platform_system_core/libsync/sync.c
Jesse Hall 82d377b585 sync: remove legacy sync info API
The legacy fence/pt info API has been deprecated for a while. This
change removes it from headers, so remaining users will have to switch
to the modern API when they're re-compiled. The functions are still
provided by libsync.so and tests remain, so existing binaries should
continue to work. Eventually these will be removed too, though, once
it's reasonable to expect those binaries to have been recompiled.

This reverts commit eed25df46a, which
reverted the previous attempt in commit
798ba95bda now that more users of the
legacy API have been converted.

Bug: 35326015
Test: make checkbuild
Test: adb shell dumpsys SurfaceFlinger --latency
2018-06-13 11:52:10 -07:00

443 lines
12 KiB
C

/*
* sync.c
*
* Copyright 2012 Google, Inc
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <errno.h>
#include <fcntl.h>
#include <malloc.h>
#include <poll.h>
#include <stdatomic.h>
#include <stdint.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <android/sync.h>
/* Prototypes for deprecated functions that used to be declared in the legacy
* android/sync.h. They've been moved here to make sure new code does not use
* them, but the functions are still defined to avoid breaking existing
* binaries. Eventually they can be removed altogether.
*/
struct sync_fence_info_data {
uint32_t len;
char name[32];
int32_t status;
uint8_t pt_info[0];
};
struct sync_pt_info {
uint32_t len;
char obj_name[32];
char driver_name[32];
int32_t status;
uint64_t timestamp_ns;
uint8_t driver_data[0];
};
struct sync_fence_info_data* sync_fence_info(int fd);
struct sync_pt_info* sync_pt_info(struct sync_fence_info_data* info, struct sync_pt_info* itr);
void sync_fence_info_free(struct sync_fence_info_data* info);
/* Legacy Sync API */
struct sync_legacy_merge_data {
int32_t fd2;
char name[32];
int32_t fence;
};
/**
* DOC: SYNC_IOC_MERGE - merge two fences
*
* Takes a struct sync_merge_data. Creates a new fence containing copies of
* the sync_pts in both the calling fd and sync_merge_data.fd2. Returns the
* new fence's fd in sync_merge_data.fence
*
* This is the legacy version of the Sync API before the de-stage that happened
* on Linux kernel 4.7.
*/
#define SYNC_IOC_LEGACY_MERGE _IOWR(SYNC_IOC_MAGIC, 1, \
struct sync_legacy_merge_data)
/**
* DOC: SYNC_IOC_LEGACY_FENCE_INFO - get detailed information on a fence
*
* Takes a struct sync_fence_info_data with extra space allocated for pt_info.
* Caller should write the size of the buffer into len. On return, len is
* updated to reflect the total size of the sync_fence_info_data including
* pt_info.
*
* pt_info is a buffer containing sync_pt_infos for every sync_pt in the fence.
* To iterate over the sync_pt_infos, use the sync_pt_info.len field.
*
* This is the legacy version of the Sync API before the de-stage that happened
* on Linux kernel 4.7.
*/
#define SYNC_IOC_LEGACY_FENCE_INFO _IOWR(SYNC_IOC_MAGIC, 2,\
struct sync_fence_info_data)
/* SW Sync API */
struct sw_sync_create_fence_data {
__u32 value;
char name[32];
__s32 fence;
};
#define SW_SYNC_IOC_MAGIC 'W'
#define SW_SYNC_IOC_CREATE_FENCE _IOWR(SW_SYNC_IOC_MAGIC, 0, struct sw_sync_create_fence_data)
#define SW_SYNC_IOC_INC _IOW(SW_SYNC_IOC_MAGIC, 1, __u32)
// ---------------------------------------------------------------------------
// Support for caching the sync uapi version.
//
// This library supports both legacy (android/staging) uapi and modern
// (mainline) sync uapi. Library calls first try one uapi, and if that fails,
// try the other. Since any given kernel only supports one uapi version, after
// the first successful syscall we know what the kernel supports and can skip
// trying the other.
enum uapi_version {
UAPI_UNKNOWN,
UAPI_MODERN,
UAPI_LEGACY
};
static atomic_int g_uapi_version = ATOMIC_VAR_INIT(UAPI_UNKNOWN);
// ---------------------------------------------------------------------------
int sync_wait(int fd, int timeout)
{
struct pollfd fds;
int ret;
if (fd < 0) {
errno = EINVAL;
return -1;
}
fds.fd = fd;
fds.events = POLLIN;
do {
ret = poll(&fds, 1, timeout);
if (ret > 0) {
if (fds.revents & (POLLERR | POLLNVAL)) {
errno = EINVAL;
return -1;
}
return 0;
} else if (ret == 0) {
errno = ETIME;
return -1;
}
} while (ret == -1 && (errno == EINTR || errno == EAGAIN));
return ret;
}
static int legacy_sync_merge(const char *name, int fd1, int fd2)
{
struct sync_legacy_merge_data data;
int ret;
data.fd2 = fd2;
strlcpy(data.name, name, sizeof(data.name));
ret = ioctl(fd1, SYNC_IOC_LEGACY_MERGE, &data);
if (ret < 0)
return ret;
return data.fence;
}
static int modern_sync_merge(const char *name, int fd1, int fd2)
{
struct sync_merge_data data;
int ret;
data.fd2 = fd2;
strlcpy(data.name, name, sizeof(data.name));
data.flags = 0;
data.pad = 0;
ret = ioctl(fd1, SYNC_IOC_MERGE, &data);
if (ret < 0)
return ret;
return data.fence;
}
int sync_merge(const char *name, int fd1, int fd2)
{
int uapi;
int ret;
uapi = atomic_load_explicit(&g_uapi_version, memory_order_acquire);
if (uapi == UAPI_MODERN || uapi == UAPI_UNKNOWN) {
ret = modern_sync_merge(name, fd1, fd2);
if (ret >= 0 || errno != ENOTTY) {
if (ret >= 0 && uapi == UAPI_UNKNOWN) {
atomic_store_explicit(&g_uapi_version, UAPI_MODERN,
memory_order_release);
}
return ret;
}
}
ret = legacy_sync_merge(name, fd1, fd2);
if (ret >= 0 && uapi == UAPI_UNKNOWN) {
atomic_store_explicit(&g_uapi_version, UAPI_LEGACY,
memory_order_release);
}
return ret;
}
static struct sync_fence_info_data *legacy_sync_fence_info(int fd)
{
struct sync_fence_info_data *legacy_info;
struct sync_pt_info *legacy_pt_info;
int err;
legacy_info = malloc(4096);
if (legacy_info == NULL)
return NULL;
legacy_info->len = 4096;
err = ioctl(fd, SYNC_IOC_LEGACY_FENCE_INFO, legacy_info);
if (err < 0) {
free(legacy_info);
return NULL;
}
return legacy_info;
}
static struct sync_file_info *modern_sync_file_info(int fd)
{
struct sync_file_info local_info;
struct sync_file_info *info;
int err;
memset(&local_info, 0, sizeof(local_info));
err = ioctl(fd, SYNC_IOC_FILE_INFO, &local_info);
if (err < 0)
return NULL;
info = calloc(1, sizeof(struct sync_file_info) +
local_info.num_fences * sizeof(struct sync_fence_info));
if (!info)
return NULL;
info->num_fences = local_info.num_fences;
info->sync_fence_info = (__u64)(uintptr_t)(info + 1);
err = ioctl(fd, SYNC_IOC_FILE_INFO, info);
if (err < 0) {
free(info);
return NULL;
}
return info;
}
static struct sync_fence_info_data *sync_file_info_to_legacy_fence_info(
const struct sync_file_info *info)
{
struct sync_fence_info_data *legacy_info;
struct sync_pt_info *legacy_pt_info;
const struct sync_fence_info *fence_info = sync_get_fence_info(info);
const uint32_t num_fences = info->num_fences;
legacy_info = malloc(4096);
if (legacy_info == NULL)
return NULL;
legacy_info->len = sizeof(*legacy_info) +
num_fences * sizeof(struct sync_pt_info);
strlcpy(legacy_info->name, info->name, sizeof(legacy_info->name));
legacy_info->status = info->status;
legacy_pt_info = (struct sync_pt_info *)legacy_info->pt_info;
for (uint32_t i = 0; i < num_fences; i++) {
legacy_pt_info[i].len = sizeof(*legacy_pt_info);
strlcpy(legacy_pt_info[i].obj_name, fence_info[i].obj_name,
sizeof(legacy_pt_info->obj_name));
strlcpy(legacy_pt_info[i].driver_name, fence_info[i].driver_name,
sizeof(legacy_pt_info->driver_name));
legacy_pt_info[i].status = fence_info[i].status;
legacy_pt_info[i].timestamp_ns = fence_info[i].timestamp_ns;
}
return legacy_info;
}
static struct sync_file_info* legacy_fence_info_to_sync_file_info(
struct sync_fence_info_data *legacy_info)
{
struct sync_file_info *info;
struct sync_pt_info *pt;
struct sync_fence_info *fence;
size_t num_fences;
int err;
pt = NULL;
num_fences = 0;
while ((pt = sync_pt_info(legacy_info, pt)) != NULL)
num_fences++;
info = calloc(1, sizeof(struct sync_file_info) +
num_fences * sizeof(struct sync_fence_info));
if (!info) {
return NULL;
}
info->sync_fence_info = (__u64)(uintptr_t)(info + 1);
strlcpy(info->name, legacy_info->name, sizeof(info->name));
info->status = legacy_info->status;
info->num_fences = num_fences;
pt = NULL;
fence = sync_get_fence_info(info);
while ((pt = sync_pt_info(legacy_info, pt)) != NULL) {
strlcpy(fence->obj_name, pt->obj_name, sizeof(fence->obj_name));
strlcpy(fence->driver_name, pt->driver_name,
sizeof(fence->driver_name));
fence->status = pt->status;
fence->timestamp_ns = pt->timestamp_ns;
fence++;
}
return info;
}
struct sync_fence_info_data *sync_fence_info(int fd)
{
struct sync_fence_info_data *legacy_info;
int uapi;
uapi = atomic_load_explicit(&g_uapi_version, memory_order_acquire);
if (uapi == UAPI_LEGACY || uapi == UAPI_UNKNOWN) {
legacy_info = legacy_sync_fence_info(fd);
if (legacy_info || errno != ENOTTY) {
if (legacy_info && uapi == UAPI_UNKNOWN) {
atomic_store_explicit(&g_uapi_version, UAPI_LEGACY,
memory_order_release);
}
return legacy_info;
}
}
struct sync_file_info* file_info;
file_info = modern_sync_file_info(fd);
if (!file_info)
return NULL;
if (uapi == UAPI_UNKNOWN) {
atomic_store_explicit(&g_uapi_version, UAPI_MODERN,
memory_order_release);
}
legacy_info = sync_file_info_to_legacy_fence_info(file_info);
sync_file_info_free(file_info);
return legacy_info;
}
struct sync_file_info* sync_file_info(int32_t fd)
{
struct sync_file_info *info;
int uapi;
uapi = atomic_load_explicit(&g_uapi_version, memory_order_acquire);
if (uapi == UAPI_MODERN || uapi == UAPI_UNKNOWN) {
info = modern_sync_file_info(fd);
if (info || errno != ENOTTY) {
if (info && uapi == UAPI_UNKNOWN) {
atomic_store_explicit(&g_uapi_version, UAPI_MODERN,
memory_order_release);
}
return info;
}
}
struct sync_fence_info_data *legacy_info;
legacy_info = legacy_sync_fence_info(fd);
if (!legacy_info)
return NULL;
if (uapi == UAPI_UNKNOWN) {
atomic_store_explicit(&g_uapi_version, UAPI_LEGACY,
memory_order_release);
}
info = legacy_fence_info_to_sync_file_info(legacy_info);
sync_fence_info_free(legacy_info);
return info;
}
struct sync_pt_info *sync_pt_info(struct sync_fence_info_data *info,
struct sync_pt_info *itr)
{
if (itr == NULL)
itr = (struct sync_pt_info *) info->pt_info;
else
itr = (struct sync_pt_info *) ((__u8 *)itr + itr->len);
if ((__u8 *)itr - (__u8 *)info >= (int)info->len)
return NULL;
return itr;
}
void sync_fence_info_free(struct sync_fence_info_data *info)
{
free(info);
}
void sync_file_info_free(struct sync_file_info *info)
{
free(info);
}
int sw_sync_timeline_create(void)
{
int ret;
ret = open("/sys/kernel/debug/sync/sw_sync", O_RDWR);
if (ret < 0)
ret = open("/dev/sw_sync", O_RDWR);
return ret;
}
int sw_sync_timeline_inc(int fd, unsigned count)
{
__u32 arg = count;
return ioctl(fd, SW_SYNC_IOC_INC, &arg);
}
int sw_sync_fence_create(int fd, const char *name, unsigned value)
{
struct sw_sync_create_fence_data data;
int err;
data.value = value;
strlcpy(data.name, name, sizeof(data.name));
err = ioctl(fd, SW_SYNC_IOC_CREATE_FENCE, &data);
if (err < 0)
return err;
return data.fence;
}