platform_system_core/fastboot/fastboot.cpp
Daniel Zheng 5cbcdfae4e is_retrofit_device to work in bootloader
Changing is_retrofit_device() to work in bootloader. Previously flashall
flow was to boot into fastbootd and then  make a call to get
"super-image-name", however this does not work in bootloader. Since all
tasks are generated ahead of time, this old check will now fail and we
will fail to add the correct delete tasks in collectTasks(). This change
does make it so that is_retrofit check only works during fastboot
flashall + fastboot update (since this function is only used here,
nothing is currently affected).

To determine if a device is retrofit, it must satisfy two conditions -> Has
dynamic partitions && does not contain a super partition. The check for
if source has super_empty.img is sufficient for determining if a device
has dynamic partitions and if any single partition has
LP_PARTITION_ATTR_SLOT_SUFFIXED it is determined to be retrofit

Test: logs from fastboot update on sargo device confirms this check
returns true. Fastboot update on sargo
Bug: 300287332

Change-Id: Iadf5c56de51993a79307c60e45d6cc4988436f23
2023-09-22 13:22:57 -07:00

2671 lines
99 KiB
C++

/*
* Copyright (C) 2008 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "fastboot.h"
#include <errno.h>
#include <fcntl.h>
#include <getopt.h>
#include <inttypes.h>
#include <limits.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#include <chrono>
#include <functional>
#include <iostream>
#include <memory>
#include <regex>
#include <string>
#include <thread>
#include <utility>
#include <vector>
#include <android-base/endian.h>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/macros.h>
#include <android-base/parseint.h>
#include <android-base/parsenetaddress.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <android-base/unique_fd.h>
#include <build/version.h>
#include <libavb/libavb.h>
#include <liblp/liblp.h>
#include <liblp/super_layout_builder.h>
#include <platform_tools_version.h>
#include <sparse/sparse.h>
#include <ziparchive/zip_archive.h>
#include "bootimg_utils.h"
#include "constants.h"
#include "diagnose_usb.h"
#include "fastboot_driver.h"
#include "fastboot_driver_interface.h"
#include "fs.h"
#include "storage.h"
#include "task.h"
#include "tcp.h"
#include "transport.h"
#include "udp.h"
#include "usb.h"
#include "util.h"
#include "vendor_boot_img_utils.h"
using android::base::borrowed_fd;
using android::base::ReadFully;
using android::base::Split;
using android::base::Trim;
using android::base::unique_fd;
using namespace std::placeholders;
#define FASTBOOT_INFO_VERSION 1
static const char* serial = nullptr;
static bool g_long_listing = false;
// Don't resparse files in too-big chunks.
// libsparse will support INT_MAX, but this results in large allocations, so
// let's keep it at 1GB to avoid memory pressure on the host.
static constexpr int64_t RESPARSE_LIMIT = 1 * 1024 * 1024 * 1024;
static int64_t target_sparse_limit = -1;
static unsigned g_base_addr = 0x10000000;
static boot_img_hdr_v2 g_boot_img_hdr = {};
static std::string g_cmdline;
static std::string g_dtb_path;
static bool g_disable_verity = false;
static bool g_disable_verification = false;
fastboot::FastBootDriver* fb = nullptr;
static std::vector<Image> images = {
// clang-format off
{ "boot", "boot.img", "boot.sig", "boot", false, ImageType::BootCritical },
{ "bootloader",
"bootloader.img", "", "bootloader",
true, ImageType::Extra },
{ "init_boot",
"init_boot.img", "init_boot.sig",
"init_boot",
true, ImageType::BootCritical },
{ "", "boot_other.img", "boot.sig", "boot", true, ImageType::Normal },
{ "cache", "cache.img", "cache.sig", "cache", true, ImageType::Extra },
{ "dtbo", "dtbo.img", "dtbo.sig", "dtbo", true, ImageType::BootCritical },
{ "dts", "dt.img", "dt.sig", "dts", true, ImageType::BootCritical },
{ "odm", "odm.img", "odm.sig", "odm", true, ImageType::Normal },
{ "odm_dlkm", "odm_dlkm.img", "odm_dlkm.sig", "odm_dlkm", true, ImageType::Normal },
{ "product", "product.img", "product.sig", "product", true, ImageType::Normal },
{ "pvmfw", "pvmfw.img", "pvmfw.sig", "pvmfw", true, ImageType::BootCritical },
{ "radio", "radio.img", "", "radio", true, ImageType::Extra },
{ "recovery", "recovery.img", "recovery.sig", "recovery", true, ImageType::BootCritical },
{ "super", "super.img", "super.sig", "super", true, ImageType::Extra },
{ "system", "system.img", "system.sig", "system", false, ImageType::Normal },
{ "system_dlkm",
"system_dlkm.img", "system_dlkm.sig",
"system_dlkm",
true, ImageType::Normal },
{ "system_ext",
"system_ext.img", "system_ext.sig",
"system_ext",
true, ImageType::Normal },
{ "", "system_other.img", "system.sig", "system", true, ImageType::Normal },
{ "userdata", "userdata.img", "userdata.sig", "userdata", true, ImageType::Extra },
{ "vbmeta", "vbmeta.img", "vbmeta.sig", "vbmeta", true, ImageType::BootCritical },
{ "vbmeta_system",
"vbmeta_system.img",
"vbmeta_system.sig",
"vbmeta_system",
true, ImageType::BootCritical },
{ "vbmeta_vendor",
"vbmeta_vendor.img",
"vbmeta_vendor.sig",
"vbmeta_vendor",
true, ImageType::BootCritical },
{ "vendor", "vendor.img", "vendor.sig", "vendor", true, ImageType::Normal },
{ "vendor_boot",
"vendor_boot.img", "vendor_boot.sig",
"vendor_boot",
true, ImageType::BootCritical },
{ "vendor_dlkm",
"vendor_dlkm.img", "vendor_dlkm.sig",
"vendor_dlkm",
true, ImageType::Normal },
{ "vendor_kernel_boot",
"vendor_kernel_boot.img",
"vendor_kernel_boot.sig",
"vendor_kernel_boot",
true, ImageType::BootCritical },
{ "", "vendor_other.img", "vendor.sig", "vendor", true, ImageType::Normal },
// clang-format on
};
char* get_android_product_out() {
char* dir = getenv("ANDROID_PRODUCT_OUT");
if (dir == nullptr || dir[0] == '\0') {
return nullptr;
}
return dir;
}
static std::string find_item_given_name(const std::string& img_name) {
char* dir = get_android_product_out();
if (!dir) {
die("ANDROID_PRODUCT_OUT not set");
}
return std::string(dir) + "/" + img_name;
}
std::string find_item(const std::string& item) {
for (size_t i = 0; i < images.size(); ++i) {
if (!images[i].nickname.empty() && item == images[i].nickname) {
return find_item_given_name(images[i].img_name);
}
}
fprintf(stderr, "unknown partition '%s'\n", item.c_str());
return "";
}
double last_start_time;
static void Status(const std::string& message) {
if (!message.empty()) {
static constexpr char kStatusFormat[] = "%-50s ";
fprintf(stderr, kStatusFormat, message.c_str());
}
last_start_time = now();
}
static void Epilog(int status) {
if (status) {
fprintf(stderr, "FAILED (%s)\n", fb->Error().c_str());
die("Command failed");
} else {
double split = now();
fprintf(stderr, "OKAY [%7.3fs]\n", (split - last_start_time));
}
}
static void InfoMessage(const std::string& info) {
fprintf(stderr, "(bootloader) %s\n", info.c_str());
}
static void TextMessage(const std::string& text) {
fprintf(stderr, "%s", text.c_str());
}
bool ReadFileToVector(const std::string& file, std::vector<char>* out) {
out->clear();
unique_fd fd(TEMP_FAILURE_RETRY(open(file.c_str(), O_RDONLY | O_CLOEXEC | O_BINARY)));
if (fd == -1) {
return false;
}
out->resize(get_file_size(fd));
return ReadFully(fd, out->data(), out->size());
}
static int match_fastboot_with_serial(usb_ifc_info* info, const char* local_serial) {
if (info->ifc_class != 0xff || info->ifc_subclass != 0x42 || info->ifc_protocol != 0x03) {
return -1;
}
// require matching serial number or device path if requested
// at the command line with the -s option.
if (local_serial && (strcmp(local_serial, info->serial_number) != 0 &&
strcmp(local_serial, info->device_path) != 0))
return -1;
return 0;
}
static ifc_match_func match_fastboot(const char* local_serial = serial) {
return [local_serial](usb_ifc_info* info) -> int {
return match_fastboot_with_serial(info, local_serial);
};
}
// output compatible with "adb devices"
static void PrintDevice(const char* local_serial, const char* status = nullptr,
const char* details = nullptr) {
if (local_serial == nullptr || strlen(local_serial) == 0) {
return;
}
if (g_long_listing) {
printf("%-22s", local_serial);
} else {
printf("%s\t", local_serial);
}
if (status != nullptr && strlen(status) > 0) {
printf(" %s", status);
}
if (g_long_listing) {
if (details != nullptr && strlen(details) > 0) {
printf(" %s", details);
}
}
putchar('\n');
}
static int list_devices_callback(usb_ifc_info* info) {
if (match_fastboot_with_serial(info, nullptr) == 0) {
std::string serial = info->serial_number;
std::string interface = info->interface;
if (interface.empty()) {
interface = "fastboot";
}
if (!info->writable) {
serial = UsbNoPermissionsShortHelpText();
}
if (!serial[0]) {
serial = "????????????";
}
PrintDevice(serial.c_str(), interface.c_str(), info->device_path);
}
return -1;
}
Result<NetworkSerial, FastbootError> ParseNetworkSerial(const std::string& serial) {
Socket::Protocol protocol;
const char* net_address = nullptr;
int port = 0;
if (android::base::StartsWith(serial, "tcp:")) {
protocol = Socket::Protocol::kTcp;
net_address = serial.c_str() + strlen("tcp:");
port = tcp::kDefaultPort;
} else if (android::base::StartsWith(serial, "udp:")) {
protocol = Socket::Protocol::kUdp;
net_address = serial.c_str() + strlen("udp:");
port = udp::kDefaultPort;
} else {
return Error<FastbootError>(FastbootError::Type::NETWORK_SERIAL_WRONG_PREFIX)
<< "protocol prefix ('tcp:' or 'udp:') is missed: " << serial << ". "
<< "Expected address format:\n"
<< "<protocol>:<address>:<port> (tcp:localhost:5554)";
}
std::string error;
std::string host;
if (!android::base::ParseNetAddress(net_address, &host, &port, nullptr, &error)) {
return Error<FastbootError>(FastbootError::Type::NETWORK_SERIAL_WRONG_ADDRESS)
<< "invalid network address '" << net_address << "': " << error;
}
return NetworkSerial{protocol, host, port};
}
// Opens a new Transport connected to the particular device.
// arguments:
//
// local_serial - device to connect (can be a network or usb serial name)
// wait_for_device - flag indicates whether we need to wait for device
// announce - flag indicates whether we need to print error to stdout in case
// we cannot connect to the device
//
// The returned Transport is a singleton, so multiple calls to this function will return the same
// object, and the caller should not attempt to delete the returned Transport.
static std::unique_ptr<Transport> open_device(const char* local_serial, bool wait_for_device = true,
bool announce = true) {
const Result<NetworkSerial, FastbootError> network_serial = ParseNetworkSerial(local_serial);
std::unique_ptr<Transport> transport;
while (true) {
if (network_serial.ok()) {
std::string error;
if (network_serial->protocol == Socket::Protocol::kTcp) {
transport = tcp::Connect(network_serial->address, network_serial->port, &error);
} else if (network_serial->protocol == Socket::Protocol::kUdp) {
transport = udp::Connect(network_serial->address, network_serial->port, &error);
}
if (!transport && announce) {
LOG(ERROR) << "error: " << error;
}
} else if (network_serial.error().code() ==
FastbootError::Type::NETWORK_SERIAL_WRONG_PREFIX) {
// WRONG_PREFIX is special because it happens when user wants to communicate with USB
// device
transport = usb_open(match_fastboot(local_serial));
} else {
Expect(network_serial);
}
if (transport) {
return transport;
}
if (!wait_for_device) {
return transport;
}
if (announce) {
announce = false;
LOG(ERROR) << "< waiting for " << local_serial << ">";
}
std::this_thread::sleep_for(std::chrono::seconds(1));
}
}
static std::unique_ptr<Transport> NetworkDeviceConnected(bool print = false) {
std::unique_ptr<Transport> transport;
std::unique_ptr<Transport> result;
ConnectedDevicesStorage storage;
std::set<std::string> devices;
if (storage.Exists()) {
FileLock lock = storage.Lock();
devices = storage.ReadDevices(lock);
}
for (const std::string& device : devices) {
transport = open_device(device.c_str(), false, false);
if (print) {
PrintDevice(device.c_str(), transport ? "offline" : "fastboot");
}
if (transport) {
result = std::move(transport);
}
}
return result;
}
// Detects the fastboot connected device to open a new Transport.
// Detecting logic:
//
// if serial is provided - try to connect to this particular usb/network device
// othervise:
// 1. Check connected usb devices and return the last connected one
// 2. Check connected network devices and return the last connected one
// 2. If nothing is connected - wait for any device by repeating p. 1 and 2
//
// The returned Transport is a singleton, so multiple calls to this function will return the same
// object, and the caller should not attempt to delete the returned Transport.
static std::unique_ptr<Transport> open_device() {
if (serial != nullptr) {
return open_device(serial);
}
bool announce = true;
std::unique_ptr<Transport> transport;
while (true) {
transport = usb_open(match_fastboot(nullptr));
if (transport) {
return transport;
}
transport = NetworkDeviceConnected();
if (transport) {
return transport;
}
if (announce) {
announce = false;
LOG(ERROR) << "< waiting for any device >";
}
std::this_thread::sleep_for(std::chrono::seconds(1));
}
return transport;
}
static int Connect(int argc, char* argv[]) {
if (argc != 1) {
LOG(FATAL) << "connect command requires to receive only 1 argument. Usage:" << std::endl
<< "fastboot connect [tcp:|udp:host:port]";
}
const char* local_serial = *argv;
Expect(ParseNetworkSerial(local_serial));
if (!open_device(local_serial, false)) {
return 1;
}
ConnectedDevicesStorage storage;
{
FileLock lock = storage.Lock();
std::set<std::string> devices = storage.ReadDevices(lock);
devices.insert(local_serial);
storage.WriteDevices(lock, devices);
}
return 0;
}
static int Disconnect(const char* local_serial) {
Expect(ParseNetworkSerial(local_serial));
ConnectedDevicesStorage storage;
{
FileLock lock = storage.Lock();
std::set<std::string> devices = storage.ReadDevices(lock);
devices.erase(local_serial);
storage.WriteDevices(lock, devices);
}
return 0;
}
static int Disconnect() {
ConnectedDevicesStorage storage;
{
FileLock lock = storage.Lock();
storage.Clear(lock);
}
return 0;
}
static int Disconnect(int argc, char* argv[]) {
switch (argc) {
case 0: {
return Disconnect();
}
case 1: {
return Disconnect(*argv);
}
default:
LOG(FATAL) << "disconnect command can receive only 0 or 1 arguments. Usage:"
<< std::endl
<< "fastboot disconnect # disconnect all devices" << std::endl
<< "fastboot disconnect [tcp:|udp:host:port] # disconnect device";
}
return 0;
}
static void list_devices() {
// We don't actually open a USB device here,
// just getting our callback called so we can
// list all the connected devices.
usb_open(list_devices_callback);
NetworkDeviceConnected(/* print */ true);
}
void syntax_error(const char* fmt, ...) {
fprintf(stderr, "fastboot: usage: ");
va_list ap;
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
fprintf(stderr, "\n");
exit(1);
}
static int show_help() {
// clang-format off
fprintf(stdout,
// 1 2 3 4 5 6 7 8
// 12345678901234567890123456789012345678901234567890123456789012345678901234567890
"usage: fastboot [OPTION...] COMMAND...\n"
"\n"
"flashing:\n"
" update ZIP Flash all partitions from an update.zip package.\n"
" flashall Flash all partitions from $ANDROID_PRODUCT_OUT.\n"
" On A/B devices, flashed slot is set as active.\n"
" Secondary images may be flashed to inactive slot.\n"
" flash PARTITION [FILENAME] Flash given partition, using the image from\n"
" $ANDROID_PRODUCT_OUT if no filename is given.\n"
"\n"
"basics:\n"
" devices [-l] List devices in bootloader (-l: with device paths).\n"
" getvar NAME Display given bootloader variable.\n"
" reboot [bootloader] Reboot device.\n"
"\n"
"locking/unlocking:\n"
" flashing lock|unlock Lock/unlock partitions for flashing\n"
" flashing lock_critical|unlock_critical\n"
" Lock/unlock 'critical' bootloader partitions.\n"
" flashing get_unlock_ability\n"
" Check whether unlocking is allowed (1) or not(0).\n"
"\n"
"advanced:\n"
" erase PARTITION Erase a flash partition.\n"
" format[:FS_TYPE[:SIZE]] PARTITION\n"
" Format a flash partition.\n"
" set_active SLOT Set the active slot.\n"
" oem [COMMAND...] Execute OEM-specific command.\n"
" gsi wipe|disable Wipe or disable a GSI installation (fastbootd only).\n"
" wipe-super [SUPER_EMPTY] Wipe the super partition. This will reset it to\n"
" contain an empty set of default dynamic partitions.\n"
" create-logical-partition NAME SIZE\n"
" Create a logical partition with the given name and\n"
" size, in the super partition.\n"
" delete-logical-partition NAME\n"
" Delete a logical partition with the given name.\n"
" resize-logical-partition NAME SIZE\n"
" Change the size of the named logical partition.\n"
" snapshot-update cancel On devices that support snapshot-based updates, cancel\n"
" an in-progress update. This may make the device\n"
" unbootable until it is reflashed.\n"
" snapshot-update merge On devices that support snapshot-based updates, finish\n"
" an in-progress update if it is in the \"merging\"\n"
" phase.\n"
" fetch PARTITION OUT_FILE Fetch a partition image from the device."
"\n"
"boot image:\n"
" boot KERNEL [RAMDISK [SECOND]]\n"
" Download and boot kernel from RAM.\n"
" flash:raw PARTITION KERNEL [RAMDISK [SECOND]]\n"
" Create boot image and flash it.\n"
" --dtb DTB Specify path to DTB for boot image header version 2.\n"
" --cmdline CMDLINE Override kernel command line.\n"
" --base ADDRESS Set kernel base address (default: 0x10000000).\n"
" --kernel-offset Set kernel offset (default: 0x00008000).\n"
" --ramdisk-offset Set ramdisk offset (default: 0x01000000).\n"
" --tags-offset Set tags offset (default: 0x00000100).\n"
" --dtb-offset Set dtb offset (default: 0x01100000).\n"
" --page-size BYTES Set flash page size (default: 2048).\n"
" --header-version VERSION Set boot image header version.\n"
" --os-version MAJOR[.MINOR[.PATCH]]\n"
" Set boot image OS version (default: 0.0.0).\n"
" --os-patch-level YYYY-MM-DD\n"
" Set boot image OS security patch level.\n"
// TODO: still missing: `second_addr`, `name`, `id`, `recovery_dtbo_*`.
"\n"
// TODO: what device(s) used this? is there any documentation?
//" continue Continue with autoboot.\n"
//"\n"
"Android Things:\n"
" stage IN_FILE Sends given file to stage for the next command.\n"
" get_staged OUT_FILE Writes data staged by the last command to a file.\n"
"\n"
"options:\n"
" -w Wipe userdata.\n"
" -s SERIAL Specify a USB device.\n"
" -s tcp|udp:HOST[:PORT] Specify a network device.\n"
" -S SIZE[K|M|G] Break into sparse files no larger than SIZE.\n"
" --force Force a flash operation that may be unsafe.\n"
" --slot SLOT Use SLOT; 'all' for both slots, 'other' for\n"
" non-current slot (default: current active slot).\n"
" --set-active[=SLOT] Sets the active slot before rebooting.\n"
" --skip-secondary Don't flash secondary slots in flashall/update.\n"
" --skip-reboot Don't reboot device after flashing.\n"
" --disable-verity Sets disable-verity when flashing vbmeta.\n"
" --disable-verification Sets disable-verification when flashing vbmeta.\n"
" --disable-super-optimization\n"
" Disables optimizations on flashing super partition.\n"
" --disable-fastboot-info Will collects tasks from image list rather than $OUT/fastboot-info.txt.\n"
" --fs-options=OPTION[,OPTION]\n"
" Enable filesystem features. OPTION supports casefold, projid, compress\n"
// TODO: remove --unbuffered?
" --unbuffered Don't buffer input or output.\n"
" --verbose, -v Verbose output.\n"
" --version Display version.\n"
" --help, -h Show this message.\n"
);
// clang-format on
return 0;
}
static std::vector<char> LoadBootableImage(const std::string& kernel, const std::string& ramdisk,
const std::string& second_stage) {
std::vector<char> kernel_data;
if (!ReadFileToVector(kernel, &kernel_data)) {
die("cannot load '%s': %s", kernel.c_str(), strerror(errno));
}
// Is this actually a boot image?
if (kernel_data.size() < sizeof(boot_img_hdr_v3)) {
die("cannot load '%s': too short", kernel.c_str());
}
if (!memcmp(kernel_data.data(), BOOT_MAGIC, BOOT_MAGIC_SIZE)) {
if (!g_cmdline.empty()) {
bootimg_set_cmdline(reinterpret_cast<boot_img_hdr_v2*>(kernel_data.data()), g_cmdline);
}
if (!ramdisk.empty()) die("cannot boot a boot.img *and* ramdisk");
return kernel_data;
}
std::vector<char> ramdisk_data;
if (!ramdisk.empty()) {
if (!ReadFileToVector(ramdisk, &ramdisk_data)) {
die("cannot load '%s': %s", ramdisk.c_str(), strerror(errno));
}
}
std::vector<char> second_stage_data;
if (!second_stage.empty()) {
if (!ReadFileToVector(second_stage, &second_stage_data)) {
die("cannot load '%s': %s", second_stage.c_str(), strerror(errno));
}
}
std::vector<char> dtb_data;
if (!g_dtb_path.empty()) {
if (g_boot_img_hdr.header_version != 2) {
die("Argument dtb not supported for boot image header version %d\n",
g_boot_img_hdr.header_version);
}
if (!ReadFileToVector(g_dtb_path, &dtb_data)) {
die("cannot load '%s': %s", g_dtb_path.c_str(), strerror(errno));
}
}
fprintf(stderr, "creating boot image...\n");
std::vector<char> out;
mkbootimg(kernel_data, ramdisk_data, second_stage_data, dtb_data, g_base_addr, g_boot_img_hdr,
&out);
if (!g_cmdline.empty()) {
bootimg_set_cmdline(reinterpret_cast<boot_img_hdr_v2*>(out.data()), g_cmdline);
}
fprintf(stderr, "creating boot image - %zu bytes\n", out.size());
return out;
}
static bool UnzipToMemory(ZipArchiveHandle zip, const std::string& entry_name,
std::vector<char>* out) {
ZipEntry64 zip_entry;
if (FindEntry(zip, entry_name, &zip_entry) != 0) {
fprintf(stderr, "archive does not contain '%s'\n", entry_name.c_str());
return false;
}
if (zip_entry.uncompressed_length > std::numeric_limits<size_t>::max()) {
die("entry '%s' is too large: %" PRIu64, entry_name.c_str(), zip_entry.uncompressed_length);
}
out->resize(zip_entry.uncompressed_length);
fprintf(stderr, "extracting %s (%zu MB) to RAM...\n", entry_name.c_str(),
out->size() / 1024 / 1024);
int error =
ExtractToMemory(zip, &zip_entry, reinterpret_cast<uint8_t*>(out->data()), out->size());
if (error != 0) die("failed to extract '%s': %s", entry_name.c_str(), ErrorCodeString(error));
return true;
}
#if defined(_WIN32)
// TODO: move this to somewhere it can be shared.
#include <windows.h>
// Windows' tmpfile(3) requires administrator rights because
// it creates temporary files in the root directory.
static FILE* win32_tmpfile() {
char temp_path[PATH_MAX];
DWORD nchars = GetTempPath(sizeof(temp_path), temp_path);
if (nchars == 0 || nchars >= sizeof(temp_path)) {
die("GetTempPath failed, error %ld", GetLastError());
}
char filename[PATH_MAX];
if (GetTempFileName(temp_path, "fastboot", 0, filename) == 0) {
die("GetTempFileName failed, error %ld", GetLastError());
}
return fopen(filename, "w+bTD");
}
#define tmpfile win32_tmpfile
static int make_temporary_fd(const char* /*what*/) {
// TODO: reimplement to avoid leaking a FILE*.
return fileno(tmpfile());
}
#else
static std::string make_temporary_template() {
const char* tmpdir = getenv("TMPDIR");
if (tmpdir == nullptr) tmpdir = P_tmpdir;
return std::string(tmpdir) + "/fastboot_userdata_XXXXXX";
}
static int make_temporary_fd(const char* what) {
std::string path_template(make_temporary_template());
int fd = mkstemp(&path_template[0]);
if (fd == -1) {
die("failed to create temporary file for %s with template %s: %s\n", path_template.c_str(),
what, strerror(errno));
}
unlink(path_template.c_str());
return fd;
}
#endif
static unique_fd UnzipToFile(ZipArchiveHandle zip, const char* entry_name) {
unique_fd fd(make_temporary_fd(entry_name));
ZipEntry64 zip_entry;
if (FindEntry(zip, entry_name, &zip_entry) != 0) {
fprintf(stderr, "archive does not contain '%s'\n", entry_name);
errno = ENOENT;
return unique_fd();
}
fprintf(stderr, "extracting %s (%" PRIu64 " MB) to disk...", entry_name,
zip_entry.uncompressed_length / 1024 / 1024);
double start = now();
int error = ExtractEntryToFile(zip, &zip_entry, fd.get());
if (error != 0) {
die("\nfailed to extract '%s': %s", entry_name, ErrorCodeString(error));
}
if (lseek(fd.get(), 0, SEEK_SET) != 0) {
die("\nlseek on extracted file '%s' failed: %s", entry_name, strerror(errno));
}
fprintf(stderr, " took %.3fs\n", now() - start);
return fd;
}
static bool CheckRequirement(const std::string& cur_product, const std::string& var,
const std::string& product, bool invert,
const std::vector<std::string>& options) {
Status("Checking '" + var + "'");
double start = now();
if (!product.empty()) {
if (product != cur_product) {
double split = now();
fprintf(stderr, "IGNORE, product is %s required only for %s [%7.3fs]\n",
cur_product.c_str(), product.c_str(), (split - start));
return true;
}
}
std::string var_value;
if (fb->GetVar(var, &var_value) != fastboot::SUCCESS) {
fprintf(stderr, "FAILED\n\n");
fprintf(stderr, "Could not getvar for '%s' (%s)\n\n", var.c_str(), fb->Error().c_str());
return false;
}
bool match = false;
for (const auto& option : options) {
if (option == var_value ||
(option.back() == '*' &&
!var_value.compare(0, option.length() - 1, option, 0, option.length() - 1))) {
match = true;
break;
}
}
if (invert) {
match = !match;
}
if (match) {
double split = now();
fprintf(stderr, "OKAY [%7.3fs]\n", (split - start));
return true;
}
fprintf(stderr, "FAILED\n\n");
fprintf(stderr, "Device %s is '%s'.\n", var.c_str(), var_value.c_str());
fprintf(stderr, "Update %s '%s'", invert ? "rejects" : "requires", options[0].c_str());
for (auto it = std::next(options.begin()); it != options.end(); ++it) {
fprintf(stderr, " or '%s'", it->c_str());
}
fprintf(stderr, ".\n\n");
return false;
}
bool ParseRequirementLine(const std::string& line, std::string* name, std::string* product,
bool* invert, std::vector<std::string>* options) {
// "require product=alpha|beta|gamma"
// "require version-bootloader=1234"
// "require-for-product:gamma version-bootloader=istanbul|constantinople"
// "require partition-exists=vendor"
*product = "";
*invert = false;
auto require_reject_regex = std::regex{"(require\\s+|reject\\s+)?\\s*(\\S+)\\s*=\\s*(.*)"};
auto require_product_regex =
std::regex{"require-for-product:\\s*(\\S+)\\s+(\\S+)\\s*=\\s*(.*)"};
std::smatch match_results;
if (std::regex_match(line, match_results, require_reject_regex)) {
*invert = Trim(match_results[1]) == "reject";
} else if (std::regex_match(line, match_results, require_product_regex)) {
*product = match_results[1];
} else {
return false;
}
*name = match_results[2];
// Work around an unfortunate name mismatch.
if (*name == "board") {
*name = "product";
}
auto raw_options = Split(match_results[3], "|");
for (const auto& option : raw_options) {
auto trimmed_option = Trim(option);
options->emplace_back(trimmed_option);
}
return true;
}
// "require partition-exists=x" is a special case, added because of the trouble we had when
// Pixel 2 shipped with new partitions and users used old versions of fastboot to flash them,
// missing out new partitions. A device with new partitions can use "partition-exists" to
// override the fields `optional_if_no_image` in the `images` array.
static void HandlePartitionExists(const std::vector<std::string>& options) {
const std::string& partition_name = options[0];
std::string has_slot;
if (fb->GetVar("has-slot:" + partition_name, &has_slot) != fastboot::SUCCESS ||
(has_slot != "yes" && has_slot != "no")) {
die("device doesn't have required partition %s!", partition_name.c_str());
}
bool known_partition = false;
for (size_t i = 0; i < images.size(); ++i) {
if (!images[i].nickname.empty() && images[i].nickname == partition_name) {
images[i].optional_if_no_image = false;
known_partition = true;
}
}
if (!known_partition) {
die("device requires partition %s which is not known to this version of fastboot",
partition_name.c_str());
}
}
static void CheckRequirements(const std::string& data, bool force_flash) {
std::string cur_product;
if (fb->GetVar("product", &cur_product) != fastboot::SUCCESS) {
fprintf(stderr, "getvar:product FAILED (%s)\n", fb->Error().c_str());
}
auto lines = Split(data, "\n");
for (const auto& line : lines) {
if (line.empty()) {
continue;
}
std::string name;
std::string product;
bool invert;
std::vector<std::string> options;
if (!ParseRequirementLine(line, &name, &product, &invert, &options)) {
fprintf(stderr, "android-info.txt syntax error: %s\n", line.c_str());
continue;
}
if (name == "partition-exists") {
HandlePartitionExists(options);
} else {
bool met = CheckRequirement(cur_product, name, product, invert, options);
if (!met) {
if (!force_flash) {
die("requirements not met!");
} else {
fprintf(stderr, "requirements not met! but proceeding due to --force\n");
}
}
}
}
}
static void DisplayVarOrError(const std::string& label, const std::string& var) {
std::string value;
if (fb->GetVar(var, &value) != fastboot::SUCCESS) {
Status("getvar:" + var);
fprintf(stderr, "FAILED (%s)\n", fb->Error().c_str());
return;
}
fprintf(stderr, "%s: %s\n", label.c_str(), value.c_str());
}
static void DumpInfo() {
fprintf(stderr, "--------------------------------------------\n");
DisplayVarOrError("Bootloader Version...", "version-bootloader");
DisplayVarOrError("Baseband Version.....", "version-baseband");
DisplayVarOrError("Serial Number........", "serialno");
fprintf(stderr, "--------------------------------------------\n");
}
std::vector<SparsePtr> resparse_file(sparse_file* s, int64_t max_size) {
if (max_size <= 0 || max_size > std::numeric_limits<uint32_t>::max()) {
die("invalid max size %" PRId64, max_size);
}
const int files = sparse_file_resparse(s, max_size, nullptr, 0);
if (files < 0) die("Failed to compute resparse boundaries");
auto temp = std::make_unique<sparse_file*[]>(files);
const int rv = sparse_file_resparse(s, max_size, temp.get(), files);
if (rv < 0) die("Failed to resparse");
std::vector<SparsePtr> out_s;
for (int i = 0; i < files; i++) {
out_s.emplace_back(temp[i], sparse_file_destroy);
}
return out_s;
}
static std::vector<SparsePtr> load_sparse_files(int fd, int64_t max_size) {
SparsePtr s(sparse_file_import_auto(fd, false, true), sparse_file_destroy);
if (!s) die("cannot sparse read file");
return resparse_file(s.get(), max_size);
}
static uint64_t get_uint_var(const char* var_name, fastboot::IFastBootDriver* fb) {
std::string value_str;
if (fb->GetVar(var_name, &value_str) != fastboot::SUCCESS || value_str.empty()) {
verbose("target didn't report %s", var_name);
return 0;
}
// Some bootloaders (angler, for example) send spurious whitespace too.
value_str = android::base::Trim(value_str);
uint64_t value;
if (!android::base::ParseUint(value_str, &value)) {
fprintf(stderr, "couldn't parse %s '%s'\n", var_name, value_str.c_str());
return 0;
}
if (value > 0) verbose("target reported %s of %" PRId64 " bytes", var_name, value);
return value;
}
int64_t get_sparse_limit(int64_t size, const FlashingPlan* fp) {
int64_t limit = int64_t(fp->sparse_limit);
if (limit == 0) {
// Unlimited, so see what the target device's limit is.
// TODO: shouldn't we apply this limit even if you've used -S?
if (target_sparse_limit == -1) {
target_sparse_limit = static_cast<int64_t>(get_uint_var("max-download-size", fp->fb));
}
if (target_sparse_limit > 0) {
limit = target_sparse_limit;
} else {
return 0;
}
}
if (size > limit) {
return std::min(limit, RESPARSE_LIMIT);
}
return 0;
}
static bool load_buf_fd(unique_fd fd, struct fastboot_buffer* buf, const FlashingPlan* fp) {
int64_t sz = get_file_size(fd);
if (sz == -1) {
return false;
}
if (sparse_file* s = sparse_file_import(fd.get(), false, false)) {
buf->image_size = sparse_file_len(s, false, false);
if (buf->image_size < 0) {
LOG(ERROR) << "Could not compute length of sparse file";
return false;
}
sparse_file_destroy(s);
} else {
buf->image_size = sz;
}
lseek(fd.get(), 0, SEEK_SET);
int64_t limit = get_sparse_limit(sz, fp);
buf->fd = std::move(fd);
if (limit) {
buf->files = load_sparse_files(buf->fd.get(), limit);
if (buf->files.empty()) {
return false;
}
buf->type = FB_BUFFER_SPARSE;
} else {
buf->type = FB_BUFFER_FD;
buf->sz = sz;
}
return true;
}
static bool load_buf(const char* fname, struct fastboot_buffer* buf, const FlashingPlan* fp) {
unique_fd fd(TEMP_FAILURE_RETRY(open(fname, O_RDONLY | O_BINARY)));
if (fd == -1) {
return false;
}
struct stat s;
if (fstat(fd.get(), &s)) {
return false;
}
if (!S_ISREG(s.st_mode)) {
errno = S_ISDIR(s.st_mode) ? EISDIR : EINVAL;
return false;
}
return load_buf_fd(std::move(fd), buf, fp);
}
static void rewrite_vbmeta_buffer(struct fastboot_buffer* buf, bool vbmeta_in_boot) {
// Buffer needs to be at least the size of the VBMeta struct which
// is 256 bytes.
if (buf->sz < 256) {
return;
}
std::string data;
if (!android::base::ReadFdToString(buf->fd, &data)) {
die("Failed reading from vbmeta");
}
uint64_t vbmeta_offset = 0;
if (vbmeta_in_boot) {
// Tries to locate top-level vbmeta from boot.img footer.
uint64_t footer_offset = buf->sz - AVB_FOOTER_SIZE;
if (0 != data.compare(footer_offset, AVB_FOOTER_MAGIC_LEN, AVB_FOOTER_MAGIC)) {
die("Failed to find AVB_FOOTER at offset: %" PRId64 ", is BOARD_AVB_ENABLE true?",
footer_offset);
}
const AvbFooter* footer = reinterpret_cast<const AvbFooter*>(data.c_str() + footer_offset);
vbmeta_offset = be64toh(footer->vbmeta_offset);
}
// Ensures there is AVB_MAGIC at vbmeta_offset.
if (0 != data.compare(vbmeta_offset, AVB_MAGIC_LEN, AVB_MAGIC)) {
die("Failed to find AVB_MAGIC at offset: %" PRId64, vbmeta_offset);
}
fprintf(stderr, "Rewriting vbmeta struct at offset: %" PRId64 "\n", vbmeta_offset);
// There's a 32-bit big endian |flags| field at offset 120 where
// bit 0 corresponds to disable-verity and bit 1 corresponds to
// disable-verification.
//
// See external/avb/libavb/avb_vbmeta_image.h for the layout of
// the VBMeta struct.
uint64_t flags_offset = 123 + vbmeta_offset;
if (g_disable_verity) {
data[flags_offset] |= 0x01;
}
if (g_disable_verification) {
data[flags_offset] |= 0x02;
}
unique_fd fd(make_temporary_fd("vbmeta rewriting"));
if (!android::base::WriteStringToFd(data, fd)) {
die("Failed writing to modified vbmeta");
}
buf->fd = std::move(fd);
lseek(buf->fd.get(), 0, SEEK_SET);
}
static bool has_vbmeta_partition() {
std::string partition_type;
return fb->GetVar("partition-type:vbmeta", &partition_type) == fastboot::SUCCESS ||
fb->GetVar("partition-type:vbmeta_a", &partition_type) == fastboot::SUCCESS ||
fb->GetVar("partition-type:vbmeta_b", &partition_type) == fastboot::SUCCESS;
}
static bool is_vbmeta_partition(const std::string& partition) {
return android::base::EndsWith(partition, "vbmeta") ||
android::base::EndsWith(partition, "vbmeta_a") ||
android::base::EndsWith(partition, "vbmeta_b");
}
// Note: this only works in userspace fastboot. In the bootloader, use
// should_flash_in_userspace().
bool is_logical(const std::string& partition) {
std::string value;
return fb->GetVar("is-logical:" + partition, &value) == fastboot::SUCCESS && value == "yes";
}
static uint64_t get_partition_size(const std::string& partition) {
std::string partition_size_str;
if (fb->GetVar("partition-size:" + partition, &partition_size_str) != fastboot::SUCCESS) {
if (!is_logical(partition)) {
return 0;
}
die("cannot get partition size for %s", partition.c_str());
}
partition_size_str = fb_fix_numeric_var(partition_size_str);
uint64_t partition_size;
if (!android::base::ParseUint(partition_size_str, &partition_size)) {
if (!is_logical(partition)) {
return 0;
}
die("Couldn't parse partition size '%s'.", partition_size_str.c_str());
}
return partition_size;
}
static void copy_avb_footer(const std::string& partition, struct fastboot_buffer* buf) {
if (buf->sz < AVB_FOOTER_SIZE || is_logical(partition) ||
should_flash_in_userspace(partition)) {
return;
}
// If overflows and negative, it should be < buf->sz.
int64_t partition_size = static_cast<int64_t>(get_partition_size(partition));
if (partition_size == buf->sz) {
return;
}
// Some device bootloaders might not implement `fastboot getvar partition-size:boot[_a|_b]`.
// In this case, partition_size will be zero.
if (partition_size < buf->sz) {
fprintf(stderr,
"Warning: skip copying %s image avb footer"
" (%s partition size: %" PRId64 ", %s image size: %" PRId64 ").\n",
partition.c_str(), partition.c_str(), partition_size, partition.c_str(), buf->sz);
return;
}
// IMPORTANT: after the following read, we need to reset buf->fd before return (if not die).
// Because buf->fd will still be used afterwards.
std::string data;
if (!android::base::ReadFdToString(buf->fd, &data)) {
die("Failed reading from %s", partition.c_str());
}
uint64_t footer_offset = buf->sz - AVB_FOOTER_SIZE;
if (0 != data.compare(footer_offset, AVB_FOOTER_MAGIC_LEN, AVB_FOOTER_MAGIC)) {
lseek(buf->fd.get(), 0, SEEK_SET); // IMPORTANT: resets buf->fd before return.
return;
}
const std::string tmp_fd_template = partition + " rewriting";
unique_fd fd(make_temporary_fd(tmp_fd_template.c_str()));
if (!android::base::WriteStringToFd(data, fd)) {
die("Failed writing to modified %s", partition.c_str());
}
lseek(fd.get(), partition_size - AVB_FOOTER_SIZE, SEEK_SET);
if (!android::base::WriteStringToFd(data.substr(footer_offset), fd)) {
die("Failed copying AVB footer in %s", partition.c_str());
}
buf->fd = std::move(fd);
buf->sz = partition_size;
lseek(buf->fd.get(), 0, SEEK_SET);
}
void flash_partition_files(const std::string& partition, const std::vector<SparsePtr>& files) {
for (size_t i = 0; i < files.size(); i++) {
sparse_file* s = files[i].get();
int64_t sz = sparse_file_len(s, true, false);
if (sz < 0) {
LOG(FATAL) << "Could not compute length of sparse image for " << partition;
}
fb->FlashPartition(partition, s, sz, i + 1, files.size());
}
}
static void flash_buf(const std::string& partition, struct fastboot_buffer* buf,
const bool apply_vbmeta) {
copy_avb_footer(partition, buf);
// Rewrite vbmeta if that's what we're flashing and modification has been requested.
if (g_disable_verity || g_disable_verification) {
// The vbmeta partition might have additional prefix if running in virtual machine
// e.g., guest_vbmeta_a.
if (apply_vbmeta) {
rewrite_vbmeta_buffer(buf, false /* vbmeta_in_boot */);
} else if (!has_vbmeta_partition() &&
(partition == "boot" || partition == "boot_a" || partition == "boot_b")) {
rewrite_vbmeta_buffer(buf, true /* vbmeta_in_boot */);
}
}
switch (buf->type) {
case FB_BUFFER_SPARSE: {
flash_partition_files(partition, buf->files);
break;
}
case FB_BUFFER_FD:
fb->FlashPartition(partition, buf->fd, buf->sz);
break;
default:
die("unknown buffer type: %d", buf->type);
}
}
std::string get_current_slot() {
std::string current_slot;
if (fb->GetVar("current-slot", &current_slot) != fastboot::SUCCESS) return "";
if (current_slot[0] == '_') current_slot.erase(0, 1);
return current_slot;
}
static int get_slot_count(fastboot::IFastBootDriver* fb) {
std::string var;
int count = 0;
if (fb->GetVar("slot-count", &var) != fastboot::SUCCESS ||
!android::base::ParseInt(var, &count)) {
return 0;
}
return count;
}
bool supports_AB(fastboot::IFastBootDriver* fb) {
return get_slot_count(fb) >= 2;
}
// Given a current slot, this returns what the 'other' slot is.
static std::string get_other_slot(const std::string& current_slot, int count) {
if (count == 0) return "";
char next = (current_slot[0] - 'a' + 1) % count + 'a';
return std::string(1, next);
}
static std::string get_other_slot(const std::string& current_slot) {
return get_other_slot(current_slot, get_slot_count(fb));
}
static std::string get_other_slot(int count) {
return get_other_slot(get_current_slot(), count);
}
static std::string get_other_slot() {
return get_other_slot(get_current_slot(), get_slot_count(fb));
}
static std::string verify_slot(const std::string& slot_name, bool allow_all) {
std::string slot = slot_name;
if (slot == "all") {
if (allow_all) {
return "all";
} else {
int count = get_slot_count(fb);
if (count > 0) {
return "a";
} else {
die("No known slots");
}
}
}
int count = get_slot_count(fb);
if (count == 0) die("Device does not support slots");
if (slot == "other") {
std::string other = get_other_slot(count);
if (other == "") {
die("No known slots");
}
return other;
}
if (slot.size() == 1 && (slot[0] - 'a' >= 0 && slot[0] - 'a' < count)) return slot;
fprintf(stderr, "Slot %s does not exist. supported slots are:\n", slot.c_str());
for (int i = 0; i < count; i++) {
fprintf(stderr, "%c\n", (char)(i + 'a'));
}
exit(1);
}
static std::string verify_slot(const std::string& slot) {
return verify_slot(slot, true);
}
static void do_for_partition(const std::string& part, const std::string& slot,
const std::function<void(const std::string&)>& func, bool force_slot) {
std::string has_slot;
std::string current_slot;
// |part| can be vendor_boot:default. Append slot to the first token.
auto part_tokens = android::base::Split(part, ":");
if (fb->GetVar("has-slot:" + part_tokens[0], &has_slot) != fastboot::SUCCESS) {
/* If has-slot is not supported, the answer is no. */
has_slot = "no";
}
if (has_slot == "yes") {
if (slot == "") {
current_slot = get_current_slot();
if (current_slot == "") {
die("Failed to identify current slot");
}
part_tokens[0] += "_" + current_slot;
} else {
part_tokens[0] += "_" + slot;
}
func(android::base::Join(part_tokens, ":"));
} else {
if (force_slot && slot != "") {
fprintf(stderr, "Warning: %s does not support slots, and slot %s was requested.\n",
part_tokens[0].c_str(), slot.c_str());
}
func(part);
}
}
/* This function will find the real partition name given a base name, and a slot. If slot is NULL or
* empty, it will use the current slot. If slot is "all", it will return a list of all possible
* partition names. If force_slot is true, it will fail if a slot is specified, and the given
* partition does not support slots.
*/
void do_for_partitions(const std::string& part, const std::string& slot,
const std::function<void(const std::string&)>& func, bool force_slot) {
std::string has_slot;
// |part| can be vendor_boot:default. Query has-slot on the first token only.
auto part_tokens = android::base::Split(part, ":");
if (slot == "all") {
if (fb->GetVar("has-slot:" + part_tokens[0], &has_slot) != fastboot::SUCCESS) {
die("Could not check if partition %s has slot %s", part_tokens[0].c_str(),
slot.c_str());
}
if (has_slot == "yes") {
for (int i = 0; i < get_slot_count(fb); i++) {
do_for_partition(part, std::string(1, (char)(i + 'a')), func, force_slot);
}
} else {
do_for_partition(part, "", func, force_slot);
}
} else {
do_for_partition(part, slot, func, force_slot);
}
}
bool is_retrofit_device(const ImageSource* source) {
// Does this device use dynamic partitions at all?
std::vector<char> contents;
if (!source->ReadFile("super_empty.img", &contents)) {
return false;
}
auto metadata = android::fs_mgr::ReadFromImageBlob(contents.data(), contents.size());
for (const auto& partition : metadata->partitions) {
if (partition.attributes & LP_PARTITION_ATTR_SLOT_SUFFIXED) {
return true;
}
}
return false;
}
// Fetch a partition from the device to a given fd. This is a wrapper over FetchToFd to fetch
// the full image.
static uint64_t fetch_partition(const std::string& partition, borrowed_fd fd,
fastboot::IFastBootDriver* fb) {
uint64_t fetch_size = get_uint_var(FB_VAR_MAX_FETCH_SIZE, fb);
if (fetch_size == 0) {
die("Unable to get %s. Device does not support fetch command.", FB_VAR_MAX_FETCH_SIZE);
}
uint64_t partition_size = get_partition_size(partition);
if (partition_size <= 0) {
die("Invalid partition size for partition %s: %" PRId64, partition.c_str(), partition_size);
}
uint64_t offset = 0;
while (offset < partition_size) {
uint64_t chunk_size = std::min(fetch_size, partition_size - offset);
if (fb->FetchToFd(partition, fd, offset, chunk_size) != fastboot::RetCode::SUCCESS) {
die("Unable to fetch %s (offset=%" PRIx64 ", size=%" PRIx64 ")", partition.c_str(),
offset, chunk_size);
}
offset += chunk_size;
}
return partition_size;
}
static void do_fetch(const std::string& partition, const std::string& slot_override,
const std::string& outfile, fastboot::IFastBootDriver* fb) {
unique_fd fd(TEMP_FAILURE_RETRY(
open(outfile.c_str(), O_WRONLY | O_CREAT | O_TRUNC | O_CLOEXEC | O_BINARY, 0644)));
auto fetch = std::bind(fetch_partition, _1, borrowed_fd(fd), fb);
do_for_partitions(partition, slot_override, fetch, false /* force slot */);
}
// Return immediately if not flashing a vendor boot image. If flashing a vendor boot image,
// repack vendor_boot image with an updated ramdisk. After execution, buf is set
// to the new image to flash, and return value is the real partition name to flash.
static std::string repack_ramdisk(const char* pname, struct fastboot_buffer* buf,
fastboot::IFastBootDriver* fb) {
std::string_view pname_sv{pname};
if (!android::base::StartsWith(pname_sv, "vendor_boot:") &&
!android::base::StartsWith(pname_sv, "vendor_boot_a:") &&
!android::base::StartsWith(pname_sv, "vendor_boot_b:")) {
return std::string(pname_sv);
}
if (buf->type != FB_BUFFER_FD) {
die("Flashing sparse vendor ramdisk image is not supported.");
}
if (buf->sz <= 0) {
die("repack_ramdisk() sees negative size: %" PRId64, buf->sz);
}
std::string partition(pname_sv.substr(0, pname_sv.find(':')));
std::string ramdisk(pname_sv.substr(pname_sv.find(':') + 1));
unique_fd vendor_boot(make_temporary_fd("vendor boot repack"));
uint64_t vendor_boot_size = fetch_partition(partition, vendor_boot, fb);
auto repack_res = replace_vendor_ramdisk(vendor_boot, vendor_boot_size, ramdisk, buf->fd,
static_cast<uint64_t>(buf->sz));
if (!repack_res.ok()) {
die("%s", repack_res.error().message().c_str());
}
buf->fd = std::move(vendor_boot);
buf->sz = vendor_boot_size;
buf->image_size = vendor_boot_size;
return partition;
}
void do_flash(const char* pname, const char* fname, const bool apply_vbmeta,
const FlashingPlan* fp) {
if (!fp) {
die("do flash was called without a valid flashing plan");
}
verbose("Do flash %s %s", pname, fname);
struct fastboot_buffer buf;
if (fp->source) {
unique_fd fd = fp->source->OpenFile(fname);
if (fd < 0 || !load_buf_fd(std::move(fd), &buf, fp)) {
die("could not load '%s': %s", fname, strerror(errno));
}
std::vector<char> signature_data;
std::string file_string(fname);
if (fp->source->ReadFile(file_string.substr(0, file_string.find('.')) + ".sig",
&signature_data)) {
fb->Download("signature", signature_data);
fb->RawCommand("signature", "installing signature");
}
} else if (!load_buf(fname, &buf, fp)) {
die("cannot load '%s': %s", fname, strerror(errno));
}
if (is_logical(pname)) {
fb->ResizePartition(pname, std::to_string(buf.image_size));
}
std::string flash_pname = repack_ramdisk(pname, &buf, fp->fb);
flash_buf(flash_pname, &buf, apply_vbmeta);
}
// Sets slot_override as the active slot. If slot_override is blank,
// set current slot as active instead. This clears slot-unbootable.
static void set_active(const std::string& slot_override) {
if (!supports_AB(fb)) return;
if (slot_override != "") {
fb->SetActive(slot_override);
} else {
std::string current_slot = get_current_slot();
if (current_slot != "") {
fb->SetActive(current_slot);
}
}
}
bool is_userspace_fastboot() {
std::string value;
return fb->GetVar("is-userspace", &value) == fastboot::SUCCESS && value == "yes";
}
void reboot_to_userspace_fastboot() {
fb->RebootTo("fastboot");
fb->set_transport(nullptr);
// Give the current connection time to close.
std::this_thread::sleep_for(std::chrono::seconds(1));
fb->set_transport(open_device());
if (!is_userspace_fastboot()) {
die("Failed to boot into userspace fastboot; one or more components might be unbootable.");
}
// Reset target_sparse_limit after reboot to userspace fastboot. Max
// download sizes may differ in bootloader and fastbootd.
target_sparse_limit = -1;
}
static void CancelSnapshotIfNeeded() {
std::string merge_status = "none";
if (fb->GetVar(FB_VAR_SNAPSHOT_UPDATE_STATUS, &merge_status) == fastboot::SUCCESS &&
!merge_status.empty() && merge_status != "none") {
fb->SnapshotUpdateCommand("cancel");
}
}
std::string GetPartitionName(const ImageEntry& entry, const std::string& current_slot) {
auto slot = entry.second;
if (slot.empty()) {
slot = current_slot;
}
if (slot.empty()) {
return entry.first->part_name;
}
if (slot == "all") {
LOG(FATAL) << "Cannot retrieve a singular name when using all slots";
}
return entry.first->part_name + "_" + slot;
}
std::unique_ptr<FlashTask> ParseFlashCommand(const FlashingPlan* fp,
const std::vector<std::string>& parts) {
bool apply_vbmeta = false;
std::string slot = fp->slot_override;
std::string partition;
std::string img_name;
for (auto& part : parts) {
if (part == "--apply-vbmeta") {
apply_vbmeta = true;
} else if (part == "--slot-other") {
slot = fp->secondary_slot;
} else if (partition.empty()) {
partition = part;
} else if (img_name.empty()) {
img_name = part;
} else {
LOG(ERROR) << "unknown argument" << part
<< " in fastboot-info.txt. parts: " << android::base::Join(parts, " ");
return nullptr;
}
}
if (partition.empty()) {
LOG(ERROR) << "partition name not found when parsing fastboot-info.txt. parts: "
<< android::base::Join(parts, " ");
return nullptr;
}
if (img_name.empty()) {
img_name = partition + ".img";
}
return std::make_unique<FlashTask>(slot, partition, img_name, apply_vbmeta, fp);
}
std::unique_ptr<RebootTask> ParseRebootCommand(const FlashingPlan* fp,
const std::vector<std::string>& parts) {
if (parts.empty()) return std::make_unique<RebootTask>(fp);
if (parts.size() > 1) {
LOG(ERROR) << "unknown arguments in reboot {target} in fastboot-info.txt: "
<< android::base::Join(parts, " ");
return nullptr;
}
return std::make_unique<RebootTask>(fp, parts[0]);
}
std::unique_ptr<WipeTask> ParseWipeCommand(const FlashingPlan* fp,
const std::vector<std::string>& parts) {
if (parts.size() != 1) {
LOG(ERROR) << "unknown arguments in erase {partition} in fastboot-info.txt: "
<< android::base::Join(parts, " ");
return nullptr;
}
return std::make_unique<WipeTask>(fp, parts[0]);
}
std::unique_ptr<Task> ParseFastbootInfoLine(const FlashingPlan* fp,
const std::vector<std::string>& command) {
if (command.size() == 0) {
return nullptr;
}
std::unique_ptr<Task> task;
if (command[0] == "flash") {
task = ParseFlashCommand(fp, std::vector<std::string>{command.begin() + 1, command.end()});
} else if (command[0] == "reboot") {
task = ParseRebootCommand(fp, std::vector<std::string>{command.begin() + 1, command.end()});
} else if (command[0] == "update-super" && command.size() == 1) {
task = std::make_unique<UpdateSuperTask>(fp);
} else if (command[0] == "erase" && command.size() == 2) {
task = ParseWipeCommand(fp, std::vector<std::string>{command.begin() + 1, command.end()});
}
if (!task) {
LOG(ERROR) << "unknown command parsing fastboot-info.txt line: "
<< android::base::Join(command, " ");
}
return task;
}
bool AddResizeTasks(const FlashingPlan* fp, std::vector<std::unique_ptr<Task>>* tasks) {
// expands "resize-partitions" into individual commands : resize {os_partition_1}, resize
// {os_partition_2}, etc.
std::vector<std::unique_ptr<Task>> resize_tasks;
std::optional<size_t> loc;
std::vector<char> contents;
if (!fp->source->ReadFile("super_empty.img", &contents)) {
return false;
}
auto metadata = android::fs_mgr::ReadFromImageBlob(contents.data(), contents.size());
if (!metadata) {
return false;
}
for (size_t i = 0; i < tasks->size(); i++) {
if (auto flash_task = tasks->at(i)->AsFlashTask()) {
if (FlashTask::IsDynamicParitition(fp->source, flash_task)) {
if (!loc) {
loc = i;
}
resize_tasks.emplace_back(std::make_unique<ResizeTask>(
fp, flash_task->GetPartition(), "0", fp->slot_override));
}
}
}
// if no logical partitions (although should never happen since system will always need to be
// flashed)
if (!loc) {
return false;
}
tasks->insert(tasks->begin() + loc.value(), std::make_move_iterator(resize_tasks.begin()),
std::make_move_iterator(resize_tasks.end()));
return true;
}
static bool IsIgnore(const std::vector<std::string>& command) {
if (command.size() == 0 || command[0][0] == '#') {
return true;
}
return false;
}
bool CheckFastbootInfoRequirements(const std::vector<std::string>& command,
uint32_t host_tool_version) {
if (command.size() != 2) {
LOG(ERROR) << "unknown characters in version info in fastboot-info.txt -> "
<< android::base::Join(command, " ");
return false;
}
if (command[0] != "version") {
LOG(ERROR) << "unknown characters in version info in fastboot-info.txt -> "
<< android::base::Join(command, " ");
return false;
}
uint32_t fastboot_info_version;
if (!android::base::ParseUint(command[1], &fastboot_info_version)) {
LOG(ERROR) << "version number contains non-numeric characters in fastboot-info.txt -> "
<< android::base::Join(command, " ");
return false;
}
LOG(VERBOSE) << "Checking 'fastboot-info.txt version'";
if (fastboot_info_version <= host_tool_version) {
return true;
}
LOG(ERROR) << "fasboot-info.txt version: " << command[1]
<< " not compatible with host tool version --> " << host_tool_version;
return false;
}
std::vector<std::unique_ptr<Task>> ParseFastbootInfo(const FlashingPlan* fp,
const std::vector<std::string>& file) {
std::vector<std::unique_ptr<Task>> tasks;
// Get os_partitions that need to be resized
for (auto& text : file) {
std::vector<std::string> command = android::base::Tokenize(text, " ");
if (IsIgnore(command)) {
continue;
}
if (command.size() > 1 && command[0] == "version") {
if (!CheckFastbootInfoRequirements(command, FASTBOOT_INFO_VERSION)) {
return {};
}
continue;
} else if (command.size() >= 2 && command[0] == "if-wipe") {
if (!fp->wants_wipe) {
continue;
}
command.erase(command.begin());
}
auto task = ParseFastbootInfoLine(fp, command);
if (!task) {
return {};
}
tasks.emplace_back(std::move(task));
}
if (auto flash_super_task = OptimizedFlashSuperTask::Initialize(fp, tasks)) {
tasks.emplace_back(std::move(flash_super_task));
} else {
if (!AddResizeTasks(fp, &tasks)) {
LOG(WARNING) << "Failed to add resize tasks";
}
}
return tasks;
}
FlashAllTool::FlashAllTool(FlashingPlan* fp) : fp_(fp) {}
void FlashAllTool::Flash() {
DumpInfo();
CheckRequirements();
// Change the slot first, so we boot into the correct recovery image when
// using fastbootd.
if (fp_->slot_override == "all") {
set_active("a");
} else {
set_active(fp_->slot_override);
}
DetermineSlot();
CancelSnapshotIfNeeded();
tasks_ = CollectTasks();
for (auto& task : tasks_) {
task->Run();
}
return;
}
std::vector<std::unique_ptr<Task>> FlashAllTool::CollectTasks() {
std::vector<std::unique_ptr<Task>> tasks;
if (fp_->should_use_fastboot_info) {
tasks = CollectTasksFromFastbootInfo();
} else {
tasks = CollectTasksFromImageList();
}
if (fp_->exclude_dynamic_partitions) {
auto is_non_static_flash_task = [](const auto& task) -> bool {
if (auto flash_task = task->AsFlashTask()) {
if (!should_flash_in_userspace(flash_task->GetPartitionAndSlot())) {
return false;
}
}
return true;
};
tasks.erase(std::remove_if(tasks.begin(), tasks.end(), is_non_static_flash_task),
tasks.end());
}
return tasks;
}
void FlashAllTool::CheckRequirements() {
std::vector<char> contents;
if (!fp_->source->ReadFile("android-info.txt", &contents)) {
die("could not read android-info.txt");
}
::CheckRequirements({contents.data(), contents.size()}, fp_->force_flash);
}
void FlashAllTool::DetermineSlot() {
if (fp_->slot_override.empty()) {
fp_->current_slot = get_current_slot();
} else {
fp_->current_slot = fp_->slot_override;
}
if (fp_->skip_secondary) {
return;
}
if (fp_->slot_override != "" && fp_->slot_override != "all") {
fp_->secondary_slot = get_other_slot(fp_->slot_override);
} else {
fp_->secondary_slot = get_other_slot();
}
if (fp_->secondary_slot == "") {
if (supports_AB(fb)) {
fprintf(stderr, "Warning: Could not determine slot for secondary images. Ignoring.\n");
}
fp_->skip_secondary = true;
}
}
void FlashAllTool::CollectImages() {
for (size_t i = 0; i < images.size(); ++i) {
std::string slot = fp_->slot_override;
if (images[i].IsSecondary()) {
if (fp_->skip_secondary) {
continue;
}
slot = fp_->secondary_slot;
}
if (images[i].type == ImageType::BootCritical) {
boot_images_.emplace_back(&images[i], slot);
} else if (images[i].type == ImageType::Normal) {
os_images_.emplace_back(&images[i], slot);
}
}
}
std::vector<std::unique_ptr<Task>> FlashAllTool::CollectTasksFromImageList() {
CollectImages();
// First flash boot partitions. We allow this to happen either in userspace
// or in bootloader fastboot.
std::vector<std::unique_ptr<Task>> tasks;
AddFlashTasks(boot_images_, tasks);
// Sync the super partition. This will reboot to userspace fastboot if needed.
tasks.emplace_back(std::make_unique<UpdateSuperTask>(fp_));
for (const auto& [image, slot] : os_images_) {
// Retrofit devices have two super partitions, named super_a and super_b.
// On these devices, secondary slots must be flashed as physical
// partitions (otherwise they would not mount on first boot). To enforce
// this, we delete any logical partitions for the "other" slot.
if (is_retrofit_device(fp_->source)) {
std::string partition_name = image->part_name + "_" + slot;
if (image->IsSecondary() && should_flash_in_userspace(partition_name)) {
tasks.emplace_back(std::make_unique<DeleteTask>(fp_, partition_name));
}
}
}
AddFlashTasks(os_images_, tasks);
if (auto flash_super_task = OptimizedFlashSuperTask::Initialize(fp_, tasks)) {
tasks.emplace_back(std::move(flash_super_task));
} else {
// Resize any logical partition to 0, so each partition is reset to 0
// extents, and will achieve more optimal allocation.
if (!AddResizeTasks(fp_, &tasks)) {
LOG(WARNING) << "Failed to add resize tasks";
}
}
return tasks;
}
std::vector<std::unique_ptr<Task>> FlashAllTool::CollectTasksFromFastbootInfo() {
std::vector<std::unique_ptr<Task>> tasks;
std::vector<char> contents;
if (!fp_->source->ReadFile("fastboot-info.txt", &contents)) {
LOG(VERBOSE) << "Flashing from hardcoded images. fastboot-info.txt is empty or does not "
"exist";
return CollectTasksFromImageList();
}
tasks = ParseFastbootInfo(fp_, Split({contents.data(), contents.size()}, "\n"));
return tasks;
}
void FlashAllTool::AddFlashTasks(const std::vector<std::pair<const Image*, std::string>>& images,
std::vector<std::unique_ptr<Task>>& tasks) {
for (const auto& [image, slot] : images) {
fastboot_buffer buf;
unique_fd fd = fp_->source->OpenFile(image->img_name);
if (fd < 0 || !load_buf_fd(std::move(fd), &buf, fp_)) {
if (image->optional_if_no_image) {
continue;
}
die("could not load '%s': %s", image->img_name.c_str(), strerror(errno));
}
tasks.emplace_back(std::make_unique<FlashTask>(slot, image->part_name, image->img_name,
is_vbmeta_partition(image->part_name), fp_));
}
}
bool ZipImageSource::ReadFile(const std::string& name, std::vector<char>* out) const {
return UnzipToMemory(zip_, name, out);
}
unique_fd ZipImageSource::OpenFile(const std::string& name) const {
return UnzipToFile(zip_, name.c_str());
}
static void do_update(const char* filename, FlashingPlan* fp) {
ZipArchiveHandle zip;
int error = OpenArchive(filename, &zip);
if (error != 0) {
die("failed to open zip file '%s': %s", filename, ErrorCodeString(error));
}
ZipImageSource zp = ZipImageSource(zip);
fp->source = &zp;
FlashAllTool tool(fp);
tool.Flash();
CloseArchive(zip);
}
bool LocalImageSource::ReadFile(const std::string& name, std::vector<char>* out) const {
auto path = find_item_given_name(name);
if (path.empty()) {
return false;
}
return ReadFileToVector(path, out);
}
unique_fd LocalImageSource::OpenFile(const std::string& name) const {
auto path = find_item_given_name(name);
return unique_fd(TEMP_FAILURE_RETRY(open(path.c_str(), O_RDONLY | O_BINARY)));
}
static void do_flashall(FlashingPlan* fp) {
LocalImageSource s = LocalImageSource();
fp->source = &s;
FlashAllTool tool(fp);
tool.Flash();
}
static std::string next_arg(std::vector<std::string>* args) {
if (args->empty()) syntax_error("expected argument");
std::string result = args->front();
args->erase(args->begin());
return result;
}
static void do_oem_command(const std::string& cmd, std::vector<std::string>* args) {
if (args->empty()) syntax_error("empty oem command");
std::string command(cmd);
while (!args->empty()) {
command += " " + next_arg(args);
}
fb->RawCommand(command, "");
}
static unsigned fb_get_flash_block_size(std::string name) {
std::string sizeString;
if (fb->GetVar(name, &sizeString) != fastboot::SUCCESS || sizeString.empty()) {
// This device does not report flash block sizes, so return 0.
return 0;
}
sizeString = fb_fix_numeric_var(sizeString);
unsigned size;
if (!android::base::ParseUint(sizeString, &size)) {
fprintf(stderr, "Couldn't parse %s '%s'.\n", name.c_str(), sizeString.c_str());
return 0;
}
if ((size & (size - 1)) != 0) {
fprintf(stderr, "Invalid %s %u: must be a power of 2.\n", name.c_str(), size);
return 0;
}
return size;
}
void fb_perform_format(const std::string& partition, int skip_if_not_supported,
const std::string& type_override, const std::string& size_override,
const unsigned fs_options, const FlashingPlan* fp) {
std::string partition_type, partition_size;
struct fastboot_buffer buf;
const char* errMsg = nullptr;
const struct fs_generator* gen = nullptr;
TemporaryFile output;
unique_fd fd;
unsigned int limit = INT_MAX;
if (target_sparse_limit > 0 && target_sparse_limit < limit) {
limit = target_sparse_limit;
}
if (fp->sparse_limit > 0 && fp->sparse_limit < limit) {
limit = fp->sparse_limit;
}
if (fb->GetVar("partition-type:" + partition, &partition_type) != fastboot::SUCCESS) {
errMsg = "Can't determine partition type.\n";
goto failed;
}
if (!type_override.empty()) {
if (partition_type != type_override) {
fprintf(stderr, "Warning: %s type is %s, but %s was requested for formatting.\n",
partition.c_str(), partition_type.c_str(), type_override.c_str());
}
partition_type = type_override;
}
if (fb->GetVar("partition-size:" + partition, &partition_size) != fastboot::SUCCESS) {
errMsg = "Unable to get partition size\n";
goto failed;
}
if (!size_override.empty()) {
if (partition_size != size_override) {
fprintf(stderr, "Warning: %s size is %s, but %s was requested for formatting.\n",
partition.c_str(), partition_size.c_str(), size_override.c_str());
}
partition_size = size_override;
}
partition_size = fb_fix_numeric_var(partition_size);
gen = fs_get_generator(partition_type);
if (!gen) {
if (skip_if_not_supported) {
fprintf(stderr, "Erase successful, but not automatically formatting.\n");
fprintf(stderr, "File system type %s not supported.\n", partition_type.c_str());
return;
}
die("Formatting is not supported for file system with type '%s'.", partition_type.c_str());
}
int64_t size;
if (!android::base::ParseInt(partition_size, &size)) {
die("Couldn't parse partition size '%s'.", partition_size.c_str());
}
unsigned eraseBlkSize, logicalBlkSize;
eraseBlkSize = fb_get_flash_block_size("erase-block-size");
logicalBlkSize = fb_get_flash_block_size("logical-block-size");
if (fs_generator_generate(gen, output.path, size, eraseBlkSize, logicalBlkSize, fs_options)) {
die("Cannot generate image for %s", partition.c_str());
}
fd.reset(open(output.path, O_RDONLY));
if (fd == -1) {
die("Cannot open generated image: %s", strerror(errno));
}
if (!load_buf_fd(std::move(fd), &buf, fp)) {
die("Cannot read image: %s", strerror(errno));
}
flash_buf(partition, &buf, is_vbmeta_partition(partition));
return;
failed:
if (skip_if_not_supported) {
fprintf(stderr, "Erase successful, but not automatically formatting.\n");
if (errMsg) fprintf(stderr, "%s", errMsg);
}
fprintf(stderr, "FAILED (%s)\n", fb->Error().c_str());
if (!skip_if_not_supported) {
die("Command failed");
}
}
bool should_flash_in_userspace(const std::string& partition_name) {
if (!get_android_product_out()) {
return false;
}
auto path = find_item_given_name("super_empty.img");
if (path.empty() || access(path.c_str(), R_OK)) {
return false;
}
auto metadata = android::fs_mgr::ReadFromImageFile(path);
if (!metadata) {
return false;
}
return should_flash_in_userspace(*metadata.get(), partition_name);
}
static bool wipe_super(const android::fs_mgr::LpMetadata& metadata, const std::string& slot,
std::string* message, const FlashingPlan* fp) {
auto super_device = GetMetadataSuperBlockDevice(metadata);
auto block_size = metadata.geometry.logical_block_size;
auto super_bdev_name = android::fs_mgr::GetBlockDevicePartitionName(*super_device);
if (super_bdev_name != "super") {
// retrofit devices do not allow flashing to the retrofit partitions,
// so enable it if we can.
fb->RawCommand("oem allow-flash-super");
}
// Note: do not use die() in here, since we want TemporaryDir's destructor
// to be called.
TemporaryDir temp_dir;
bool ok;
if (metadata.block_devices.size() > 1) {
ok = WriteSplitImageFiles(temp_dir.path, metadata, block_size, {}, true);
} else {
auto image_path = std::string(temp_dir.path) + "/" + std::string(super_bdev_name) + ".img";
ok = WriteToImageFile(image_path, metadata, block_size, {}, true);
}
if (!ok) {
*message = "Could not generate a flashable super image file";
return false;
}
for (const auto& block_device : metadata.block_devices) {
auto partition = android::fs_mgr::GetBlockDevicePartitionName(block_device);
bool force_slot = !!(block_device.flags & LP_BLOCK_DEVICE_SLOT_SUFFIXED);
std::string image_name;
if (metadata.block_devices.size() > 1) {
image_name = "super_" + partition + ".img";
} else {
image_name = partition + ".img";
}
auto image_path = std::string(temp_dir.path) + "/" + image_name;
auto flash = [&](const std::string& partition_name) {
do_flash(partition_name.c_str(), image_path.c_str(), false, fp);
};
do_for_partitions(partition, slot, flash, force_slot);
unlink(image_path.c_str());
}
return true;
}
static void do_wipe_super(const std::string& image, const std::string& slot_override,
const FlashingPlan* fp) {
if (access(image.c_str(), R_OK) != 0) {
die("Could not read image: %s", image.c_str());
}
auto metadata = android::fs_mgr::ReadFromImageFile(image);
if (!metadata) {
die("Could not parse image: %s", image.c_str());
}
auto slot = slot_override;
if (slot.empty()) {
slot = get_current_slot();
}
std::string message;
if (!wipe_super(*metadata.get(), slot, &message, fp)) {
die(message);
}
}
static void FastbootLogger(android::base::LogId /* id */, android::base::LogSeverity severity,
const char* /* tag */, const char* /* file */, unsigned int /* line */,
const char* message) {
switch (severity) {
case android::base::INFO:
fprintf(stdout, "%s\n", message);
break;
case android::base::ERROR:
fprintf(stderr, "%s\n", message);
break;
default:
verbose("%s\n", message);
}
}
static void FastbootAborter(const char* message) {
die("%s", message);
}
int FastBootTool::Main(int argc, char* argv[]) {
android::base::InitLogging(argv, FastbootLogger, FastbootAborter);
std::unique_ptr<FlashingPlan> fp = std::make_unique<FlashingPlan>();
int longindex;
std::string next_active;
g_boot_img_hdr.kernel_addr = 0x00008000;
g_boot_img_hdr.ramdisk_addr = 0x01000000;
g_boot_img_hdr.second_addr = 0x00f00000;
g_boot_img_hdr.tags_addr = 0x00000100;
g_boot_img_hdr.page_size = 2048;
g_boot_img_hdr.dtb_addr = 0x01100000;
const struct option longopts[] = {{"base", required_argument, 0, 0},
{"cmdline", required_argument, 0, 0},
{"disable-verification", no_argument, 0, 0},
{"disable-verity", no_argument, 0, 0},
{"disable-super-optimization", no_argument, 0, 0},
{"exclude-dynamic-partitions", no_argument, 0, 0},
{"disable-fastboot-info", no_argument, 0, 0},
{"force", no_argument, 0, 0},
{"fs-options", required_argument, 0, 0},
{"header-version", required_argument, 0, 0},
{"help", no_argument, 0, 'h'},
{"kernel-offset", required_argument, 0, 0},
{"os-patch-level", required_argument, 0, 0},
{"os-version", required_argument, 0, 0},
{"page-size", required_argument, 0, 0},
{"ramdisk-offset", required_argument, 0, 0},
{"set-active", optional_argument, 0, 'a'},
{"skip-reboot", no_argument, 0, 0},
{"skip-secondary", no_argument, 0, 0},
{"slot", required_argument, 0, 0},
{"tags-offset", required_argument, 0, 0},
{"dtb", required_argument, 0, 0},
{"dtb-offset", required_argument, 0, 0},
{"unbuffered", no_argument, 0, 0},
{"verbose", no_argument, 0, 'v'},
{"version", no_argument, 0, 0},
{0, 0, 0, 0}};
serial = getenv("FASTBOOT_DEVICE");
if (!serial) {
serial = getenv("ANDROID_SERIAL");
}
int c;
while ((c = getopt_long(argc, argv, "a::hls:S:vw", longopts, &longindex)) != -1) {
if (c == 0) {
std::string name{longopts[longindex].name};
if (name == "base") {
g_base_addr = strtoul(optarg, 0, 16);
} else if (name == "cmdline") {
g_cmdline = optarg;
} else if (name == "disable-verification") {
g_disable_verification = true;
} else if (name == "disable-verity") {
g_disable_verity = true;
} else if (name == "disable-super-optimization") {
fp->should_optimize_flash_super = false;
} else if (name == "exclude-dynamic-partitions") {
fp->exclude_dynamic_partitions = true;
fp->should_optimize_flash_super = false;
} else if (name == "disable-fastboot-info") {
fp->should_use_fastboot_info = false;
} else if (name == "force") {
fp->force_flash = true;
} else if (name == "fs-options") {
fp->fs_options = ParseFsOption(optarg);
} else if (name == "header-version") {
g_boot_img_hdr.header_version = strtoul(optarg, nullptr, 0);
} else if (name == "dtb") {
g_dtb_path = optarg;
} else if (name == "kernel-offset") {
g_boot_img_hdr.kernel_addr = strtoul(optarg, 0, 16);
} else if (name == "os-patch-level") {
ParseOsPatchLevel(&g_boot_img_hdr, optarg);
} else if (name == "os-version") {
ParseOsVersion(&g_boot_img_hdr, optarg);
} else if (name == "page-size") {
g_boot_img_hdr.page_size = strtoul(optarg, nullptr, 0);
if (g_boot_img_hdr.page_size == 0) die("invalid page size");
} else if (name == "ramdisk-offset") {
g_boot_img_hdr.ramdisk_addr = strtoul(optarg, 0, 16);
} else if (name == "skip-reboot") {
fp->skip_reboot = true;
} else if (name == "skip-secondary") {
fp->skip_secondary = true;
} else if (name == "slot") {
fp->slot_override = optarg;
} else if (name == "dtb-offset") {
g_boot_img_hdr.dtb_addr = strtoul(optarg, 0, 16);
} else if (name == "tags-offset") {
g_boot_img_hdr.tags_addr = strtoul(optarg, 0, 16);
} else if (name == "unbuffered") {
setvbuf(stdout, nullptr, _IONBF, 0);
setvbuf(stderr, nullptr, _IONBF, 0);
} else if (name == "version") {
fprintf(stdout, "fastboot version %s-%s\n", PLATFORM_TOOLS_VERSION,
android::build::GetBuildNumber().c_str());
fprintf(stdout, "Installed as %s\n", android::base::GetExecutablePath().c_str());
return 0;
} else {
die("unknown option %s", longopts[longindex].name);
}
} else {
switch (c) {
case 'a':
fp->wants_set_active = true;
if (optarg) next_active = optarg;
break;
case 'h':
return show_help();
case 'l':
g_long_listing = true;
break;
case 's':
serial = optarg;
break;
case 'S':
if (!android::base::ParseByteCount(optarg, &fp->sparse_limit)) {
die("invalid sparse limit %s", optarg);
}
break;
case 'v':
set_verbose();
break;
case 'w':
fp->wants_wipe = true;
break;
case '?':
return 1;
default:
abort();
}
}
}
argc -= optind;
argv += optind;
if (argc == 0 && !fp->wants_wipe && !fp->wants_set_active) syntax_error("no command");
if (argc > 0 && !strcmp(*argv, "devices")) {
list_devices();
return 0;
}
if (argc > 0 && !strcmp(*argv, "connect")) {
argc -= optind;
argv += optind;
return Connect(argc, argv);
}
if (argc > 0 && !strcmp(*argv, "disconnect")) {
argc -= optind;
argv += optind;
return Disconnect(argc, argv);
}
if (argc > 0 && !strcmp(*argv, "help")) {
return show_help();
}
std::unique_ptr<Transport> transport = open_device();
if (!transport) {
return 1;
}
fastboot::DriverCallbacks driver_callbacks = {
.prolog = Status,
.epilog = Epilog,
.info = InfoMessage,
.text = TextMessage,
};
fastboot::FastBootDriver fastboot_driver(std::move(transport), driver_callbacks, false);
fb = &fastboot_driver;
fp->fb = &fastboot_driver;
const double start = now();
if (fp->slot_override != "") fp->slot_override = verify_slot(fp->slot_override);
if (next_active != "") next_active = verify_slot(next_active, false);
if (fp->wants_set_active) {
if (next_active == "") {
if (fp->slot_override == "") {
std::string current_slot;
if (fb->GetVar("current-slot", &current_slot) == fastboot::SUCCESS) {
if (current_slot[0] == '_') current_slot.erase(0, 1);
next_active = verify_slot(current_slot, false);
} else {
fp->wants_set_active = false;
}
} else {
next_active = verify_slot(fp->slot_override, false);
}
}
}
std::vector<std::unique_ptr<Task>> tasks;
std::vector<std::string> args(argv, argv + argc);
while (!args.empty()) {
std::string command = next_arg(&args);
if (command == FB_CMD_GETVAR) {
std::string variable = next_arg(&args);
DisplayVarOrError(variable, variable);
} else if (command == FB_CMD_ERASE) {
std::string partition = next_arg(&args);
auto erase = [&](const std::string& partition) {
std::string partition_type;
if (fb->GetVar("partition-type:" + partition, &partition_type) ==
fastboot::SUCCESS &&
fs_get_generator(partition_type) != nullptr) {
fprintf(stderr, "******** Did you mean to fastboot format this %s partition?\n",
partition_type.c_str());
}
fb->Erase(partition);
};
do_for_partitions(partition, fp->slot_override, erase, true);
} else if (android::base::StartsWith(command, "format")) {
// Parsing for: "format[:[type][:[size]]]"
// Some valid things:
// - select only the size, and leave default fs type:
// format::0x4000000 userdata
// - default fs type and size:
// format userdata
// format:: userdata
std::vector<std::string> pieces = android::base::Split(command, ":");
std::string type_override;
if (pieces.size() > 1) type_override = pieces[1].c_str();
std::string size_override;
if (pieces.size() > 2) size_override = pieces[2].c_str();
std::string partition = next_arg(&args);
auto format = [&](const std::string& partition) {
fb_perform_format(partition, 0, type_override, size_override, fp->fs_options,
fp.get());
};
do_for_partitions(partition, fp->slot_override, format, true);
} else if (command == "signature") {
std::string filename = next_arg(&args);
std::vector<char> data;
if (!ReadFileToVector(filename, &data)) {
die("could not load '%s': %s", filename.c_str(), strerror(errno));
}
if (data.size() != 256) die("signature must be 256 bytes (got %zu)", data.size());
fb->Download("signature", data);
fb->RawCommand("signature", "installing signature");
} else if (command == FB_CMD_REBOOT) {
if (args.size() == 1) {
std::string reboot_target = next_arg(&args);
tasks.emplace_back(std::make_unique<RebootTask>(fp.get(), reboot_target));
} else if (!fp->skip_reboot) {
tasks.emplace_back(std::make_unique<RebootTask>(fp.get()));
}
if (!args.empty()) syntax_error("junk after reboot command");
} else if (command == FB_CMD_REBOOT_BOOTLOADER) {
tasks.emplace_back(std::make_unique<RebootTask>(fp.get(), "bootloader"));
} else if (command == FB_CMD_REBOOT_RECOVERY) {
tasks.emplace_back(std::make_unique<RebootTask>(fp.get(), "recovery"));
} else if (command == FB_CMD_REBOOT_FASTBOOT) {
tasks.emplace_back(std::make_unique<RebootTask>(fp.get(), "fastboot"));
} else if (command == FB_CMD_CONTINUE) {
fb->Continue();
} else if (command == FB_CMD_BOOT) {
std::string kernel = next_arg(&args);
std::string ramdisk;
if (!args.empty()) ramdisk = next_arg(&args);
std::string second_stage;
if (!args.empty()) second_stage = next_arg(&args);
auto data = LoadBootableImage(kernel, ramdisk, second_stage);
fb->Download("boot.img", data);
fb->Boot();
} else if (command == FB_CMD_FLASH) {
std::string pname = next_arg(&args);
std::string fname;
if (!args.empty()) {
fname = next_arg(&args);
} else {
fname = find_item(pname);
}
if (fname.empty()) die("cannot determine image filename for '%s'", pname.c_str());
FlashTask task(fp->slot_override, pname, fname, is_vbmeta_partition(pname), fp.get());
task.Run();
} else if (command == "flash:raw") {
std::string partition = next_arg(&args);
std::string kernel = next_arg(&args);
std::string ramdisk;
if (!args.empty()) ramdisk = next_arg(&args);
std::string second_stage;
if (!args.empty()) second_stage = next_arg(&args);
auto data = LoadBootableImage(kernel, ramdisk, second_stage);
auto flashraw = [&data](const std::string& partition) {
fb->FlashPartition(partition, data);
};
do_for_partitions(partition, fp->slot_override, flashraw, true);
} else if (command == "flashall") {
if (fp->slot_override == "all") {
fprintf(stderr,
"Warning: slot set to 'all'. Secondary slots will not be flashed.\n");
fp->skip_secondary = true;
}
do_flashall(fp.get());
if (!fp->skip_reboot) {
tasks.emplace_back(std::make_unique<RebootTask>(fp.get()));
}
} else if (command == "update") {
bool slot_all = (fp->slot_override == "all");
if (slot_all) {
fprintf(stderr,
"Warning: slot set to 'all'. Secondary slots will not be flashed.\n");
}
std::string filename = "update.zip";
if (!args.empty()) {
filename = next_arg(&args);
}
do_update(filename.c_str(), fp.get());
if (!fp->skip_reboot) {
tasks.emplace_back(std::make_unique<RebootTask>(fp.get()));
}
} else if (command == FB_CMD_SET_ACTIVE) {
std::string slot = verify_slot(next_arg(&args), false);
fb->SetActive(slot);
} else if (command == "stage") {
std::string filename = next_arg(&args);
struct fastboot_buffer buf;
if (!load_buf(filename.c_str(), &buf, fp.get()) || buf.type != FB_BUFFER_FD) {
die("cannot load '%s'", filename.c_str());
}
fb->Download(filename, buf.fd.get(), buf.sz);
} else if (command == "get_staged") {
std::string filename = next_arg(&args);
fb->Upload(filename);
} else if (command == FB_CMD_OEM) {
do_oem_command(FB_CMD_OEM, &args);
} else if (command == "flashing") {
if (args.empty()) {
syntax_error("missing 'flashing' command");
} else if (args.size() == 1 &&
(args[0] == "unlock" || args[0] == "lock" || args[0] == "unlock_critical" ||
args[0] == "lock_critical" || args[0] == "get_unlock_ability")) {
do_oem_command("flashing", &args);
} else {
syntax_error("unknown 'flashing' command %s", args[0].c_str());
}
} else if (command == FB_CMD_CREATE_PARTITION) {
std::string partition = next_arg(&args);
std::string size = next_arg(&args);
fb->CreatePartition(partition, size);
} else if (command == FB_CMD_DELETE_PARTITION) {
std::string partition = next_arg(&args);
tasks.emplace_back(std::make_unique<DeleteTask>(fp.get(), partition));
} else if (command == FB_CMD_RESIZE_PARTITION) {
std::string partition = next_arg(&args);
std::string size = next_arg(&args);
std::unique_ptr<ResizeTask> resize_task =
std::make_unique<ResizeTask>(fp.get(), partition, size, fp->slot_override);
resize_task->Run();
} else if (command == "gsi") {
if (args.empty()) syntax_error("invalid gsi command");
std::string cmd("gsi");
while (!args.empty()) {
cmd += ":" + next_arg(&args);
}
fb->RawCommand(cmd, "");
} else if (command == "wipe-super") {
std::string image;
if (args.empty()) {
image = find_item_given_name("super_empty.img");
} else {
image = next_arg(&args);
}
do_wipe_super(image, fp->slot_override, fp.get());
} else if (command == "snapshot-update") {
std::string arg;
if (!args.empty()) {
arg = next_arg(&args);
}
if (!arg.empty() && (arg != "cancel" && arg != "merge")) {
syntax_error("expected: snapshot-update [cancel|merge]");
}
fb->SnapshotUpdateCommand(arg);
} else if (command == FB_CMD_FETCH) {
std::string partition = next_arg(&args);
std::string outfile = next_arg(&args);
do_fetch(partition, fp->slot_override, outfile, fp->fb);
} else {
syntax_error("unknown command %s", command.c_str());
}
}
if (fp->wants_wipe) {
if (fp->force_flash) {
CancelSnapshotIfNeeded();
}
std::vector<std::unique_ptr<Task>> wipe_tasks;
std::vector<std::string> partitions = {"userdata", "cache", "metadata"};
for (const auto& partition : partitions) {
wipe_tasks.emplace_back(std::make_unique<WipeTask>(fp.get(), partition));
}
tasks.insert(tasks.begin(), std::make_move_iterator(wipe_tasks.begin()),
std::make_move_iterator(wipe_tasks.end()));
}
if (fp->wants_set_active) {
fb->SetActive(next_active);
}
for (auto& task : tasks) {
task->Run();
}
fprintf(stderr, "Finished. Total time: %.3fs\n", (now() - start));
return 0;
}
void FastBootTool::ParseOsPatchLevel(boot_img_hdr_v1* hdr, const char* arg) {
unsigned year, month, day;
if (sscanf(arg, "%u-%u-%u", &year, &month, &day) != 3) {
syntax_error("OS patch level should be YYYY-MM-DD: %s", arg);
}
if (year < 2000 || year >= 2128) syntax_error("year out of range: %d", year);
if (month < 1 || month > 12) syntax_error("month out of range: %d", month);
hdr->SetOsPatchLevel(year, month);
}
void FastBootTool::ParseOsVersion(boot_img_hdr_v1* hdr, const char* arg) {
unsigned major = 0, minor = 0, patch = 0;
std::vector<std::string> versions = android::base::Split(arg, ".");
if (versions.size() < 1 || versions.size() > 3 ||
(versions.size() >= 1 && !android::base::ParseUint(versions[0], &major)) ||
(versions.size() >= 2 && !android::base::ParseUint(versions[1], &minor)) ||
(versions.size() == 3 && !android::base::ParseUint(versions[2], &patch)) ||
(major > 0x7f || minor > 0x7f || patch > 0x7f)) {
syntax_error("bad OS version: %s", arg);
}
hdr->SetOsVersion(major, minor, patch);
}
unsigned FastBootTool::ParseFsOption(const char* arg) {
unsigned fsOptions = 0;
std::vector<std::string> options = android::base::Split(arg, ",");
if (options.size() < 1) syntax_error("bad options: %s", arg);
for (size_t i = 0; i < options.size(); ++i) {
if (options[i] == "casefold")
fsOptions |= (1 << FS_OPT_CASEFOLD);
else if (options[i] == "projid")
fsOptions |= (1 << FS_OPT_PROJID);
else if (options[i] == "compress")
fsOptions |= (1 << FS_OPT_COMPRESS);
else
syntax_error("unsupported options: %s", options[i].c_str());
}
return fsOptions;
}