platform_system_core/libunwindstack/ElfInterfaceArm.cpp
Christopher Ferris 2fcf4cf13e Add error propagation into Unwinder/Elf objects.
The backtrace offline code uses these error codes to diagnose errors.
In addtion, I've had cases where seeing these errors would help diagnose
failures.

This also allows us to add a few features to indicate why an unwind
terminated (such as max frames exceeded).

Bug: 65682279

Test: Updated unit tests pass.
Change-Id: If82b5092698e8a194016d670efff1320f9b44d50
2018-01-24 17:50:46 -08:00

174 lines
4.9 KiB
C++

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <elf.h>
#include <stdint.h>
#include <unwindstack/Memory.h>
#include <unwindstack/RegsArm.h>
#include "ArmExidx.h"
#include "ElfInterfaceArm.h"
#include "MachineArm.h"
namespace unwindstack {
bool ElfInterfaceArm::FindEntry(uint32_t pc, uint64_t* entry_offset) {
if (start_offset_ == 0 || total_entries_ == 0) {
last_error_.code = ERROR_UNWIND_INFO;
return false;
}
size_t first = 0;
size_t last = total_entries_;
while (first < last) {
size_t current = (first + last) / 2;
uint32_t addr = addrs_[current];
if (addr == 0) {
if (!GetPrel31Addr(start_offset_ + current * 8, &addr)) {
return false;
}
addrs_[current] = addr;
}
if (pc == addr) {
*entry_offset = start_offset_ + current * 8;
return true;
}
if (pc < addr) {
last = current;
} else {
first = current + 1;
}
}
if (last != 0) {
*entry_offset = start_offset_ + (last - 1) * 8;
return true;
}
last_error_.code = ERROR_UNWIND_INFO;
return false;
}
bool ElfInterfaceArm::GetPrel31Addr(uint32_t offset, uint32_t* addr) {
uint32_t data;
if (!memory_->Read32(offset, &data)) {
last_error_.code = ERROR_MEMORY_INVALID;
last_error_.address = offset;
return false;
}
// Sign extend the value if necessary.
int32_t value = (static_cast<int32_t>(data) << 1) >> 1;
*addr = offset + value;
return true;
}
#if !defined(PT_ARM_EXIDX)
#define PT_ARM_EXIDX 0x70000001
#endif
bool ElfInterfaceArm::HandleType(uint64_t offset, uint32_t type, uint64_t load_bias) {
if (type != PT_ARM_EXIDX) {
return false;
}
Elf32_Phdr phdr;
if (!memory_->ReadField(offset, &phdr, &phdr.p_vaddr, sizeof(phdr.p_vaddr))) {
return true;
}
if (!memory_->ReadField(offset, &phdr, &phdr.p_memsz, sizeof(phdr.p_memsz))) {
return true;
}
start_offset_ = phdr.p_vaddr - load_bias;
total_entries_ = phdr.p_memsz / 8;
return true;
}
bool ElfInterfaceArm::Step(uint64_t pc, uint64_t load_bias, Regs* regs, Memory* process_memory,
bool* finished) {
// Dwarf unwind information is precise about whether a pc is covered or not,
// but arm unwind information only has ranges of pc. In order to avoid
// incorrectly doing a bad unwind using arm unwind information for a
// different function, always try and unwind with the dwarf information first.
return ElfInterface32::Step(pc, load_bias, regs, process_memory, finished) ||
StepExidx(pc, load_bias, regs, process_memory, finished);
}
bool ElfInterfaceArm::StepExidx(uint64_t pc, uint64_t load_bias, Regs* regs, Memory* process_memory,
bool* finished) {
// Adjust the load bias to get the real relative pc.
if (pc < load_bias) {
last_error_.code = ERROR_UNWIND_INFO;
return false;
}
pc -= load_bias;
RegsArm* regs_arm = reinterpret_cast<RegsArm*>(regs);
uint64_t entry_offset;
if (!FindEntry(pc, &entry_offset)) {
return false;
}
ArmExidx arm(regs_arm, memory_, process_memory);
arm.set_cfa(regs_arm->sp());
bool return_value = false;
if (arm.ExtractEntryData(entry_offset) && arm.Eval()) {
// If the pc was not set, then use the LR registers for the PC.
if (!arm.pc_set()) {
regs_arm->set_pc((*regs_arm)[ARM_REG_LR]);
(*regs_arm)[ARM_REG_PC] = regs_arm->pc();
} else {
regs_arm->set_pc((*regs_arm)[ARM_REG_PC]);
}
regs_arm->set_sp(arm.cfa());
(*regs_arm)[ARM_REG_SP] = regs_arm->sp();
return_value = true;
// If the pc was set to zero, consider this the final frame.
*finished = (regs_arm->pc() == 0) ? true : false;
}
if (arm.status() == ARM_STATUS_NO_UNWIND) {
*finished = true;
return true;
}
if (!return_value) {
switch (arm.status()) {
case ARM_STATUS_NONE:
case ARM_STATUS_NO_UNWIND:
case ARM_STATUS_FINISH:
last_error_.code = ERROR_NONE;
break;
case ARM_STATUS_RESERVED:
case ARM_STATUS_SPARE:
case ARM_STATUS_TRUNCATED:
case ARM_STATUS_MALFORMED:
case ARM_STATUS_INVALID_ALIGNMENT:
case ARM_STATUS_INVALID_PERSONALITY:
last_error_.code = ERROR_UNWIND_INFO;
break;
case ARM_STATUS_READ_FAILED:
last_error_.code = ERROR_MEMORY_INVALID;
last_error_.address = arm.status_address();
break;
}
}
return return_value;
}
} // namespace unwindstack