size) {
LOG(FATAL) << "read " << rc << " bytes when reading target crash information, expected "
<< expected_size;
}
}
switch (crash_info->header.version) {
case 4:
process_info->fdsan_table_address = crash_info->data.d.fdsan_table_address;
process_info->gwp_asan_state = crash_info->data.d.gwp_asan_state;
process_info->gwp_asan_metadata = crash_info->data.d.gwp_asan_metadata;
process_info->scudo_stack_depot = crash_info->data.d.scudo_stack_depot;
process_info->scudo_region_info = crash_info->data.d.scudo_region_info;
FALLTHROUGH_INTENDED;
case 1:
case 2:
case 3:
process_info->abort_msg_address = crash_info->data.s.abort_msg_address;
*siginfo = crash_info->data.s.siginfo;
if (signal_has_si_addr(siginfo)) {
process_info->has_fault_address = true;
process_info->fault_address = reinterpret_cast<uintptr_t>(siginfo->si_addr);
}
regs->reset(unwindstack::Regs::CreateFromUcontext(unwindstack::Regs::CurrentArch(),
&crash_info->data.s.ucontext));
break;
default:
__builtin_unreachable();
}
}
// Wait for a process to clone and return the child's pid.
// Note: this leaves the parent in PTRACE_EVENT_STOP.
static pid_t wait_for_clone(pid_t pid, bool resume_child) {
int status;
pid_t result = TEMP_FAILURE_RETRY(waitpid(pid, &status, __WALL));
if (result == -1) {
PLOG(FATAL) << "failed to waitpid";
}
if (WIFEXITED(status)) {
LOG(FATAL) << "traced process exited with status " << WEXITSTATUS(status);
} else if (WIFSIGNALED(status)) {
LOG(FATAL) << "traced process exited with signal " << WTERMSIG(status);
} else if (!WIFSTOPPED(status)) {
LOG(FATAL) << "process didn't stop? (status = " << status << ")";
}
if (status >> 8 != (SIGTRAP | (PTRACE_EVENT_CLONE << 8))) {
LOG(FATAL) << "process didn't stop due to PTRACE_O_TRACECLONE (status = " << status << ")";
}
pid_t child;
if (ptrace(PTRACE_GETEVENTMSG, pid, 0, &child) != 0) {
PLOG(FATAL) << "failed to get child pid via PTRACE_GETEVENTMSG";
}
int stop_signal;
if (!wait_for_stop(child, &stop_signal)) {
PLOG(FATAL) << "failed to waitpid on child";
}
CHECK_EQ(0, stop_signal);
if (resume_child) {
if (ptrace(PTRACE_CONT, child, 0, 0) != 0) {
PLOG(FATAL) << "failed to resume child (pid = " << child << ")";
}
}
return child;
}
static pid_t wait_for_vm_process(pid_t pseudothread_tid) {
// The pseudothread will double-fork, we want its grandchild.
pid_t intermediate = wait_for_clone(pseudothread_tid, true);
pid_t vm_pid = wait_for_clone(intermediate, false);
if (ptrace(PTRACE_DETACH, intermediate, 0, 0) != 0) {
PLOG(FATAL) << "failed to detach from intermediate vm process";
}
return vm_pid;
}
static void InstallSigPipeHandler() {
struct sigaction action = {};
action.sa_handler = SIG_IGN;
action.sa_flags = SA_RESTART;
sigaction(SIGPIPE, &action, nullptr);
}
int main(int argc, char** argv) {
DefuseSignalHandlers();
InstallSigPipeHandler();
// There appears to be a bug in the kernel where our death causes SIGHUP to
// be sent to our process group if we exit while it has stopped jobs (e.g.
// because of wait_for_gdb). Use setsid to create a new process group to
// avoid hitting this.
setsid();
atrace_begin(ATRACE_TAG, "before reparent");
pid_t target_process = getppid();
// Open /proc/`getppid()` before we daemonize.
std::string target_proc_path = "/proc/" + std::to_string(target_process);
int target_proc_fd = open(target_proc_path.c_str(), O_DIRECTORY | O_RDONLY);
if (target_proc_fd == -1) {
PLOG(FATAL) << "failed to open " << target_proc_path;
}
// Make sure getppid() hasn't changed.
if (getppid() != target_process) {
LOG(FATAL) << "parent died";
}
atrace_end(ATRACE_TAG);
// Reparent ourselves to init, so that the signal handler can waitpid on the
// original process to avoid leaving a zombie for non-fatal dumps.
// Move the input/output pipes off of stdout/stderr, out of paranoia.
unique_fd output_pipe(dup(STDOUT_FILENO));
unique_fd input_pipe(dup(STDIN_FILENO));
unique_fd fork_exit_read, fork_exit_write;
if (!Pipe(&fork_exit_read, &fork_exit_write)) {
PLOG(FATAL) << "failed to create pipe";
}
pid_t forkpid = fork();
if (forkpid == -1) {
PLOG(FATAL) << "fork failed";
} else if (forkpid == 0) {
fork_exit_read.reset();
} else {
// We need the pseudothread to live until we get around to verifying the vm pid against it.
// The last thing it does is block on a waitpid on us, so wait until our child tells us to die.
fork_exit_write.reset();
char buf;
TEMP_FAILURE_RETRY(read(fork_exit_read.get(), &buf, sizeof(buf)));
_exit(0);
}
ATRACE_NAME("after reparent");
pid_t pseudothread_tid;
DebuggerdDumpType dump_type;
ProcessInfo process_info;
Initialize(argv);
ParseArgs(argc, argv, &pseudothread_tid, &dump_type);
// Die if we take too long.
//
// Note: processes with many threads and minidebug-info can take a bit to
// unwind, do not make this too small. b/62828735
alarm(30);
// Get the process name (aka cmdline).
std::string process_name = get_process_name(g_target_thread);
// Collect the list of open files.
OpenFilesList open_files;
{
ATRACE_NAME("open files");
populate_open_files_list(&open_files, g_target_thread);
}
// In order to reduce the duration that we pause the process for, we ptrace
// the threads, fetch their registers and associated information, and then
// fork a separate process as a snapshot of the process's address space.
std::set<pid_t> threads;
if (!android::procinfo::GetProcessTids(g_target_thread, &threads)) {
PLOG(FATAL) << "failed to get process threads";
}
std::map<pid_t, ThreadInfo> thread_info;
siginfo_t siginfo;
std::string error;
{
ATRACE_NAME("ptrace");
for (pid_t thread : threads) {
// Trace the pseudothread separately, so we can use different options.
if (thread == pseudothread_tid) {
continue;
}
if (!ptrace_seize_thread(target_proc_fd, thread, &error)) {
bool fatal = thread == g_target_thread;
LOG(fatal ? FATAL : WARNING) << error;
}
ThreadInfo info;
info.pid = target_process;
info.tid = thread;
info.uid = getuid();
info.process_name = process_name;
info.thread_name = get_thread_name(thread);
if (!ptrace_interrupt(thread, &info.signo)) {
PLOG(WARNING) << "failed to ptrace interrupt thread " << thread;
ptrace(PTRACE_DETACH, thread, 0, 0);
continue;
}
#ifdef ANDROID_EXPERIMENTAL_MTE
struct iovec iov = {
&info.tagged_addr_ctrl,
sizeof(info.tagged_addr_ctrl),
};
if (ptrace(PTRACE_GETREGSET, thread, NT_ARM_TAGGED_ADDR_CTRL,
reinterpret_cast<void*>(&iov)) == -1) {
info.tagged_addr_ctrl = -1;
}
#endif
if (thread == g_target_thread) {
// Read the thread's registers along with the rest of the crash info out of the pipe.
ReadCrashInfo(input_pipe, &siginfo, &info.registers, &process_info);
info.siginfo = &siginfo;
info.signo = info.siginfo->si_signo;
} else {
info.registers.reset(unwindstack::Regs::RemoteGet(thread));
if (!info.registers) {
PLOG(WARNING) << "failed to fetch registers for thread " << thread;
ptrace(PTRACE_DETACH, thread, 0, 0);
continue;
}
}
thread_info[thread] = std::move(info);
}
}
// Trace the pseudothread with PTRACE_O_TRACECLONE and tell it to fork.
if (!ptrace_seize_thread(target_proc_fd, pseudothread_tid, &error, PTRACE_O_TRACECLONE)) {
LOG(FATAL) << "failed to seize pseudothread: " << error;
}
if (TEMP_FAILURE_RETRY(write(output_pipe.get(), "\1", 1)) != 1) {
PLOG(FATAL) << "failed to write to pseudothread";
}
pid_t vm_pid = wait_for_vm_process(pseudothread_tid);
if (ptrace(PTRACE_DETACH, pseudothread_tid, 0, 0) != 0) {
PLOG(FATAL) << "failed to detach from pseudothread";
}
// The pseudothread can die now.
fork_exit_write.reset();
// Defer the message until later, for readability.
bool wait_for_gdb = android::base::GetBoolProperty("debug.debuggerd.wait_for_gdb", false);
if (siginfo.si_signo == BIONIC_SIGNAL_DEBUGGER) {
wait_for_gdb = false;
}
// Detach from all of our attached threads before resuming.
for (const auto& [tid, thread] : thread_info) {
int resume_signal = thread.signo == BIONIC_SIGNAL_DEBUGGER ? 0 : thread.signo;
if (wait_for_gdb) {
resume_signal = 0;
if (tgkill(target_process, tid, SIGSTOP) != 0) {
PLOG(WARNING) << "failed to send SIGSTOP to " << tid;
}
}
LOG(DEBUG) << "detaching from thread " << tid;
if (ptrace(PTRACE_DETACH, tid, 0, resume_signal) != 0) {
PLOG(ERROR) << "failed to detach from thread " << tid;
}
}
// Drop our capabilities now that we've fetched all of the information we need.
drop_capabilities();
{
ATRACE_NAME("tombstoned_connect");
LOG(INFO) << "obtaining output fd from tombstoned, type: " << dump_type;
g_tombstoned_connected =
tombstoned_connect(g_target_thread, &g_tombstoned_socket, &g_output_fd, dump_type);
}
if (g_tombstoned_connected) {
if (TEMP_FAILURE_RETRY(dup2(g_output_fd.get(), STDOUT_FILENO)) == -1) {
PLOG(ERROR) << "failed to dup2 output fd (" << g_output_fd.get() << ") to STDOUT_FILENO";
}
} else {
unique_fd devnull(TEMP_FAILURE_RETRY(open("/dev/null", O_RDWR)));
TEMP_FAILURE_RETRY(dup2(devnull.get(), STDOUT_FILENO));
g_output_fd = std::move(devnull);
}
LOG(INFO) << "performing dump of process " << target_process
<< " (target tid = " << g_target_thread << ")";
int signo = siginfo.si_signo;
bool fatal_signal = signo != BIONIC_SIGNAL_DEBUGGER;
bool backtrace = false;
// si_value is special when used with BIONIC_SIGNAL_DEBUGGER.
// 0: dump tombstone
// 1: dump backtrace
if (!fatal_signal) {
int si_val = siginfo.si_value.sival_int;
if (si_val == 0) {
backtrace = false;
} else if (si_val == 1) {
backtrace = true;
} else {
LOG(WARNING) << "unknown si_value value " << si_val;
}
}
// TODO: Use seccomp to lock ourselves down.
unwindstack::UnwinderFromPid unwinder(256, vm_pid, unwindstack::Regs::CurrentArch());
if (!unwinder.Init()) {
LOG(FATAL) << "Failed to init unwinder object.";
}
std::string amfd_data;
if (backtrace) {
ATRACE_NAME("dump_backtrace");
dump_backtrace(std::move(g_output_fd), &unwinder, thread_info, g_target_thread);
} else {
{
ATRACE_NAME("fdsan table dump");
populate_fdsan_table(&open_files, unwinder.GetProcessMemory(),
process_info.fdsan_table_address);
}
{
ATRACE_NAME("engrave_tombstone");
engrave_tombstone(std::move(g_output_fd), &unwinder, thread_info, g_target_thread, process_info,
&open_files, &amfd_data);
}
}
if (fatal_signal) {
// Don't try to notify ActivityManager if it just crashed, or we might hang until timeout.
if (thread_info[target_process].thread_name != "system_server") {
activity_manager_notify(target_process, signo, amfd_data);
}
}
if (wait_for_gdb) {
// Use ALOGI to line up with output from engrave_tombstone.
ALOGI(
"***********************************************************\n"
"* Process %d has been suspended while crashing.\n"
"* To attach gdbserver and start gdb, run this on the host:\n"
"*\n"
"* gdbclient.py -p %d\n"
"*\n"
"***********************************************************",
target_process, target_process);
}
// Close stdout before we notify tombstoned of completion.
close(STDOUT_FILENO);
if (g_tombstoned_connected && !tombstoned_notify_completion(g_tombstoned_socket.get())) {
LOG(ERROR) << "failed to notify tombstoned of completion";
}
return 0;
}