platform_system_core/adb/sysdeps_win32.cpp
Josh Gao 0f29cbc750 adb: switch unix_open to string_view.
Test: test_adb.py
Test: test_device.py
Test: $ANDROID_HOST_OUT/nativetest64/adb_test/adb_test
Test: adb shell /data/nativetest64/adbd_test/adbd_test
Change-Id: Ieecc9b1b7f2111f4da45d4bbd1b7703535fe7d4d
2018-12-21 01:43:31 -08:00

2759 lines
99 KiB
C++

/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define TRACE_TAG SYSDEPS
#include "sysdeps.h"
#include <winsock2.h> /* winsock.h *must* be included before windows.h. */
#include <windows.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
#include <memory>
#include <mutex>
#include <string>
#include <string_view>
#include <unordered_map>
#include <vector>
#include <cutils/sockets.h>
#include <android-base/errors.h>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/macros.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <android-base/utf8.h>
#include "adb.h"
#include "adb_utils.h"
#include "sysdeps/uio.h"
/* forward declarations */
typedef const struct FHClassRec_* FHClass;
typedef struct FHRec_* FH;
typedef struct FHClassRec_ {
void (*_fh_init)(FH);
int (*_fh_close)(FH);
int64_t (*_fh_lseek)(FH, int64_t, int);
int (*_fh_read)(FH, void*, int);
int (*_fh_write)(FH, const void*, int);
int (*_fh_writev)(FH, const adb_iovec*, int);
} FHClassRec;
static void _fh_file_init(FH);
static int _fh_file_close(FH);
static int64_t _fh_file_lseek(FH, int64_t, int);
static int _fh_file_read(FH, void*, int);
static int _fh_file_write(FH, const void*, int);
static int _fh_file_writev(FH, const adb_iovec*, int);
static const FHClassRec _fh_file_class = {
_fh_file_init,
_fh_file_close,
_fh_file_lseek,
_fh_file_read,
_fh_file_write,
_fh_file_writev,
};
static void _fh_socket_init(FH);
static int _fh_socket_close(FH);
static int64_t _fh_socket_lseek(FH, int64_t, int);
static int _fh_socket_read(FH, void*, int);
static int _fh_socket_write(FH, const void*, int);
static int _fh_socket_writev(FH, const adb_iovec*, int);
static const FHClassRec _fh_socket_class = {
_fh_socket_init,
_fh_socket_close,
_fh_socket_lseek,
_fh_socket_read,
_fh_socket_write,
_fh_socket_writev,
};
#if defined(assert)
#undef assert
#endif
void handle_deleter::operator()(HANDLE h) {
// CreateFile() is documented to return INVALID_HANDLE_FILE on error,
// implying that NULL is a valid handle, but this is probably impossible.
// Other APIs like CreateEvent() are documented to return NULL on error,
// implying that INVALID_HANDLE_VALUE is a valid handle, but this is also
// probably impossible. Thus, consider both NULL and INVALID_HANDLE_VALUE
// as invalid handles. std::unique_ptr won't call a deleter with NULL, so we
// only need to check for INVALID_HANDLE_VALUE.
if (h != INVALID_HANDLE_VALUE) {
if (!CloseHandle(h)) {
D("CloseHandle(%p) failed: %s", h,
android::base::SystemErrorCodeToString(GetLastError()).c_str());
}
}
}
/**************************************************************************/
/**************************************************************************/
/***** *****/
/***** common file descriptor handling *****/
/***** *****/
/**************************************************************************/
/**************************************************************************/
typedef struct FHRec_
{
FHClass clazz;
int used;
int eof;
union {
HANDLE handle;
SOCKET socket;
} u;
char name[32];
} FHRec;
#define fh_handle u.handle
#define fh_socket u.socket
#define WIN32_FH_BASE 2048
#define WIN32_MAX_FHS 2048
static std::mutex& _win32_lock = *new std::mutex();
static FHRec _win32_fhs[ WIN32_MAX_FHS ];
static int _win32_fh_next; // where to start search for free FHRec
static FH
_fh_from_int( int fd, const char* func )
{
FH f;
fd -= WIN32_FH_BASE;
if (fd < 0 || fd >= WIN32_MAX_FHS) {
D( "_fh_from_int: invalid fd %d passed to %s", fd + WIN32_FH_BASE,
func );
errno = EBADF;
return nullptr;
}
f = &_win32_fhs[fd];
if (f->used == 0) {
D( "_fh_from_int: invalid fd %d passed to %s", fd + WIN32_FH_BASE,
func );
errno = EBADF;
return nullptr;
}
return f;
}
static int
_fh_to_int( FH f )
{
if (f && f->used && f >= _win32_fhs && f < _win32_fhs + WIN32_MAX_FHS)
return (int)(f - _win32_fhs) + WIN32_FH_BASE;
return -1;
}
static FH
_fh_alloc( FHClass clazz )
{
FH f = nullptr;
std::lock_guard<std::mutex> lock(_win32_lock);
for (int i = _win32_fh_next; i < WIN32_MAX_FHS; ++i) {
if (_win32_fhs[i].clazz == nullptr) {
f = &_win32_fhs[i];
_win32_fh_next = i + 1;
f->clazz = clazz;
f->used = 1;
f->eof = 0;
f->name[0] = '\0';
clazz->_fh_init(f);
return f;
}
}
D("_fh_alloc: no more free file descriptors");
errno = EMFILE; // Too many open files
return nullptr;
}
static int
_fh_close( FH f )
{
// Use lock so that closing only happens once and so that _fh_alloc can't
// allocate a FH that we're in the middle of closing.
std::lock_guard<std::mutex> lock(_win32_lock);
int offset = f - _win32_fhs;
if (_win32_fh_next > offset) {
_win32_fh_next = offset;
}
if (f->used) {
f->clazz->_fh_close( f );
f->name[0] = '\0';
f->eof = 0;
f->used = 0;
f->clazz = nullptr;
}
return 0;
}
// Deleter for unique_fh.
class fh_deleter {
public:
void operator()(struct FHRec_* fh) {
// We're called from a destructor and destructors should not overwrite
// errno because callers may do:
// errno = EBLAH;
// return -1; // calls destructor, which should not overwrite errno
const int saved_errno = errno;
_fh_close(fh);
errno = saved_errno;
}
};
// Like std::unique_ptr, but calls _fh_close() instead of operator delete().
typedef std::unique_ptr<struct FHRec_, fh_deleter> unique_fh;
/**************************************************************************/
/**************************************************************************/
/***** *****/
/***** file-based descriptor handling *****/
/***** *****/
/**************************************************************************/
/**************************************************************************/
static void _fh_file_init(FH f) {
f->fh_handle = INVALID_HANDLE_VALUE;
}
static int _fh_file_close(FH f) {
CloseHandle(f->fh_handle);
f->fh_handle = INVALID_HANDLE_VALUE;
return 0;
}
static int _fh_file_read(FH f, void* buf, int len) {
DWORD read_bytes;
if (!ReadFile(f->fh_handle, buf, (DWORD)len, &read_bytes, nullptr)) {
D("adb_read: could not read %d bytes from %s", len, f->name);
errno = EIO;
return -1;
} else if (read_bytes < (DWORD)len) {
f->eof = 1;
}
return read_bytes;
}
static int _fh_file_write(FH f, const void* buf, int len) {
DWORD wrote_bytes;
if (!WriteFile(f->fh_handle, buf, (DWORD)len, &wrote_bytes, nullptr)) {
D("adb_file_write: could not write %d bytes from %s", len, f->name);
errno = EIO;
return -1;
} else if (wrote_bytes < (DWORD)len) {
f->eof = 1;
}
return wrote_bytes;
}
static int _fh_file_writev(FH f, const adb_iovec* iov, int iovcnt) {
if (iovcnt <= 0) {
errno = EINVAL;
return -1;
}
DWORD wrote_bytes = 0;
for (int i = 0; i < iovcnt; ++i) {
ssize_t rc = _fh_file_write(f, iov[i].iov_base, iov[i].iov_len);
if (rc == -1) {
return wrote_bytes > 0 ? wrote_bytes : -1;
} else if (rc == 0) {
return wrote_bytes;
}
wrote_bytes += rc;
if (static_cast<size_t>(rc) < iov[i].iov_len) {
return wrote_bytes;
}
}
return wrote_bytes;
}
static int64_t _fh_file_lseek(FH f, int64_t pos, int origin) {
DWORD method;
switch (origin) {
case SEEK_SET:
method = FILE_BEGIN;
break;
case SEEK_CUR:
method = FILE_CURRENT;
break;
case SEEK_END:
method = FILE_END;
break;
default:
errno = EINVAL;
return -1;
}
LARGE_INTEGER li = {.QuadPart = pos};
if (!SetFilePointerEx(f->fh_handle, li, &li, method)) {
errno = EIO;
return -1;
}
f->eof = 0;
return li.QuadPart;
}
/**************************************************************************/
/**************************************************************************/
/***** *****/
/***** file-based descriptor handling *****/
/***** *****/
/**************************************************************************/
/**************************************************************************/
int adb_open(const char* path, int options) {
FH f;
DWORD desiredAccess = 0;
DWORD shareMode = FILE_SHARE_READ | FILE_SHARE_WRITE;
switch (options) {
case O_RDONLY:
desiredAccess = GENERIC_READ;
break;
case O_WRONLY:
desiredAccess = GENERIC_WRITE;
break;
case O_RDWR:
desiredAccess = GENERIC_READ | GENERIC_WRITE;
break;
default:
D("adb_open: invalid options (0x%0x)", options);
errno = EINVAL;
return -1;
}
f = _fh_alloc(&_fh_file_class);
if (!f) {
return -1;
}
std::wstring path_wide;
if (!android::base::UTF8ToWide(path, &path_wide)) {
return -1;
}
f->fh_handle =
CreateFileW(path_wide.c_str(), desiredAccess, shareMode, nullptr, OPEN_EXISTING, 0, nullptr);
if (f->fh_handle == INVALID_HANDLE_VALUE) {
const DWORD err = GetLastError();
_fh_close(f);
D("adb_open: could not open '%s': ", path);
switch (err) {
case ERROR_FILE_NOT_FOUND:
D("file not found");
errno = ENOENT;
return -1;
case ERROR_PATH_NOT_FOUND:
D("path not found");
errno = ENOTDIR;
return -1;
default:
D("unknown error: %s", android::base::SystemErrorCodeToString(err).c_str());
errno = ENOENT;
return -1;
}
}
snprintf(f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path);
D("adb_open: '%s' => fd %d", path, _fh_to_int(f));
return _fh_to_int(f);
}
/* ignore mode on Win32 */
int adb_creat(const char* path, int mode) {
FH f;
f = _fh_alloc(&_fh_file_class);
if (!f) {
return -1;
}
std::wstring path_wide;
if (!android::base::UTF8ToWide(path, &path_wide)) {
return -1;
}
f->fh_handle = CreateFileW(path_wide.c_str(), GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE,
nullptr, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, nullptr);
if (f->fh_handle == INVALID_HANDLE_VALUE) {
const DWORD err = GetLastError();
_fh_close(f);
D("adb_creat: could not open '%s': ", path);
switch (err) {
case ERROR_FILE_NOT_FOUND:
D("file not found");
errno = ENOENT;
return -1;
case ERROR_PATH_NOT_FOUND:
D("path not found");
errno = ENOTDIR;
return -1;
default:
D("unknown error: %s", android::base::SystemErrorCodeToString(err).c_str());
errno = ENOENT;
return -1;
}
}
snprintf(f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path);
D("adb_creat: '%s' => fd %d", path, _fh_to_int(f));
return _fh_to_int(f);
}
int adb_read(int fd, void* buf, int len) {
FH f = _fh_from_int(fd, __func__);
if (f == nullptr) {
errno = EBADF;
return -1;
}
return f->clazz->_fh_read(f, buf, len);
}
int adb_write(int fd, const void* buf, int len) {
FH f = _fh_from_int(fd, __func__);
if (f == nullptr) {
errno = EBADF;
return -1;
}
return f->clazz->_fh_write(f, buf, len);
}
ssize_t adb_writev(int fd, const adb_iovec* iov, int iovcnt) {
FH f = _fh_from_int(fd, __func__);
if (f == nullptr) {
errno = EBADF;
return -1;
}
return f->clazz->_fh_writev(f, iov, iovcnt);
}
int64_t adb_lseek(int fd, int64_t pos, int where) {
FH f = _fh_from_int(fd, __func__);
if (!f) {
errno = EBADF;
return -1;
}
return f->clazz->_fh_lseek(f, pos, where);
}
int adb_close(int fd) {
FH f = _fh_from_int(fd, __func__);
if (!f) {
errno = EBADF;
return -1;
}
D("adb_close: %s", f->name);
_fh_close(f);
return 0;
}
/**************************************************************************/
/**************************************************************************/
/***** *****/
/***** socket-based file descriptors *****/
/***** *****/
/**************************************************************************/
/**************************************************************************/
#undef setsockopt
static void _socket_set_errno( const DWORD err ) {
// Because the Windows C Runtime (MSVCRT.DLL) strerror() does not support a
// lot of POSIX and socket error codes, some of the resulting error codes
// are mapped to strings by adb_strerror().
switch ( err ) {
case 0: errno = 0; break;
// Don't map WSAEINTR since that is only for Winsock 1.1 which we don't use.
// case WSAEINTR: errno = EINTR; break;
case WSAEFAULT: errno = EFAULT; break;
case WSAEINVAL: errno = EINVAL; break;
case WSAEMFILE: errno = EMFILE; break;
// Mapping WSAEWOULDBLOCK to EAGAIN is absolutely critical because
// non-blocking sockets can cause an error code of WSAEWOULDBLOCK and
// callers check specifically for EAGAIN.
case WSAEWOULDBLOCK: errno = EAGAIN; break;
case WSAENOTSOCK: errno = ENOTSOCK; break;
case WSAENOPROTOOPT: errno = ENOPROTOOPT; break;
case WSAEOPNOTSUPP: errno = EOPNOTSUPP; break;
case WSAENETDOWN: errno = ENETDOWN; break;
case WSAENETRESET: errno = ENETRESET; break;
// Map WSAECONNABORTED to EPIPE instead of ECONNABORTED because POSIX seems
// to use EPIPE for these situations and there are some callers that look
// for EPIPE.
case WSAECONNABORTED: errno = EPIPE; break;
case WSAECONNRESET: errno = ECONNRESET; break;
case WSAENOBUFS: errno = ENOBUFS; break;
case WSAENOTCONN: errno = ENOTCONN; break;
// Don't map WSAETIMEDOUT because we don't currently use SO_RCVTIMEO or
// SO_SNDTIMEO which would cause WSAETIMEDOUT to be returned. Future
// considerations: Reportedly send() can return zero on timeout, and POSIX
// code may expect EAGAIN instead of ETIMEDOUT on timeout.
// case WSAETIMEDOUT: errno = ETIMEDOUT; break;
case WSAEHOSTUNREACH: errno = EHOSTUNREACH; break;
default:
errno = EINVAL;
D( "_socket_set_errno: mapping Windows error code %lu to errno %d",
err, errno );
}
}
extern int adb_poll(adb_pollfd* fds, size_t nfds, int timeout) {
// WSAPoll doesn't handle invalid/non-socket handles, so we need to handle them ourselves.
int skipped = 0;
std::vector<WSAPOLLFD> sockets;
std::vector<adb_pollfd*> original;
for (size_t i = 0; i < nfds; ++i) {
FH fh = _fh_from_int(fds[i].fd, __func__);
if (!fh || !fh->used || fh->clazz != &_fh_socket_class) {
D("adb_poll received bad FD %d", fds[i].fd);
fds[i].revents = POLLNVAL;
++skipped;
} else {
WSAPOLLFD wsapollfd = {
.fd = fh->u.socket,
.events = static_cast<short>(fds[i].events)
};
sockets.push_back(wsapollfd);
original.push_back(&fds[i]);
}
}
if (sockets.empty()) {
return skipped;
}
// If we have any invalid FDs in our FD set, make sure to return immediately.
if (skipped > 0) {
timeout = 0;
}
int result = WSAPoll(sockets.data(), sockets.size(), timeout);
if (result == SOCKET_ERROR) {
_socket_set_errno(WSAGetLastError());
return -1;
}
// Map the results back onto the original set.
for (size_t i = 0; i < sockets.size(); ++i) {
original[i]->revents = sockets[i].revents;
}
// WSAPoll appears to return the number of unique FDs with available events, instead of how many
// of the pollfd elements have a non-zero revents field, which is what it and poll are specified
// to do. Ignore its result and calculate the proper return value.
result = 0;
for (size_t i = 0; i < nfds; ++i) {
if (fds[i].revents != 0) {
++result;
}
}
return result;
}
static void _fh_socket_init(FH f) {
f->fh_socket = INVALID_SOCKET;
}
static int _fh_socket_close(FH f) {
if (f->fh_socket != INVALID_SOCKET) {
/* gently tell any peer that we're closing the socket */
if (shutdown(f->fh_socket, SD_BOTH) == SOCKET_ERROR) {
// If the socket is not connected, this returns an error. We want to
// minimize logging spam, so don't log these errors for now.
#if 0
D("socket shutdown failed: %s",
android::base::SystemErrorCodeToString(WSAGetLastError()).c_str());
#endif
}
if (closesocket(f->fh_socket) == SOCKET_ERROR) {
// Don't set errno here, since adb_close will ignore it.
const DWORD err = WSAGetLastError();
D("closesocket failed: %s", android::base::SystemErrorCodeToString(err).c_str());
}
f->fh_socket = INVALID_SOCKET;
}
return 0;
}
static int64_t _fh_socket_lseek(FH f, int64_t pos, int origin) {
errno = EPIPE;
return -1;
}
static int _fh_socket_read(FH f, void* buf, int len) {
int result = recv(f->fh_socket, reinterpret_cast<char*>(buf), len, 0);
if (result == SOCKET_ERROR) {
const DWORD err = WSAGetLastError();
// WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace
// that to reduce spam and confusion.
if (err != WSAEWOULDBLOCK) {
D("recv fd %d failed: %s", _fh_to_int(f),
android::base::SystemErrorCodeToString(err).c_str());
}
_socket_set_errno(err);
result = -1;
}
return result;
}
static int _fh_socket_write(FH f, const void* buf, int len) {
int result = send(f->fh_socket, reinterpret_cast<const char*>(buf), len, 0);
if (result == SOCKET_ERROR) {
const DWORD err = WSAGetLastError();
// WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace
// that to reduce spam and confusion.
if (err != WSAEWOULDBLOCK) {
D("send fd %d failed: %s", _fh_to_int(f),
android::base::SystemErrorCodeToString(err).c_str());
}
_socket_set_errno(err);
result = -1;
} else {
// According to https://code.google.com/p/chromium/issues/detail?id=27870
// Winsock Layered Service Providers may cause this.
CHECK_LE(result, len) << "Tried to write " << len << " bytes to " << f->name << ", but "
<< result << " bytes reportedly written";
}
return result;
}
// Make sure that adb_iovec is compatible with WSABUF.
static_assert(sizeof(adb_iovec) == sizeof(WSABUF), "");
static_assert(SIZEOF_MEMBER(adb_iovec, iov_len) == SIZEOF_MEMBER(WSABUF, len), "");
static_assert(offsetof(adb_iovec, iov_len) == offsetof(WSABUF, len), "");
static_assert(SIZEOF_MEMBER(adb_iovec, iov_base) == SIZEOF_MEMBER(WSABUF, buf), "");
static_assert(offsetof(adb_iovec, iov_base) == offsetof(WSABUF, buf), "");
static int _fh_socket_writev(FH f, const adb_iovec* iov, int iovcnt) {
if (iovcnt <= 0) {
errno = EINVAL;
return -1;
}
WSABUF* wsabuf = reinterpret_cast<WSABUF*>(const_cast<adb_iovec*>(iov));
DWORD bytes_written = 0;
int result = WSASend(f->fh_socket, wsabuf, iovcnt, &bytes_written, 0, nullptr, nullptr);
if (result == SOCKET_ERROR) {
const DWORD err = WSAGetLastError();
// WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace
// that to reduce spam and confusion.
if (err != WSAEWOULDBLOCK) {
D("send fd %d failed: %s", _fh_to_int(f),
android::base::SystemErrorCodeToString(err).c_str());
}
_socket_set_errno(err);
result = -1;
}
CHECK_GE(static_cast<DWORD>(std::numeric_limits<int>::max()), bytes_written);
return static_cast<int>(bytes_written);
}
/**************************************************************************/
/**************************************************************************/
/***** *****/
/***** replacement for libs/cutils/socket_xxxx.c *****/
/***** *****/
/**************************************************************************/
/**************************************************************************/
static int _init_winsock(void) {
static std::once_flag once;
std::call_once(once, []() {
WSADATA wsaData;
int rc = WSAStartup(MAKEWORD(2, 2), &wsaData);
if (rc != 0) {
LOG(FATAL) << "could not initialize Winsock: "
<< android::base::SystemErrorCodeToString(rc);
}
// Note that we do not call atexit() to register WSACleanup to be called
// at normal process termination because:
// 1) When exit() is called, there are still threads actively using
// Winsock because we don't cleanly shutdown all threads, so it
// doesn't make sense to call WSACleanup() and may cause problems
// with those threads.
// 2) A deadlock can occur when exit() holds a C Runtime lock, then it
// calls WSACleanup() which tries to unload a DLL, which tries to
// grab the LoaderLock. This conflicts with the device_poll_thread
// which holds the LoaderLock because AdbWinApi.dll calls
// setupapi.dll which tries to load wintrust.dll which tries to load
// crypt32.dll which calls atexit() which tries to acquire the C
// Runtime lock that the other thread holds.
});
return 0;
}
static int _winsock_init = _init_winsock();
// Map a socket type to an explicit socket protocol instead of using the socket
// protocol of 0. Explicit socket protocols are used by most apps and we should
// do the same to reduce the chance of exercising uncommon code-paths that might
// have problems or that might load different Winsock service providers that
// have problems.
static int GetSocketProtocolFromSocketType(int type) {
switch (type) {
case SOCK_STREAM:
return IPPROTO_TCP;
case SOCK_DGRAM:
return IPPROTO_UDP;
default:
LOG(FATAL) << "Unknown socket type: " << type;
return 0;
}
}
int network_loopback_client(int port, int type, std::string* error) {
struct sockaddr_in addr;
SOCKET s;
unique_fh f(_fh_alloc(&_fh_socket_class));
if (!f) {
*error = strerror(errno);
return -1;
}
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_port = htons(port);
addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
s = socket(AF_INET, type, GetSocketProtocolFromSocketType(type));
if (s == INVALID_SOCKET) {
const DWORD err = WSAGetLastError();
*error = android::base::StringPrintf("cannot create socket: %s",
android::base::SystemErrorCodeToString(err).c_str());
D("%s", error->c_str());
_socket_set_errno(err);
return -1;
}
f->fh_socket = s;
if (connect(s, (struct sockaddr*)&addr, sizeof(addr)) == SOCKET_ERROR) {
// Save err just in case inet_ntoa() or ntohs() changes the last error.
const DWORD err = WSAGetLastError();
*error = android::base::StringPrintf("cannot connect to %s:%u: %s",
inet_ntoa(addr.sin_addr), ntohs(addr.sin_port),
android::base::SystemErrorCodeToString(err).c_str());
D("could not connect to %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port,
error->c_str());
_socket_set_errno(err);
return -1;
}
const int fd = _fh_to_int(f.get());
snprintf(f->name, sizeof(f->name), "%d(lo-client:%s%d)", fd, type != SOCK_STREAM ? "udp:" : "",
port);
D("port %d type %s => fd %d", port, type != SOCK_STREAM ? "udp" : "tcp", fd);
f.release();
return fd;
}
// interface_address is INADDR_LOOPBACK or INADDR_ANY.
static int _network_server(int port, int type, u_long interface_address, std::string* error) {
struct sockaddr_in addr;
SOCKET s;
int n;
unique_fh f(_fh_alloc(&_fh_socket_class));
if (!f) {
*error = strerror(errno);
return -1;
}
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_port = htons(port);
addr.sin_addr.s_addr = htonl(interface_address);
// TODO: Consider using dual-stack socket that can simultaneously listen on
// IPv4 and IPv6.
s = socket(AF_INET, type, GetSocketProtocolFromSocketType(type));
if (s == INVALID_SOCKET) {
const DWORD err = WSAGetLastError();
*error = android::base::StringPrintf("cannot create socket: %s",
android::base::SystemErrorCodeToString(err).c_str());
D("%s", error->c_str());
_socket_set_errno(err);
return -1;
}
f->fh_socket = s;
// Note: SO_REUSEADDR on Windows allows multiple processes to bind to the
// same port, so instead use SO_EXCLUSIVEADDRUSE.
n = 1;
if (setsockopt(s, SOL_SOCKET, SO_EXCLUSIVEADDRUSE, (const char*)&n, sizeof(n)) == SOCKET_ERROR) {
const DWORD err = WSAGetLastError();
*error = android::base::StringPrintf("cannot set socket option SO_EXCLUSIVEADDRUSE: %s",
android::base::SystemErrorCodeToString(err).c_str());
D("%s", error->c_str());
_socket_set_errno(err);
return -1;
}
if (bind(s, (struct sockaddr*)&addr, sizeof(addr)) == SOCKET_ERROR) {
// Save err just in case inet_ntoa() or ntohs() changes the last error.
const DWORD err = WSAGetLastError();
*error = android::base::StringPrintf("cannot bind to %s:%u: %s", inet_ntoa(addr.sin_addr),
ntohs(addr.sin_port),
android::base::SystemErrorCodeToString(err).c_str());
D("could not bind to %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port, error->c_str());
_socket_set_errno(err);
return -1;
}
if (type == SOCK_STREAM) {
if (listen(s, SOMAXCONN) == SOCKET_ERROR) {
const DWORD err = WSAGetLastError();
*error = android::base::StringPrintf(
"cannot listen on socket: %s", android::base::SystemErrorCodeToString(err).c_str());
D("could not listen on %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port,
error->c_str());
_socket_set_errno(err);
return -1;
}
}
const int fd = _fh_to_int(f.get());
snprintf(f->name, sizeof(f->name), "%d(%s-server:%s%d)", fd,
interface_address == INADDR_LOOPBACK ? "lo" : "any", type != SOCK_STREAM ? "udp:" : "",
port);
D("port %d type %s => fd %d", port, type != SOCK_STREAM ? "udp" : "tcp", fd);
f.release();
return fd;
}
int network_loopback_server(int port, int type, std::string* error) {
return _network_server(port, type, INADDR_LOOPBACK, error);
}
int network_inaddr_any_server(int port, int type, std::string* error) {
return _network_server(port, type, INADDR_ANY, error);
}
int network_connect(const std::string& host, int port, int type, int timeout, std::string* error) {
unique_fh f(_fh_alloc(&_fh_socket_class));
if (!f) {
*error = strerror(errno);
return -1;
}
struct addrinfo hints;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = type;
hints.ai_protocol = GetSocketProtocolFromSocketType(type);
char port_str[16];
snprintf(port_str, sizeof(port_str), "%d", port);
struct addrinfo* addrinfo_ptr = nullptr;
#if (NTDDI_VERSION >= NTDDI_WINXPSP2) || (_WIN32_WINNT >= _WIN32_WINNT_WS03)
// TODO: When the Android SDK tools increases the Windows system
// requirements >= WinXP SP2, switch to android::base::UTF8ToWide() + GetAddrInfoW().
#else
// Otherwise, keep using getaddrinfo(), or do runtime API detection
// with GetProcAddress("GetAddrInfoW").
#endif
if (getaddrinfo(host.c_str(), port_str, &hints, &addrinfo_ptr) != 0) {
const DWORD err = WSAGetLastError();
*error = android::base::StringPrintf("cannot resolve host '%s' and port %s: %s",
host.c_str(), port_str,
android::base::SystemErrorCodeToString(err).c_str());
D("%s", error->c_str());
_socket_set_errno(err);
return -1;
}
std::unique_ptr<struct addrinfo, decltype(&freeaddrinfo)> addrinfo(addrinfo_ptr, freeaddrinfo);
addrinfo_ptr = nullptr;
// TODO: Try all the addresses if there's more than one? This just uses
// the first. Or, could call WSAConnectByName() (Windows Vista and newer)
// which tries all addresses, takes a timeout and more.
SOCKET s = socket(addrinfo->ai_family, addrinfo->ai_socktype, addrinfo->ai_protocol);
if (s == INVALID_SOCKET) {
const DWORD err = WSAGetLastError();
*error = android::base::StringPrintf("cannot create socket: %s",
android::base::SystemErrorCodeToString(err).c_str());
D("%s", error->c_str());
_socket_set_errno(err);
return -1;
}
f->fh_socket = s;
// TODO: Implement timeouts for Windows. Seems like the default in theory
// (according to http://serverfault.com/a/671453) and in practice is 21 sec.
if (connect(s, addrinfo->ai_addr, addrinfo->ai_addrlen) == SOCKET_ERROR) {
// TODO: Use WSAAddressToString or inet_ntop on address.
const DWORD err = WSAGetLastError();
*error = android::base::StringPrintf("cannot connect to %s:%s: %s", host.c_str(), port_str,
android::base::SystemErrorCodeToString(err).c_str());
D("could not connect to %s:%s:%s: %s", type != SOCK_STREAM ? "udp" : "tcp", host.c_str(),
port_str, error->c_str());
_socket_set_errno(err);
return -1;
}
const int fd = _fh_to_int(f.get());
snprintf(f->name, sizeof(f->name), "%d(net-client:%s%d)", fd, type != SOCK_STREAM ? "udp:" : "",
port);
D("host '%s' port %d type %s => fd %d", host.c_str(), port, type != SOCK_STREAM ? "udp" : "tcp",
fd);
f.release();
return fd;
}
int adb_register_socket(SOCKET s) {
FH f = _fh_alloc(&_fh_socket_class);
f->fh_socket = s;
return _fh_to_int(f);
}
#undef accept
int adb_socket_accept(int serverfd, struct sockaddr* addr, socklen_t* addrlen) {
FH serverfh = _fh_from_int(serverfd, __func__);
if (!serverfh || serverfh->clazz != &_fh_socket_class) {
D("adb_socket_accept: invalid fd %d", serverfd);
errno = EBADF;
return -1;
}
unique_fh fh(_fh_alloc(&_fh_socket_class));
if (!fh) {
PLOG(ERROR) << "adb_socket_accept: failed to allocate accepted socket "
"descriptor";
return -1;
}
fh->fh_socket = accept(serverfh->fh_socket, addr, addrlen);
if (fh->fh_socket == INVALID_SOCKET) {
const DWORD err = WSAGetLastError();
LOG(ERROR) << "adb_socket_accept: accept on fd " << serverfd
<< " failed: " + android::base::SystemErrorCodeToString(err);
_socket_set_errno(err);
return -1;
}
const int fd = _fh_to_int(fh.get());
snprintf(fh->name, sizeof(fh->name), "%d(accept:%s)", fd, serverfh->name);
D("adb_socket_accept on fd %d returns fd %d", serverfd, fd);
fh.release();
return fd;
}
int adb_setsockopt(int fd, int level, int optname, const void* optval, socklen_t optlen) {
FH fh = _fh_from_int(fd, __func__);
if (!fh || fh->clazz != &_fh_socket_class) {
D("adb_setsockopt: invalid fd %d", fd);
errno = EBADF;
return -1;
}
// TODO: Once we can assume Windows Vista or later, if the caller is trying
// to set SOL_SOCKET, SO_SNDBUF/SO_RCVBUF, ignore it since the OS has
// auto-tuning.
int result =
setsockopt(fh->fh_socket, level, optname, reinterpret_cast<const char*>(optval), optlen);
if (result == SOCKET_ERROR) {
const DWORD err = WSAGetLastError();
D("adb_setsockopt: setsockopt on fd %d level %d optname %d failed: %s\n", fd, level,
optname, android::base::SystemErrorCodeToString(err).c_str());
_socket_set_errno(err);
result = -1;
}
return result;
}
int adb_getsockname(int fd, struct sockaddr* sockaddr, socklen_t* optlen) {
FH fh = _fh_from_int(fd, __func__);
if (!fh || fh->clazz != &_fh_socket_class) {
D("adb_getsockname: invalid fd %d", fd);
errno = EBADF;
return -1;
}
int result = getsockname(fh->fh_socket, sockaddr, optlen);
if (result == SOCKET_ERROR) {
const DWORD err = WSAGetLastError();
D("adb_getsockname: setsockopt on fd %d failed: %s\n", fd,
android::base::SystemErrorCodeToString(err).c_str());
_socket_set_errno(err);
result = -1;
}
return result;
}
int adb_socket_get_local_port(int fd) {
sockaddr_storage addr_storage;
socklen_t addr_len = sizeof(addr_storage);
if (adb_getsockname(fd, reinterpret_cast<sockaddr*>(&addr_storage), &addr_len) < 0) {
D("adb_socket_get_local_port: adb_getsockname failed: %s", strerror(errno));
return -1;
}
if (!(addr_storage.ss_family == AF_INET || addr_storage.ss_family == AF_INET6)) {
D("adb_socket_get_local_port: unknown address family received: %d", addr_storage.ss_family);
errno = ECONNABORTED;
return -1;
}
return ntohs(reinterpret_cast<sockaddr_in*>(&addr_storage)->sin_port);
}
int adb_shutdown(int fd, int direction) {
FH f = _fh_from_int(fd, __func__);
if (!f || f->clazz != &_fh_socket_class) {
D("adb_shutdown: invalid fd %d", fd);
errno = EBADF;
return -1;
}
D("adb_shutdown: %s", f->name);
if (shutdown(f->fh_socket, direction) == SOCKET_ERROR) {
const DWORD err = WSAGetLastError();
D("socket shutdown fd %d failed: %s", fd,
android::base::SystemErrorCodeToString(err).c_str());
_socket_set_errno(err);
return -1;
}
return 0;
}
// Emulate socketpair(2) by binding and connecting to a socket.
int adb_socketpair(int sv[2]) {
int server = -1;
int client = -1;
int accepted = -1;
int local_port = -1;
std::string error;
server = network_loopback_server(0, SOCK_STREAM, &error);
if (server < 0) {
D("adb_socketpair: failed to create server: %s", error.c_str());
goto fail;
}
local_port = adb_socket_get_local_port(server);
if (local_port < 0) {
D("adb_socketpair: failed to get server port number: %s", error.c_str());
goto fail;
}
D("adb_socketpair: bound on port %d", local_port);
client = network_loopback_client(local_port, SOCK_STREAM, &error);
if (client < 0) {
D("adb_socketpair: failed to connect client: %s", error.c_str());
goto fail;
}
accepted = adb_socket_accept(server, nullptr, nullptr);
if (accepted < 0) {
D("adb_socketpair: failed to accept: %s", strerror(errno));
goto fail;
}
adb_close(server);
sv[0] = client;
sv[1] = accepted;
return 0;
fail:
if (server >= 0) {
adb_close(server);
}
if (client >= 0) {
adb_close(client);
}
if (accepted >= 0) {
adb_close(accepted);
}
return -1;
}
bool set_file_block_mode(int fd, bool block) {
FH fh = _fh_from_int(fd, __func__);
if (!fh || !fh->used) {
errno = EBADF;
D("Setting nonblocking on bad file descriptor %d", fd);
return false;
}
if (fh->clazz == &_fh_socket_class) {
u_long x = !block;
if (ioctlsocket(fh->u.socket, FIONBIO, &x) != 0) {
int error = WSAGetLastError();
_socket_set_errno(error);
D("Setting %d nonblocking failed (%d)", fd, error);
return false;
}
return true;
} else {
errno = ENOTSOCK;
D("Setting nonblocking on non-socket %d", fd);
return false;
}
}
bool set_tcp_keepalive(int fd, int interval_sec) {
FH fh = _fh_from_int(fd, __func__);
if (!fh || fh->clazz != &_fh_socket_class) {
D("set_tcp_keepalive(%d) failed: invalid fd", fd);
errno = EBADF;
return false;
}
tcp_keepalive keepalive;
keepalive.onoff = (interval_sec > 0);
keepalive.keepalivetime = interval_sec * 1000;
keepalive.keepaliveinterval = interval_sec * 1000;
DWORD bytes_returned = 0;
if (WSAIoctl(fh->fh_socket, SIO_KEEPALIVE_VALS, &keepalive, sizeof(keepalive), nullptr, 0,
&bytes_returned, nullptr, nullptr) != 0) {
const DWORD err = WSAGetLastError();
D("set_tcp_keepalive(%d) failed: %s", fd,
android::base::SystemErrorCodeToString(err).c_str());
_socket_set_errno(err);
return false;
}
return true;
}
/**************************************************************************/
/**************************************************************************/
/***** *****/
/***** Console Window Terminal Emulation *****/
/***** *****/
/**************************************************************************/
/**************************************************************************/
// This reads input from a Win32 console window and translates it into Unix
// terminal-style sequences. This emulates mostly Gnome Terminal (in Normal
// mode, not Application mode), which itself emulates xterm. Gnome Terminal
// is emulated instead of xterm because it is probably more popular than xterm:
// Ubuntu's default Ctrl-Alt-T shortcut opens Gnome Terminal, Gnome Terminal
// supports modern fonts, etc. It seems best to emulate the terminal that most
// Android developers use because they'll fix apps (the shell, etc.) to keep
// working with that terminal's emulation.
//
// The point of this emulation is not to be perfect or to solve all issues with
// console windows on Windows, but to be better than the original code which
// just called read() (which called ReadFile(), which called ReadConsoleA())
// which did not support Ctrl-C, tab completion, shell input line editing
// keys, server echo, and more.
//
// This implementation reconfigures the console with SetConsoleMode(), then
// calls ReadConsoleInput() to get raw input which it remaps to Unix
// terminal-style sequences which is returned via unix_read() which is used
// by the 'adb shell' command.
//
// Code organization:
//
// * _get_console_handle() and unix_isatty() provide console information.
// * stdin_raw_init() and stdin_raw_restore() reconfigure the console.
// * unix_read() detects console windows (as opposed to pipes, files, etc.).
// * _console_read() is the main code of the emulation.
// Returns a console HANDLE if |fd| is a console, otherwise returns nullptr.
// If a valid HANDLE is returned and |mode| is not null, |mode| is also filled
// with the console mode. Requires GENERIC_READ access to the underlying HANDLE.
static HANDLE _get_console_handle(int fd, DWORD* mode=nullptr) {
// First check isatty(); this is very fast and eliminates most non-console
// FDs, but returns 1 for both consoles and character devices like NUL.
#pragma push_macro("isatty")
#undef isatty
if (!isatty(fd)) {
return nullptr;
}
#pragma pop_macro("isatty")
// To differentiate between character devices and consoles we need to get
// the underlying HANDLE and use GetConsoleMode(), which is what requires
// GENERIC_READ permissions.
const intptr_t intptr_handle = _get_osfhandle(fd);
if (intptr_handle == -1) {
return nullptr;
}
const HANDLE handle = reinterpret_cast<const HANDLE>(intptr_handle);
DWORD temp_mode = 0;
if (!GetConsoleMode(handle, mode ? mode : &temp_mode)) {
return nullptr;
}
return handle;
}
// Returns a console handle if |stream| is a console, otherwise returns nullptr.
static HANDLE _get_console_handle(FILE* const stream) {
// Save and restore errno to make it easier for callers to prevent from overwriting errno.
android::base::ErrnoRestorer er;
const int fd = fileno(stream);
if (fd < 0) {
return nullptr;
}
return _get_console_handle(fd);
}
int unix_isatty(int fd) {
return _get_console_handle(fd) ? 1 : 0;
}
// Get the next KEY_EVENT_RECORD that should be processed.
static bool _get_key_event_record(const HANDLE console, INPUT_RECORD* const input_record) {
for (;;) {
DWORD read_count = 0;
memset(input_record, 0, sizeof(*input_record));
if (!ReadConsoleInputA(console, input_record, 1, &read_count)) {
D("_get_key_event_record: ReadConsoleInputA() failed: %s\n",
android::base::SystemErrorCodeToString(GetLastError()).c_str());
errno = EIO;
return false;
}
if (read_count == 0) { // should be impossible
LOG(FATAL) << "ReadConsoleInputA returned 0";
}
if (read_count != 1) { // should be impossible
LOG(FATAL) << "ReadConsoleInputA did not return one input record";
}
// If the console window is resized, emulate SIGWINCH by breaking out
// of read() with errno == EINTR. Note that there is no event on
// vertical resize because we don't give the console our own custom
// screen buffer (with CreateConsoleScreenBuffer() +
// SetConsoleActiveScreenBuffer()). Instead, we use the default which
// supports scrollback, but doesn't seem to raise an event for vertical
// window resize.
if (input_record->EventType == WINDOW_BUFFER_SIZE_EVENT) {
errno = EINTR;
return false;
}
if ((input_record->EventType == KEY_EVENT) &&
(input_record->Event.KeyEvent.bKeyDown)) {
if (input_record->Event.KeyEvent.wRepeatCount == 0) {
LOG(FATAL) << "ReadConsoleInputA returned a key event with zero repeat count";
}
// Got an interesting INPUT_RECORD, so return
return true;
}
}
}
static __inline__ bool _is_shift_pressed(const DWORD control_key_state) {
return (control_key_state & SHIFT_PRESSED) != 0;
}
static __inline__ bool _is_ctrl_pressed(const DWORD control_key_state) {
return (control_key_state & (LEFT_CTRL_PRESSED | RIGHT_CTRL_PRESSED)) != 0;
}
static __inline__ bool _is_alt_pressed(const DWORD control_key_state) {
return (control_key_state & (LEFT_ALT_PRESSED | RIGHT_ALT_PRESSED)) != 0;
}
static __inline__ bool _is_numlock_on(const DWORD control_key_state) {
return (control_key_state & NUMLOCK_ON) != 0;
}
static __inline__ bool _is_capslock_on(const DWORD control_key_state) {
return (control_key_state & CAPSLOCK_ON) != 0;
}
static __inline__ bool _is_enhanced_key(const DWORD control_key_state) {
return (control_key_state & ENHANCED_KEY) != 0;
}
// Constants from MSDN for ToAscii().
static const BYTE TOASCII_KEY_OFF = 0x00;
static const BYTE TOASCII_KEY_DOWN = 0x80;
static const BYTE TOASCII_KEY_TOGGLED_ON = 0x01; // for CapsLock
// Given a key event, ignore a modifier key and return the character that was
// entered without the modifier. Writes to *ch and returns the number of bytes
// written.
static size_t _get_char_ignoring_modifier(char* const ch,
const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state,
const WORD modifier) {
// If there is no character from Windows, try ignoring the specified
// modifier and look for a character. Note that if AltGr is being used,
// there will be a character from Windows.
if (key_event->uChar.AsciiChar == '\0') {
// Note that we read the control key state from the passed in argument
// instead of from key_event since the argument has been normalized.
if (((modifier == VK_SHIFT) &&
_is_shift_pressed(control_key_state)) ||
((modifier == VK_CONTROL) &&
_is_ctrl_pressed(control_key_state)) ||
((modifier == VK_MENU) && _is_alt_pressed(control_key_state))) {
BYTE key_state[256] = {0};
key_state[VK_SHIFT] = _is_shift_pressed(control_key_state) ?
TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
key_state[VK_CONTROL] = _is_ctrl_pressed(control_key_state) ?
TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
key_state[VK_MENU] = _is_alt_pressed(control_key_state) ?
TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
key_state[VK_CAPITAL] = _is_capslock_on(control_key_state) ?
TOASCII_KEY_TOGGLED_ON : TOASCII_KEY_OFF;
// cause this modifier to be ignored
key_state[modifier] = TOASCII_KEY_OFF;
WORD translated = 0;
if (ToAscii(key_event->wVirtualKeyCode,
key_event->wVirtualScanCode, key_state, &translated, 0) == 1) {
// Ignoring the modifier, we found a character.
*ch = (CHAR)translated;
return 1;
}
}
}
// Just use whatever Windows told us originally.
*ch = key_event->uChar.AsciiChar;
// If the character from Windows is NULL, return a size of zero.
return (*ch == '\0') ? 0 : 1;
}
// If a Ctrl key is pressed, lookup the character, ignoring the Ctrl key,
// but taking into account the shift key. This is because for a sequence like
// Ctrl-Alt-0, we want to find the character '0' and for Ctrl-Alt-Shift-0,
// we want to find the character ')'.
//
// Note that Windows doesn't seem to pass bKeyDown for Ctrl-Shift-NoAlt-0
// because it is the default key-sequence to switch the input language.
// This is configurable in the Region and Language control panel.
static __inline__ size_t _get_non_control_char(char* const ch,
const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
return _get_char_ignoring_modifier(ch, key_event, control_key_state,
VK_CONTROL);
}
// Get without Alt.
static __inline__ size_t _get_non_alt_char(char* const ch,
const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
return _get_char_ignoring_modifier(ch, key_event, control_key_state,
VK_MENU);
}
// Ignore the control key, find the character from Windows, and apply any
// Control key mappings (for example, Ctrl-2 is a NULL character). Writes to
// *pch and returns number of bytes written.
static size_t _get_control_character(char* const pch,
const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
const size_t len = _get_non_control_char(pch, key_event,
control_key_state);
if ((len == 1) && _is_ctrl_pressed(control_key_state)) {
char ch = *pch;
switch (ch) {
case '2':
case '@':
case '`':
ch = '\0';
break;
case '3':
case '[':
case '{':
ch = '\x1b';
break;
case '4':
case '\\':
case '|':
ch = '\x1c';
break;
case '5':
case ']':
case '}':
ch = '\x1d';
break;
case '6':
case '^':
case '~':
ch = '\x1e';
break;
case '7':
case '-':
case '_':
ch = '\x1f';
break;
case '8':
ch = '\x7f';
break;
case '/':
if (!_is_alt_pressed(control_key_state)) {
ch = '\x1f';
}
break;
case '?':
if (!_is_alt_pressed(control_key_state)) {
ch = '\x7f';
}
break;
}
*pch = ch;
}
return len;
}
static DWORD _normalize_altgr_control_key_state(
const KEY_EVENT_RECORD* const key_event) {
DWORD control_key_state = key_event->dwControlKeyState;
// If we're in an AltGr situation where the AltGr key is down (depending on
// the keyboard layout, that might be the physical right alt key which
// produces a control_key_state where Right-Alt and Left-Ctrl are down) or
// AltGr-equivalent keys are down (any Ctrl key + any Alt key), and we have
// a character (which indicates that there was an AltGr mapping), then act
// as if alt and control are not really down for the purposes of modifiers.
// This makes it so that if the user with, say, a German keyboard layout
// presses AltGr-] (which we see as Right-Alt + Left-Ctrl + key), we just
// output the key and we don't see the Alt and Ctrl keys.
if (_is_ctrl_pressed(control_key_state) &&
_is_alt_pressed(control_key_state)
&& (key_event->uChar.AsciiChar != '\0')) {
// Try to remove as few bits as possible to improve our chances of
// detecting combinations like Left-Alt + AltGr, Right-Ctrl + AltGr, or
// Left-Alt + Right-Ctrl + AltGr.
if ((control_key_state & RIGHT_ALT_PRESSED) != 0) {
// Remove Right-Alt.
control_key_state &= ~RIGHT_ALT_PRESSED;
// If uChar is set, a Ctrl key is pressed, and Right-Alt is
// pressed, Left-Ctrl is almost always set, except if the user
// presses Right-Ctrl, then AltGr (in that specific order) for
// whatever reason. At any rate, make sure the bit is not set.
control_key_state &= ~LEFT_CTRL_PRESSED;
} else if ((control_key_state & LEFT_ALT_PRESSED) != 0) {
// Remove Left-Alt.
control_key_state &= ~LEFT_ALT_PRESSED;
// Whichever Ctrl key is down, remove it from the state. We only
// remove one key, to improve our chances of detecting the
// corner-case of Left-Ctrl + Left-Alt + Right-Ctrl.
if ((control_key_state & LEFT_CTRL_PRESSED) != 0) {
// Remove Left-Ctrl.
control_key_state &= ~LEFT_CTRL_PRESSED;
} else if ((control_key_state & RIGHT_CTRL_PRESSED) != 0) {
// Remove Right-Ctrl.
control_key_state &= ~RIGHT_CTRL_PRESSED;
}
}
// Note that this logic isn't 100% perfect because Windows doesn't
// allow us to detect all combinations because a physical AltGr key
// press shows up as two bits, plus some combinations are ambiguous
// about what is actually physically pressed.
}
return control_key_state;
}
// If NumLock is on and Shift is pressed, SHIFT_PRESSED is not set in
// dwControlKeyState for the following keypad keys: period, 0-9. If we detect
// this scenario, set the SHIFT_PRESSED bit so we can add modifiers
// appropriately.
static DWORD _normalize_keypad_control_key_state(const WORD vk,
const DWORD control_key_state) {
if (!_is_numlock_on(control_key_state)) {
return control_key_state;
}
if (!_is_enhanced_key(control_key_state)) {
switch (vk) {
case VK_INSERT: // 0
case VK_DELETE: // .
case VK_END: // 1
case VK_DOWN: // 2
case VK_NEXT: // 3
case VK_LEFT: // 4
case VK_CLEAR: // 5
case VK_RIGHT: // 6
case VK_HOME: // 7
case VK_UP: // 8
case VK_PRIOR: // 9
return control_key_state | SHIFT_PRESSED;
}
}
return control_key_state;
}
static const char* _get_keypad_sequence(const DWORD control_key_state,
const char* const normal, const char* const shifted) {
if (_is_shift_pressed(control_key_state)) {
// Shift is pressed and NumLock is off
return shifted;
} else {
// Shift is not pressed and NumLock is off, or,
// Shift is pressed and NumLock is on, in which case we want the
// NumLock and Shift to neutralize each other, thus, we want the normal
// sequence.
return normal;
}
// If Shift is not pressed and NumLock is on, a different virtual key code
// is returned by Windows, which can be taken care of by a different case
// statement in _console_read().
}
// Write sequence to buf and return the number of bytes written.
static size_t _get_modifier_sequence(char* const buf, const WORD vk,
DWORD control_key_state, const char* const normal) {
// Copy the base sequence into buf.
const size_t len = strlen(normal);
memcpy(buf, normal, len);
int code = 0;
control_key_state = _normalize_keypad_control_key_state(vk,
control_key_state);
if (_is_shift_pressed(control_key_state)) {
code |= 0x1;
}
if (_is_alt_pressed(control_key_state)) { // any alt key pressed
code |= 0x2;
}
if (_is_ctrl_pressed(control_key_state)) { // any control key pressed
code |= 0x4;
}
// If some modifier was held down, then we need to insert the modifier code
if (code != 0) {
if (len == 0) {
// Should be impossible because caller should pass a string of
// non-zero length.
return 0;
}
size_t index = len - 1;
const char lastChar = buf[index];
if (lastChar != '~') {
buf[index++] = '1';
}
buf[index++] = ';'; // modifier separator
// 2 = shift, 3 = alt, 4 = shift & alt, 5 = control,
// 6 = shift & control, 7 = alt & control, 8 = shift & alt & control
buf[index++] = '1' + code;
buf[index++] = lastChar; // move ~ (or other last char) to the end
return index;
}
return len;
}
// Write sequence to buf and return the number of bytes written.
static size_t _get_modifier_keypad_sequence(char* const buf, const WORD vk,
const DWORD control_key_state, const char* const normal,
const char shifted) {
if (_is_shift_pressed(control_key_state)) {
// Shift is pressed and NumLock is off
if (shifted != '\0') {
buf[0] = shifted;
return sizeof(buf[0]);
} else {
return 0;
}
} else {
// Shift is not pressed and NumLock is off, or,
// Shift is pressed and NumLock is on, in which case we want the
// NumLock and Shift to neutralize each other, thus, we want the normal
// sequence.
return _get_modifier_sequence(buf, vk, control_key_state, normal);
}
// If Shift is not pressed and NumLock is on, a different virtual key code
// is returned by Windows, which can be taken care of by a different case
// statement in _console_read().
}
// The decimal key on the keypad produces a '.' for U.S. English and a ',' for
// Standard German. Figure this out at runtime so we know what to output for
// Shift-VK_DELETE.
static char _get_decimal_char() {
return (char)MapVirtualKeyA(VK_DECIMAL, MAPVK_VK_TO_CHAR);
}
// Prefix the len bytes in buf with the escape character, and then return the
// new buffer length.
size_t _escape_prefix(char* const buf, const size_t len) {
// If nothing to prefix, don't do anything. We might be called with
// len == 0, if alt was held down with a dead key which produced nothing.
if (len == 0) {
return 0;
}
memmove(&buf[1], buf, len);
buf[0] = '\x1b';
return len + 1;
}
// Internal buffer to satisfy future _console_read() calls.
static auto& g_console_input_buffer = *new std::vector<char>();
// Writes to buffer buf (of length len), returning number of bytes written or -1 on error. Never
// returns zero on console closure because Win32 consoles are never 'closed' (as far as I can tell).
static int _console_read(const HANDLE console, void* buf, size_t len) {
for (;;) {
// Read of zero bytes should not block waiting for something from the console.
if (len == 0) {
return 0;
}
// Flush as much as possible from input buffer.
if (!g_console_input_buffer.empty()) {
const int bytes_read = std::min(len, g_console_input_buffer.size());
memcpy(buf, g_console_input_buffer.data(), bytes_read);
const auto begin = g_console_input_buffer.begin();
g_console_input_buffer.erase(begin, begin + bytes_read);
return bytes_read;
}
// Read from the actual console. This may block until input.
INPUT_RECORD input_record;
if (!_get_key_event_record(console, &input_record)) {
return -1;
}
KEY_EVENT_RECORD* const key_event = &input_record.Event.KeyEvent;
const WORD vk = key_event->wVirtualKeyCode;
const CHAR ch = key_event->uChar.AsciiChar;
const DWORD control_key_state = _normalize_altgr_control_key_state(
key_event);
// The following emulation code should write the output sequence to
// either seqstr or to seqbuf and seqbuflen.
const char* seqstr = nullptr; // NULL terminated C-string
// Enough space for max sequence string below, plus modifiers and/or
// escape prefix.
char seqbuf[16];
size_t seqbuflen = 0; // Space used in seqbuf.
#define MATCH(vk, normal) \
case (vk): \
{ \
seqstr = (normal); \
} \
break;
// Modifier keys should affect the output sequence.
#define MATCH_MODIFIER(vk, normal) \
case (vk): \
{ \
seqbuflen = _get_modifier_sequence(seqbuf, (vk), \
control_key_state, (normal)); \
} \
break;
// The shift key should affect the output sequence.
#define MATCH_KEYPAD(vk, normal, shifted) \
case (vk): \
{ \
seqstr = _get_keypad_sequence(control_key_state, (normal), \
(shifted)); \
} \
break;
// The shift key and other modifier keys should affect the output
// sequence.
#define MATCH_MODIFIER_KEYPAD(vk, normal, shifted) \
case (vk): \
{ \
seqbuflen = _get_modifier_keypad_sequence(seqbuf, (vk), \
control_key_state, (normal), (shifted)); \
} \
break;
#define ESC "\x1b"
#define CSI ESC "["
#define SS3 ESC "O"
// Only support normal mode, not application mode.
// Enhanced keys:
// * 6-pack: insert, delete, home, end, page up, page down
// * cursor keys: up, down, right, left
// * keypad: divide, enter
// * Undocumented: VK_PAUSE (Ctrl-NumLock), VK_SNAPSHOT,
// VK_CANCEL (Ctrl-Pause/Break), VK_NUMLOCK
if (_is_enhanced_key(control_key_state)) {
switch (vk) {
case VK_RETURN: // Enter key on keypad
if (_is_ctrl_pressed(control_key_state)) {
seqstr = "\n";
} else {
seqstr = "\r";
}
break;
MATCH_MODIFIER(VK_PRIOR, CSI "5~"); // Page Up
MATCH_MODIFIER(VK_NEXT, CSI "6~"); // Page Down
// gnome-terminal currently sends SS3 "F" and SS3 "H", but that
// will be fixed soon to match xterm which sends CSI "F" and
// CSI "H". https://bugzilla.redhat.com/show_bug.cgi?id=1119764
MATCH(VK_END, CSI "F");
MATCH(VK_HOME, CSI "H");
MATCH_MODIFIER(VK_LEFT, CSI "D");
MATCH_MODIFIER(VK_UP, CSI "A");
MATCH_MODIFIER(VK_RIGHT, CSI "C");
MATCH_MODIFIER(VK_DOWN, CSI "B");
MATCH_MODIFIER(VK_INSERT, CSI "2~");
MATCH_MODIFIER(VK_DELETE, CSI "3~");
MATCH(VK_DIVIDE, "/");
}
} else { // Non-enhanced keys:
switch (vk) {
case VK_BACK: // backspace
if (_is_alt_pressed(control_key_state)) {
seqstr = ESC "\x7f";
} else {
seqstr = "\x7f";
}
break;
case VK_TAB:
if (_is_shift_pressed(control_key_state)) {
seqstr = CSI "Z";
} else {
seqstr = "\t";
}
break;
// Number 5 key in keypad when NumLock is off, or if NumLock is
// on and Shift is down.
MATCH_KEYPAD(VK_CLEAR, CSI "E", "5");
case VK_RETURN: // Enter key on main keyboard
if (_is_alt_pressed(control_key_state)) {
seqstr = ESC "\n";
} else if (_is_ctrl_pressed(control_key_state)) {
seqstr = "\n";
} else {
seqstr = "\r";
}
break;
// VK_ESCAPE: Don't do any special handling. The OS uses many
// of the sequences with Escape and many of the remaining
// sequences don't produce bKeyDown messages, only !bKeyDown
// for whatever reason.
case VK_SPACE:
if (_is_alt_pressed(control_key_state)) {
seqstr = ESC " ";
} else if (_is_ctrl_pressed(control_key_state)) {
seqbuf[0] = '\0'; // NULL char
seqbuflen = 1;
} else {
seqstr = " ";
}
break;
MATCH_MODIFIER_KEYPAD(VK_PRIOR, CSI "5~", '9'); // Page Up
MATCH_MODIFIER_KEYPAD(VK_NEXT, CSI "6~", '3'); // Page Down
MATCH_KEYPAD(VK_END, CSI "4~", "1");
MATCH_KEYPAD(VK_HOME, CSI "1~", "7");
MATCH_MODIFIER_KEYPAD(VK_LEFT, CSI "D", '4');
MATCH_MODIFIER_KEYPAD(VK_UP, CSI "A", '8');
MATCH_MODIFIER_KEYPAD(VK_RIGHT, CSI "C", '6');
MATCH_MODIFIER_KEYPAD(VK_DOWN, CSI "B", '2');
MATCH_MODIFIER_KEYPAD(VK_INSERT, CSI "2~", '0');
MATCH_MODIFIER_KEYPAD(VK_DELETE, CSI "3~",
_get_decimal_char());
case 0x30: // 0
case 0x31: // 1
case 0x39: // 9
case VK_OEM_1: // ;:
case VK_OEM_PLUS: // =+
case VK_OEM_COMMA: // ,<
case VK_OEM_PERIOD: // .>
case VK_OEM_7: // '"
case VK_OEM_102: // depends on keyboard, could be <> or \|
case VK_OEM_2: // /?
case VK_OEM_3: // `~
case VK_OEM_4: // [{
case VK_OEM_5: // \|
case VK_OEM_6: // ]}
{
seqbuflen = _get_control_character(seqbuf, key_event,
control_key_state);
if (_is_alt_pressed(control_key_state)) {
seqbuflen = _escape_prefix(seqbuf, seqbuflen);
}
}
break;
case 0x32: // 2
case 0x33: // 3
case 0x34: // 4
case 0x35: // 5
case 0x36: // 6
case 0x37: // 7
case 0x38: // 8
case VK_OEM_MINUS: // -_
{
seqbuflen = _get_control_character(seqbuf, key_event,
control_key_state);
// If Alt is pressed and it isn't Ctrl-Alt-ShiftUp, then
// prefix with escape.
if (_is_alt_pressed(control_key_state) &&
!(_is_ctrl_pressed(control_key_state) &&
!_is_shift_pressed(control_key_state))) {
seqbuflen = _escape_prefix(seqbuf, seqbuflen);
}
}
break;
case 0x41: // a
case 0x42: // b
case 0x43: // c
case 0x44: // d
case 0x45: // e
case 0x46: // f
case 0x47: // g
case 0x48: // h
case 0x49: // i
case 0x4a: // j
case 0x4b: // k
case 0x4c: // l
case 0x4d: // m
case 0x4e: // n
case 0x4f: // o
case 0x50: // p
case 0x51: // q
case 0x52: // r
case 0x53: // s
case 0x54: // t
case 0x55: // u
case 0x56: // v
case 0x57: // w
case 0x58: // x
case 0x59: // y
case 0x5a: // z
{
seqbuflen = _get_non_alt_char(seqbuf, key_event,
control_key_state);
// If Alt is pressed, then prefix with escape.
if (_is_alt_pressed(control_key_state)) {
seqbuflen = _escape_prefix(seqbuf, seqbuflen);
}
}
break;
// These virtual key codes are generated by the keys on the
// keypad *when NumLock is on* and *Shift is up*.
MATCH(VK_NUMPAD0, "0");
MATCH(VK_NUMPAD1, "1");
MATCH(VK_NUMPAD2, "2");
MATCH(VK_NUMPAD3, "3");
MATCH(VK_NUMPAD4, "4");
MATCH(VK_NUMPAD5, "5");
MATCH(VK_NUMPAD6, "6");
MATCH(VK_NUMPAD7, "7");
MATCH(VK_NUMPAD8, "8");
MATCH(VK_NUMPAD9, "9");
MATCH(VK_MULTIPLY, "*");
MATCH(VK_ADD, "+");
MATCH(VK_SUBTRACT, "-");
// VK_DECIMAL is generated by the . key on the keypad *when
// NumLock is on* and *Shift is up* and the sequence is not
// Ctrl-Alt-NoShift-. (which causes Ctrl-Alt-Del and the
// Windows Security screen to come up).
case VK_DECIMAL:
// U.S. English uses '.', Germany German uses ','.
seqbuflen = _get_non_control_char(seqbuf, key_event,
control_key_state);
break;
MATCH_MODIFIER(VK_F1, SS3 "P");
MATCH_MODIFIER(VK_F2, SS3 "Q");
MATCH_MODIFIER(VK_F3, SS3 "R");
MATCH_MODIFIER(VK_F4, SS3 "S");
MATCH_MODIFIER(VK_F5, CSI "15~");
MATCH_MODIFIER(VK_F6, CSI "17~");
MATCH_MODIFIER(VK_F7, CSI "18~");
MATCH_MODIFIER(VK_F8, CSI "19~");
MATCH_MODIFIER(VK_F9, CSI "20~");
MATCH_MODIFIER(VK_F10, CSI "21~");
MATCH_MODIFIER(VK_F11, CSI "23~");
MATCH_MODIFIER(VK_F12, CSI "24~");
MATCH_MODIFIER(VK_F13, CSI "25~");
MATCH_MODIFIER(VK_F14, CSI "26~");
MATCH_MODIFIER(VK_F15, CSI "28~");
MATCH_MODIFIER(VK_F16, CSI "29~");
MATCH_MODIFIER(VK_F17, CSI "31~");
MATCH_MODIFIER(VK_F18, CSI "32~");
MATCH_MODIFIER(VK_F19, CSI "33~");
MATCH_MODIFIER(VK_F20, CSI "34~");
// MATCH_MODIFIER(VK_F21, ???);
// MATCH_MODIFIER(VK_F22, ???);
// MATCH_MODIFIER(VK_F23, ???);
// MATCH_MODIFIER(VK_F24, ???);
}
}
#undef MATCH
#undef MATCH_MODIFIER
#undef MATCH_KEYPAD
#undef MATCH_MODIFIER_KEYPAD
#undef ESC
#undef CSI
#undef SS3
const char* out;
size_t outlen;
// Check for output in any of:
// * seqstr is set (and strlen can be used to determine the length).
// * seqbuf and seqbuflen are set
// Fallback to ch from Windows.
if (seqstr != nullptr) {
out = seqstr;
outlen = strlen(seqstr);
} else if (seqbuflen > 0) {
out = seqbuf;
outlen = seqbuflen;
} else if (ch != '\0') {
// Use whatever Windows told us it is.
seqbuf[0] = ch;
seqbuflen = 1;
out = seqbuf;
outlen = seqbuflen;
} else {
// No special handling for the virtual key code and Windows isn't
// telling us a character code, then we don't know how to translate
// the key press.
//
// Consume the input and 'continue' to cause us to get a new key
// event.
D("_console_read: unknown virtual key code: %d, enhanced: %s",
vk, _is_enhanced_key(control_key_state) ? "true" : "false");
continue;
}
// put output wRepeatCount times into g_console_input_buffer
while (key_event->wRepeatCount-- > 0) {
g_console_input_buffer.insert(g_console_input_buffer.end(), out, out + outlen);
}
// Loop around and try to flush g_console_input_buffer
}
}
static DWORD _old_console_mode; // previous GetConsoleMode() result
static HANDLE _console_handle; // when set, console mode should be restored
void stdin_raw_init() {
const HANDLE in = _get_console_handle(STDIN_FILENO, &_old_console_mode);
if (in == nullptr) {
return;
}
// Disable ENABLE_PROCESSED_INPUT so that Ctrl-C is read instead of
// calling the process Ctrl-C routine (configured by
// SetConsoleCtrlHandler()).
// Disable ENABLE_LINE_INPUT so that input is immediately sent.
// Disable ENABLE_ECHO_INPUT to disable local echo. Disabling this
// flag also seems necessary to have proper line-ending processing.
DWORD new_console_mode = _old_console_mode & ~(ENABLE_PROCESSED_INPUT |
ENABLE_LINE_INPUT |
ENABLE_ECHO_INPUT);
// Enable ENABLE_WINDOW_INPUT to get window resizes.
new_console_mode |= ENABLE_WINDOW_INPUT;
if (!SetConsoleMode(in, new_console_mode)) {
// This really should not fail.
D("stdin_raw_init: SetConsoleMode() failed: %s",
android::base::SystemErrorCodeToString(GetLastError()).c_str());
}
// Once this is set, it means that stdin has been configured for
// reading from and that the old console mode should be restored later.
_console_handle = in;
// Note that we don't need to configure C Runtime line-ending
// translation because _console_read() does not call the C Runtime to
// read from the console.
}
void stdin_raw_restore() {
if (_console_handle != nullptr) {
const HANDLE in = _console_handle;
_console_handle = nullptr; // clear state
if (!SetConsoleMode(in, _old_console_mode)) {
// This really should not fail.
D("stdin_raw_restore: SetConsoleMode() failed: %s",
android::base::SystemErrorCodeToString(GetLastError()).c_str());
}
}
}
// Called by 'adb shell' and 'adb exec-in' (via unix_read()) to read from stdin.
int unix_read_interruptible(int fd, void* buf, size_t len) {
if ((fd == STDIN_FILENO) && (_console_handle != nullptr)) {
// If it is a request to read from stdin, and stdin_raw_init() has been
// called, and it successfully configured the console, then read from
// the console using Win32 console APIs and partially emulate a unix
// terminal.
return _console_read(_console_handle, buf, len);
} else {
// On older versions of Windows (definitely 7, definitely not 10),
// ReadConsole() with a size >= 31367 fails, so if |fd| is a console
// we need to limit the read size.
if (len > 4096 && unix_isatty(fd)) {
len = 4096;
}
// Just call into C Runtime which can read from pipes/files and which
// can do LF/CR translation (which is overridable with _setmode()).
// Undefine the macro that is set in sysdeps.h which bans calls to
// plain read() in favor of unix_read() or adb_read().
#pragma push_macro("read")
#undef read
return read(fd, buf, len);
#pragma pop_macro("read")
}
}
/**************************************************************************/
/**************************************************************************/
/***** *****/
/***** Unicode support *****/
/***** *****/
/**************************************************************************/
/**************************************************************************/
// This implements support for using files with Unicode filenames and for
// outputting Unicode text to a Win32 console window. This is inspired from
// http://utf8everywhere.org/.
//
// Background
// ----------
//
// On POSIX systems, to deal with files with Unicode filenames, just pass UTF-8
// filenames to APIs such as open(). This works because filenames are largely
// opaque 'cookies' (perhaps excluding path separators).
//
// On Windows, the native file APIs such as CreateFileW() take 2-byte wchar_t
// UTF-16 strings. There is an API, CreateFileA() that takes 1-byte char
// strings, but the strings are in the ANSI codepage and not UTF-8. (The
// CreateFile() API is really just a macro that adds the W/A based on whether
// the UNICODE preprocessor symbol is defined).
//
// Options
// -------
//
// Thus, to write a portable program, there are a few options:
//
// 1. Write the program with wchar_t filenames (wchar_t path[256];).
// For Windows, just call CreateFileW(). For POSIX, write a wrapper openW()
// that takes a wchar_t string, converts it to UTF-8 and then calls the real
// open() API.
//
// 2. Write the program with a TCHAR typedef that is 2 bytes on Windows and
// 1 byte on POSIX. Make T-* wrappers for various OS APIs and call those,
// potentially touching a lot of code.
//
// 3. Write the program with a 1-byte char filenames (char path[256];) that are
// UTF-8. For POSIX, just call open(). For Windows, write a wrapper that
// takes a UTF-8 string, converts it to UTF-16 and then calls the real OS
// or C Runtime API.
//
// The Choice
// ----------
//
// The code below chooses option 3, the UTF-8 everywhere strategy. It uses
// android::base::WideToUTF8() which converts UTF-16 to UTF-8. This is used by the
// NarrowArgs helper class that is used to convert wmain() args into UTF-8
// args that are passed to main() at the beginning of program startup. We also use
// android::base::UTF8ToWide() which converts from UTF-8 to UTF-16. This is used to
// implement wrappers below that call UTF-16 OS and C Runtime APIs.
//
// Unicode console output
// ----------------------
//
// The way to output Unicode to a Win32 console window is to call
// WriteConsoleW() with UTF-16 text. (The user must also choose a proper font
// such as Lucida Console or Consolas, and in the case of East Asian languages
// (such as Chinese, Japanese, Korean), the user must go to the Control Panel
// and change the "system locale" to Chinese, etc., which allows a Chinese, etc.
// font to be used in console windows.)
//
// The problem is getting the C Runtime to make fprintf and related APIs call
// WriteConsoleW() under the covers. The C Runtime API, _setmode() sounds
// promising, but the various modes have issues:
//
// 1. _setmode(_O_TEXT) (the default) does not use WriteConsoleW() so UTF-8 and
// UTF-16 do not display properly.
// 2. _setmode(_O_BINARY) does not use WriteConsoleW() and the text comes out
// totally wrong.
// 3. _setmode(_O_U8TEXT) seems to cause the C Runtime _invalid_parameter
// handler to be called (upon a later I/O call), aborting the process.
// 4. _setmode(_O_U16TEXT) and _setmode(_O_WTEXT) cause non-wide printf/fprintf
// to output nothing.
//
// So the only solution is to write our own adb_fprintf() that converts UTF-8
// to UTF-16 and then calls WriteConsoleW().
// Constructor for helper class to convert wmain() UTF-16 args to UTF-8 to
// be passed to main().
NarrowArgs::NarrowArgs(const int argc, wchar_t** const argv) {
narrow_args = new char*[argc + 1];
for (int i = 0; i < argc; ++i) {
std::string arg_narrow;
if (!android::base::WideToUTF8(argv[i], &arg_narrow)) {
PLOG(FATAL) << "cannot convert argument from UTF-16 to UTF-8";
}
narrow_args[i] = strdup(arg_narrow.c_str());
}
narrow_args[argc] = nullptr; // terminate
}
NarrowArgs::~NarrowArgs() {
if (narrow_args != nullptr) {
for (char** argp = narrow_args; *argp != nullptr; ++argp) {
free(*argp);
}
delete[] narrow_args;
narrow_args = nullptr;
}
}
int unix_open(std::string_view path, int options, ...) {
std::wstring path_wide;
if (!android::base::UTF8ToWide(path.data(), path.size(), &path_wide)) {
return -1;
}
if ((options & O_CREAT) == 0) {
return _wopen(path_wide.c_str(), options);
} else {
int mode;
va_list args;
va_start(args, options);
mode = va_arg(args, int);
va_end(args);
return _wopen(path_wide.c_str(), options, mode);
}
}
// Version of opendir() that takes a UTF-8 path.
DIR* adb_opendir(const char* path) {
std::wstring path_wide;
if (!android::base::UTF8ToWide(path, &path_wide)) {
return nullptr;
}
// Just cast _WDIR* to DIR*. This doesn't work if the caller reads any of
// the fields, but right now all the callers treat the structure as
// opaque.
return reinterpret_cast<DIR*>(_wopendir(path_wide.c_str()));
}
// Version of readdir() that returns UTF-8 paths.
struct dirent* adb_readdir(DIR* dir) {
_WDIR* const wdir = reinterpret_cast<_WDIR*>(dir);
struct _wdirent* const went = _wreaddir(wdir);
if (went == nullptr) {
return nullptr;
}
// Convert from UTF-16 to UTF-8.
std::string name_utf8;
if (!android::base::WideToUTF8(went->d_name, &name_utf8)) {
return nullptr;
}
// Cast the _wdirent* to dirent* and overwrite the d_name field (which has
// space for UTF-16 wchar_t's) with UTF-8 char's.
struct dirent* ent = reinterpret_cast<struct dirent*>(went);
if (name_utf8.length() + 1 > sizeof(went->d_name)) {
// Name too big to fit in existing buffer.
errno = ENOMEM;
return nullptr;
}
// Note that sizeof(_wdirent::d_name) is bigger than sizeof(dirent::d_name)
// because _wdirent contains wchar_t instead of char. So even if name_utf8
// can fit in _wdirent::d_name, the resulting dirent::d_name field may be
// bigger than the caller expects because they expect a dirent structure
// which has a smaller d_name field. Ignore this since the caller should be
// resilient.
// Rewrite the UTF-16 d_name field to UTF-8.
strcpy(ent->d_name, name_utf8.c_str());
return ent;
}
// Version of closedir() to go with our version of adb_opendir().
int adb_closedir(DIR* dir) {
return _wclosedir(reinterpret_cast<_WDIR*>(dir));
}
// Version of unlink() that takes a UTF-8 path.
int adb_unlink(const char* path) {
std::wstring wpath;
if (!android::base::UTF8ToWide(path, &wpath)) {
return -1;
}
int rc = _wunlink(wpath.c_str());
if (rc == -1 && errno == EACCES) {
/* unlink returns EACCES when the file is read-only, so we first */
/* try to make it writable, then unlink again... */
rc = _wchmod(wpath.c_str(), _S_IREAD | _S_IWRITE);
if (rc == 0)
rc = _wunlink(wpath.c_str());
}
return rc;
}
// Version of mkdir() that takes a UTF-8 path.
int adb_mkdir(const std::string& path, int mode) {
std::wstring path_wide;
if (!android::base::UTF8ToWide(path, &path_wide)) {
return -1;
}
return _wmkdir(path_wide.c_str());
}
// Version of utime() that takes a UTF-8 path.
int adb_utime(const char* path, struct utimbuf* u) {
std::wstring path_wide;
if (!android::base::UTF8ToWide(path, &path_wide)) {
return -1;
}
static_assert(sizeof(struct utimbuf) == sizeof(struct _utimbuf),
"utimbuf and _utimbuf should be the same size because they both "
"contain the same types, namely time_t");
return _wutime(path_wide.c_str(), reinterpret_cast<struct _utimbuf*>(u));
}
// Version of chmod() that takes a UTF-8 path.
int adb_chmod(const char* path, int mode) {
std::wstring path_wide;
if (!android::base::UTF8ToWide(path, &path_wide)) {
return -1;
}
return _wchmod(path_wide.c_str(), mode);
}
// From libutils/Unicode.cpp, get the length of a UTF-8 sequence given the lead byte.
static inline size_t utf8_codepoint_len(uint8_t ch) {
return ((0xe5000000 >> ((ch >> 3) & 0x1e)) & 3) + 1;
}
namespace internal {
// Given a sequence of UTF-8 bytes (denoted by the range [first, last)), return the number of bytes
// (from the beginning) that are complete UTF-8 sequences and append the remaining bytes to
// remaining_bytes.
size_t ParseCompleteUTF8(const char* const first, const char* const last,
std::vector<char>* const remaining_bytes) {
// Walk backwards from the end of the sequence looking for the beginning of a UTF-8 sequence.
// Current_after points one byte past the current byte to be examined.
for (const char* current_after = last; current_after != first; --current_after) {
const char* const current = current_after - 1;
const char ch = *current;
const char kHighBit = 0x80u;
const char kTwoHighestBits = 0xC0u;
if ((ch & kHighBit) == 0) { // high bit not set
// The buffer ends with a one-byte UTF-8 sequence, possibly followed by invalid trailing
// bytes with no leading byte, so return the entire buffer.
break;
} else if ((ch & kTwoHighestBits) == kTwoHighestBits) { // top two highest bits set
// Lead byte in UTF-8 sequence, so check if we have all the bytes in the sequence.
const size_t bytes_available = last - current;
if (bytes_available < utf8_codepoint_len(ch)) {
// We don't have all the bytes in the UTF-8 sequence, so return all the bytes
// preceding the current incomplete UTF-8 sequence and append the remaining bytes
// to remaining_bytes.
remaining_bytes->insert(remaining_bytes->end(), current, last);
return current - first;
} else {
// The buffer ends with a complete UTF-8 sequence, possibly followed by invalid
// trailing bytes with no lead byte, so return the entire buffer.
break;
}
} else {
// Trailing byte, so keep going backwards looking for the lead byte.
}
}
// Return the size of the entire buffer. It is possible that we walked backward past invalid
// trailing bytes with no lead byte, in which case we want to return all those invalid bytes
// so that they can be processed.
return last - first;
}
}
// Bytes that have not yet been output to the console because they are incomplete UTF-8 sequences.
// Note that we use only one buffer even though stderr and stdout are logically separate streams.
// This matches the behavior of Linux.
// Internal helper function to write UTF-8 bytes to a console. Returns -1 on error.
static int _console_write_utf8(const char* const buf, const size_t buf_size, FILE* stream,
HANDLE console) {
static std::mutex& console_output_buffer_lock = *new std::mutex();
static auto& console_output_buffer = *new std::vector<char>();
const int saved_errno = errno;
std::vector<char> combined_buffer;
// Complete UTF-8 sequences that should be immediately written to the console.
const char* utf8;
size_t utf8_size;
{
std::lock_guard<std::mutex> lock(console_output_buffer_lock);
if (console_output_buffer.empty()) {
// If console_output_buffer doesn't have a buffered up incomplete UTF-8 sequence (the
// common case with plain ASCII), parse buf directly.
utf8 = buf;
utf8_size = internal::ParseCompleteUTF8(buf, buf + buf_size, &console_output_buffer);
} else {
// If console_output_buffer has a buffered up incomplete UTF-8 sequence, move it to
// combined_buffer (and effectively clear console_output_buffer) and append buf to
// combined_buffer, then parse it all together.
combined_buffer.swap(console_output_buffer);
combined_buffer.insert(combined_buffer.end(), buf, buf + buf_size);
utf8 = combined_buffer.data();
utf8_size = internal::ParseCompleteUTF8(utf8, utf8 + combined_buffer.size(),
&console_output_buffer);
}
}
std::wstring utf16;
// Try to convert from data that might be UTF-8 to UTF-16, ignoring errors (just like Linux
// which does not return an error on bad UTF-8). Data might not be UTF-8 if the user cat's
// random data, runs dmesg (which might have non-UTF-8), etc.
// This could throw std::bad_alloc.
(void)android::base::UTF8ToWide(utf8, utf8_size, &utf16);
// Note that this does not do \n => \r\n translation because that
// doesn't seem necessary for the Windows console. For the Windows
// console \r moves to the beginning of the line and \n moves to a new
// line.
// Flush any stream buffering so that our output is afterwards which
// makes sense because our call is afterwards.
(void)fflush(stream);
// Write UTF-16 to the console.
DWORD written = 0;
if (!WriteConsoleW(console, utf16.c_str(), utf16.length(), &written, nullptr)) {
errno = EIO;
return -1;
}
// Return the size of the original buffer passed in, signifying that we consumed it all, even
// if nothing was displayed, in the case of being passed an incomplete UTF-8 sequence. This
// matches the Linux behavior.
errno = saved_errno;
return buf_size;
}
// Function prototype because attributes cannot be placed on func definitions.
static int _console_vfprintf(const HANDLE console, FILE* stream, const char* format, va_list ap)
__attribute__((__format__(__printf__, 3, 0)));
// Internal function to format a UTF-8 string and write it to a Win32 console.
// Returns -1 on error.
static int _console_vfprintf(const HANDLE console, FILE* stream,
const char *format, va_list ap) {
const int saved_errno = errno;
std::string output_utf8;
// Format the string.
// This could throw std::bad_alloc.
android::base::StringAppendV(&output_utf8, format, ap);
const int result = _console_write_utf8(output_utf8.c_str(), output_utf8.length(), stream,
console);
if (result != -1) {
errno = saved_errno;
} else {
// If -1 was returned, errno has been set.
}
return result;
}
// Version of vfprintf() that takes UTF-8 and can write Unicode to a
// Windows console.
int adb_vfprintf(FILE *stream, const char *format, va_list ap) {
const HANDLE console = _get_console_handle(stream);
// If there is an associated Win32 console, write to it specially,
// otherwise defer to the regular C Runtime, passing it UTF-8.
if (console != nullptr) {
return _console_vfprintf(console, stream, format, ap);
} else {
// If vfprintf is a macro, undefine it, so we can call the real
// C Runtime API.
#pragma push_macro("vfprintf")
#undef vfprintf
return vfprintf(stream, format, ap);
#pragma pop_macro("vfprintf")
}
}
// Version of vprintf() that takes UTF-8 and can write Unicode to a Windows console.
int adb_vprintf(const char *format, va_list ap) {
return adb_vfprintf(stdout, format, ap);
}
// Version of fprintf() that takes UTF-8 and can write Unicode to a
// Windows console.
int adb_fprintf(FILE *stream, const char *format, ...) {
va_list ap;
va_start(ap, format);
const int result = adb_vfprintf(stream, format, ap);
va_end(ap);
return result;
}
// Version of printf() that takes UTF-8 and can write Unicode to a
// Windows console.
int adb_printf(const char *format, ...) {
va_list ap;
va_start(ap, format);
const int result = adb_vfprintf(stdout, format, ap);
va_end(ap);
return result;
}
// Version of fputs() that takes UTF-8 and can write Unicode to a
// Windows console.
int adb_fputs(const char* buf, FILE* stream) {
// adb_fprintf returns -1 on error, which is conveniently the same as EOF
// which fputs (and hence adb_fputs) should return on error.
static_assert(EOF == -1, "EOF is not -1, so this code needs to be fixed");
return adb_fprintf(stream, "%s", buf);
}
// Version of fputc() that takes UTF-8 and can write Unicode to a
// Windows console.
int adb_fputc(int ch, FILE* stream) {
const int result = adb_fprintf(stream, "%c", ch);
if (result == -1) {
return EOF;
}
// For success, fputc returns the char, cast to unsigned char, then to int.
return static_cast<unsigned char>(ch);
}
// Version of putchar() that takes UTF-8 and can write Unicode to a Windows console.
int adb_putchar(int ch) {
return adb_fputc(ch, stdout);
}
// Version of puts() that takes UTF-8 and can write Unicode to a Windows console.
int adb_puts(const char* buf) {
// adb_printf returns -1 on error, which is conveniently the same as EOF
// which puts (and hence adb_puts) should return on error.
static_assert(EOF == -1, "EOF is not -1, so this code needs to be fixed");
return adb_printf("%s\n", buf);
}
// Internal function to write UTF-8 to a Win32 console. Returns the number of
// items (of length size) written. On error, returns a short item count or 0.
static size_t _console_fwrite(const void* ptr, size_t size, size_t nmemb,
FILE* stream, HANDLE console) {
const int result = _console_write_utf8(reinterpret_cast<const char*>(ptr), size * nmemb, stream,
console);
if (result == -1) {
return 0;
}
return result / size;
}
// Version of fwrite() that takes UTF-8 and can write Unicode to a
// Windows console.
size_t adb_fwrite(const void* ptr, size_t size, size_t nmemb, FILE* stream) {
const HANDLE console = _get_console_handle(stream);
// If there is an associated Win32 console, write to it specially,
// otherwise defer to the regular C Runtime, passing it UTF-8.
if (console != nullptr) {
return _console_fwrite(ptr, size, nmemb, stream, console);
} else {
// If fwrite is a macro, undefine it, so we can call the real
// C Runtime API.
#pragma push_macro("fwrite")
#undef fwrite
return fwrite(ptr, size, nmemb, stream);
#pragma pop_macro("fwrite")
}
}
// Version of fopen() that takes a UTF-8 filename and can access a file with
// a Unicode filename.
FILE* adb_fopen(const char* path, const char* mode) {
std::wstring path_wide;
if (!android::base::UTF8ToWide(path, &path_wide)) {
return nullptr;
}
std::wstring mode_wide;
if (!android::base::UTF8ToWide(mode, &mode_wide)) {
return nullptr;
}
return _wfopen(path_wide.c_str(), mode_wide.c_str());
}
// Return a lowercase version of the argument. Uses C Runtime tolower() on
// each byte which is not UTF-8 aware, and theoretically uses the current C
// Runtime locale (which in practice is not changed, so this becomes a ASCII
// conversion).
static std::string ToLower(const std::string& anycase) {
// copy string
std::string str(anycase);
// transform the copy
std::transform(str.begin(), str.end(), str.begin(), tolower);
return str;
}
extern "C" int main(int argc, char** argv);
// Link with -municode to cause this wmain() to be used as the program
// entrypoint. It will convert the args from UTF-16 to UTF-8 and call the
// regular main() with UTF-8 args.
extern "C" int wmain(int argc, wchar_t **argv) {
// Convert args from UTF-16 to UTF-8 and pass that to main().
NarrowArgs narrow_args(argc, argv);
return main(argc, narrow_args.data());
}
// Shadow UTF-8 environment variable name/value pairs that are created from
// _wenviron the first time that adb_getenv() is called. Note that this is not
// currently updated if putenv, setenv, unsetenv are called. Note that no
// thread synchronization is done, but we're called early enough in
// single-threaded startup that things work ok.
static auto& g_environ_utf8 = *new std::unordered_map<std::string, char*>();
// Make sure that shadow UTF-8 environment variables are setup.
static void _ensure_env_setup() {
// If some name/value pairs exist, then we've already done the setup below.
if (g_environ_utf8.size() != 0) {
return;
}
if (_wenviron == nullptr) {
// If _wenviron is null, then -municode probably wasn't used. That
// linker flag will cause the entry point to setup _wenviron. It will
// also require an implementation of wmain() (which we provide above).
LOG(FATAL) << "_wenviron is not set, did you link with -municode?";
}
// Read name/value pairs from UTF-16 _wenviron and write new name/value
// pairs to UTF-8 g_environ_utf8. Note that it probably does not make sense
// to use the D() macro here because that tracing only works if the
// ADB_TRACE environment variable is setup, but that env var can't be read
// until this code completes.
for (wchar_t** env = _wenviron; *env != nullptr; ++env) {
wchar_t* const equal = wcschr(*env, L'=');
if (equal == nullptr) {
// Malformed environment variable with no equal sign. Shouldn't
// really happen, but we should be resilient to this.
continue;
}
// If we encounter an error converting UTF-16, don't error-out on account of a single env
// var because the program might never even read this particular variable.
std::string name_utf8;
if (!android::base::WideToUTF8(*env, equal - *env, &name_utf8)) {
continue;
}
// Store lowercase name so that we can do case-insensitive searches.
name_utf8 = ToLower(name_utf8);
std::string value_utf8;
if (!android::base::WideToUTF8(equal + 1, &value_utf8)) {
continue;
}
char* const value_dup = strdup(value_utf8.c_str());
// Don't overwrite a previus env var with the same name. In reality,
// the system probably won't let two env vars with the same name exist
// in _wenviron.
g_environ_utf8.insert({name_utf8, value_dup});
}
}
// Version of getenv() that takes a UTF-8 environment variable name and
// retrieves a UTF-8 value. Case-insensitive to match getenv() on Windows.
char* adb_getenv(const char* name) {
_ensure_env_setup();
// Case-insensitive search by searching for lowercase name in a map of
// lowercase names.
const auto it = g_environ_utf8.find(ToLower(std::string(name)));
if (it == g_environ_utf8.end()) {
return nullptr;
}
return it->second;
}
// Version of getcwd() that returns the current working directory in UTF-8.
char* adb_getcwd(char* buf, int size) {
wchar_t* wbuf = _wgetcwd(nullptr, 0);
if (wbuf == nullptr) {
return nullptr;
}
std::string buf_utf8;
const bool narrow_result = android::base::WideToUTF8(wbuf, &buf_utf8);
free(wbuf);
wbuf = nullptr;
if (!narrow_result) {
return nullptr;
}
// If size was specified, make sure all the chars will fit.
if (size != 0) {
if (size < static_cast<int>(buf_utf8.length() + 1)) {
errno = ERANGE;
return nullptr;
}
}
// If buf was not specified, allocate storage.
if (buf == nullptr) {
if (size == 0) {
size = buf_utf8.length() + 1;
}
buf = reinterpret_cast<char*>(malloc(size));
if (buf == nullptr) {
return nullptr;
}
}
// Destination buffer was allocated with enough space, or we've already
// checked an existing buffer size for enough space.
strcpy(buf, buf_utf8.c_str());
return buf;
}
// The SetThreadDescription API was brought in version 1607 of Windows 10.
typedef HRESULT(WINAPI* SetThreadDescription)(HANDLE hThread, PCWSTR lpThreadDescription);
// Based on PlatformThread::SetName() from
// https://cs.chromium.org/chromium/src/base/threading/platform_thread_win.cc
int adb_thread_setname(const std::string& name) {
// The SetThreadDescription API works even if no debugger is attached.
auto set_thread_description_func = reinterpret_cast<SetThreadDescription>(
::GetProcAddress(::GetModuleHandleW(L"Kernel32.dll"), "SetThreadDescription"));
if (set_thread_description_func) {
std::wstring name_wide;
if (!android::base::UTF8ToWide(name.c_str(), &name_wide)) {
return errno;
}
set_thread_description_func(::GetCurrentThread(), name_wide.c_str());
}
// Don't use the thread naming SEH exception because we're compiled with -fno-exceptions.
// https://docs.microsoft.com/en-us/visualstudio/debugger/how-to-set-a-thread-name-in-native-code?view=vs-2017
return 0;
}