platform_system_core/libunwindstack/tests/DwarfOpTest.cpp
Haibo Huang 0c01bb6edf Add a name for all test suites
(for the new googletest

Test: run tests
Change-Id: I3856a4a8f3ed23bcfcc59bec7624595e91740be0
2019-12-11 12:46:20 -08:00

1586 lines
49 KiB
C++

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdint.h>
#include <ios>
#include <vector>
#include <gtest/gtest.h>
#include <unwindstack/DwarfError.h>
#include <unwindstack/DwarfMemory.h>
#include <unwindstack/Log.h>
#include "DwarfOp.h"
#include "MemoryFake.h"
#include "RegsFake.h"
namespace unwindstack {
template <typename TypeParam>
class DwarfOpTest : public ::testing::Test {
protected:
void SetUp() override {
op_memory_.Clear();
regular_memory_.Clear();
mem_.reset(new DwarfMemory(&op_memory_));
op_.reset(new DwarfOp<TypeParam>(mem_.get(), &regular_memory_));
}
MemoryFake op_memory_;
MemoryFake regular_memory_;
std::unique_ptr<DwarfMemory> mem_;
std::unique_ptr<DwarfOp<TypeParam>> op_;
};
TYPED_TEST_SUITE_P(DwarfOpTest);
TYPED_TEST_P(DwarfOpTest, decode) {
// Memory error.
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_MEMORY_INVALID, this->op_->LastErrorCode());
EXPECT_EQ(0U, this->op_->LastErrorAddress());
// No error.
this->op_memory_.SetMemory(0, std::vector<uint8_t>{0x96});
this->mem_->set_cur_offset(0);
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_NONE, this->op_->LastErrorCode());
ASSERT_EQ(0x96U, this->op_->cur_op());
ASSERT_EQ(1U, this->mem_->cur_offset());
}
TYPED_TEST_P(DwarfOpTest, eval) {
// Memory error.
ASSERT_FALSE(this->op_->Eval(0, 2));
ASSERT_EQ(DWARF_ERROR_MEMORY_INVALID, this->op_->LastErrorCode());
EXPECT_EQ(0U, this->op_->LastErrorAddress());
// Register set.
// Do this first, to verify that subsequent calls reset the value.
this->op_memory_.SetMemory(0, std::vector<uint8_t>{0x50});
ASSERT_TRUE(this->op_->Eval(0, 1));
ASSERT_TRUE(this->op_->is_register());
ASSERT_EQ(1U, this->mem_->cur_offset());
ASSERT_EQ(1U, this->op_->StackSize());
// Multi operation opcodes.
std::vector<uint8_t> opcode_buffer = {
0x08, 0x04, 0x08, 0x03, 0x08, 0x02, 0x08, 0x01,
};
this->op_memory_.SetMemory(0, opcode_buffer);
ASSERT_TRUE(this->op_->Eval(0, 8));
ASSERT_EQ(DWARF_ERROR_NONE, this->op_->LastErrorCode());
ASSERT_FALSE(this->op_->is_register());
ASSERT_EQ(8U, this->mem_->cur_offset());
ASSERT_EQ(4U, this->op_->StackSize());
ASSERT_EQ(1U, this->op_->StackAt(0));
ASSERT_EQ(2U, this->op_->StackAt(1));
ASSERT_EQ(3U, this->op_->StackAt(2));
ASSERT_EQ(4U, this->op_->StackAt(3));
// Infinite loop.
this->op_memory_.SetMemory(0, std::vector<uint8_t>{0x2f, 0xfd, 0xff});
ASSERT_FALSE(this->op_->Eval(0, 4));
ASSERT_EQ(DWARF_ERROR_TOO_MANY_ITERATIONS, this->op_->LastErrorCode());
ASSERT_FALSE(this->op_->is_register());
ASSERT_EQ(0U, this->op_->StackSize());
}
TYPED_TEST_P(DwarfOpTest, illegal_opcode) {
// Fill the buffer with all of the illegal opcodes.
std::vector<uint8_t> opcode_buffer = {0x00, 0x01, 0x02, 0x04, 0x05, 0x07};
for (size_t opcode = 0xa0; opcode < 256; opcode++) {
opcode_buffer.push_back(opcode);
}
this->op_memory_.SetMemory(0, opcode_buffer);
for (size_t i = 0; i < opcode_buffer.size(); i++) {
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_ILLEGAL_VALUE, this->op_->LastErrorCode());
ASSERT_EQ(opcode_buffer[i], this->op_->cur_op());
}
}
TYPED_TEST_P(DwarfOpTest, not_implemented) {
std::vector<uint8_t> opcode_buffer = {
// Push values so that any not implemented ops will return the right error.
0x08, 0x03, 0x08, 0x02, 0x08, 0x01,
// xderef
0x18,
// fbreg
0x91, 0x01,
// piece
0x93, 0x01,
// xderef_size
0x95, 0x01,
// push_object_address
0x97,
// call2
0x98, 0x01, 0x02,
// call4
0x99, 0x01, 0x02, 0x03, 0x04,
// call_ref
0x9a,
// form_tls_address
0x9b,
// call_frame_cfa
0x9c,
// bit_piece
0x9d, 0x01, 0x01,
// implicit_value
0x9e, 0x01,
// stack_value
0x9f,
};
this->op_memory_.SetMemory(0, opcode_buffer);
// Push the stack values.
ASSERT_TRUE(this->op_->Decode());
ASSERT_TRUE(this->op_->Decode());
ASSERT_TRUE(this->op_->Decode());
while (this->mem_->cur_offset() < opcode_buffer.size()) {
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_NOT_IMPLEMENTED, this->op_->LastErrorCode());
}
}
TYPED_TEST_P(DwarfOpTest, op_addr) {
std::vector<uint8_t> opcode_buffer = {0x03, 0x12, 0x23, 0x34, 0x45};
if (sizeof(TypeParam) == 8) {
opcode_buffer.push_back(0x56);
opcode_buffer.push_back(0x67);
opcode_buffer.push_back(0x78);
opcode_buffer.push_back(0x89);
}
this->op_memory_.SetMemory(0, opcode_buffer);
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x03, this->op_->cur_op());
ASSERT_EQ(1U, this->op_->StackSize());
if (sizeof(TypeParam) == 4) {
ASSERT_EQ(0x45342312U, this->op_->StackAt(0));
} else {
ASSERT_EQ(0x8978675645342312UL, this->op_->StackAt(0));
}
}
TYPED_TEST_P(DwarfOpTest, op_deref) {
std::vector<uint8_t> opcode_buffer = {
// Try a dereference with nothing on the stack.
0x06,
// Add an address, then dereference.
0x0a, 0x10, 0x20, 0x06,
// Now do another dereference that should fail in memory.
0x06,
};
this->op_memory_.SetMemory(0, opcode_buffer);
TypeParam value = 0x12345678;
this->regular_memory_.SetMemory(0x2010, &value, sizeof(value));
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x06, this->op_->cur_op());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_EQ(value, this->op_->StackAt(0));
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_MEMORY_INVALID, this->op_->LastErrorCode());
ASSERT_EQ(0x12345678U, this->op_->LastErrorAddress());
}
TYPED_TEST_P(DwarfOpTest, op_deref_size) {
this->op_memory_.SetMemory(0, std::vector<uint8_t>{0x94});
TypeParam value = 0x12345678;
this->regular_memory_.SetMemory(0x2010, &value, sizeof(value));
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
// Read all byte sizes up to the sizeof the type.
for (size_t i = 1; i < sizeof(TypeParam); i++) {
this->op_memory_.SetMemory(
0, std::vector<uint8_t>{0x0a, 0x10, 0x20, 0x94, static_cast<uint8_t>(i)});
ASSERT_TRUE(this->op_->Eval(0, 5)) << "Failed at size " << i;
ASSERT_EQ(1U, this->op_->StackSize()) << "Failed at size " << i;
ASSERT_EQ(0x94, this->op_->cur_op()) << "Failed at size " << i;
TypeParam expected_value = 0;
memcpy(&expected_value, &value, i);
ASSERT_EQ(expected_value, this->op_->StackAt(0)) << "Failed at size " << i;
}
// Zero byte read.
this->op_memory_.SetMemory(0, std::vector<uint8_t>{0x0a, 0x10, 0x20, 0x94, 0x00});
ASSERT_FALSE(this->op_->Eval(0, 5));
ASSERT_EQ(DWARF_ERROR_ILLEGAL_VALUE, this->op_->LastErrorCode());
// Read too many bytes.
this->op_memory_.SetMemory(0, std::vector<uint8_t>{0x0a, 0x10, 0x20, 0x94, sizeof(TypeParam) + 1});
ASSERT_FALSE(this->op_->Eval(0, 5));
ASSERT_EQ(DWARF_ERROR_ILLEGAL_VALUE, this->op_->LastErrorCode());
// Force bad memory read.
this->op_memory_.SetMemory(0, std::vector<uint8_t>{0x0a, 0x10, 0x40, 0x94, 0x01});
ASSERT_FALSE(this->op_->Eval(0, 5));
ASSERT_EQ(DWARF_ERROR_MEMORY_INVALID, this->op_->LastErrorCode());
EXPECT_EQ(0x4010U, this->op_->LastErrorAddress());
}
TYPED_TEST_P(DwarfOpTest, const_unsigned) {
std::vector<uint8_t> opcode_buffer = {
// const1u
0x08, 0x12, 0x08, 0xff,
// const2u
0x0a, 0x45, 0x12, 0x0a, 0x00, 0xff,
// const4u
0x0c, 0x12, 0x23, 0x34, 0x45, 0x0c, 0x03, 0x02, 0x01, 0xff,
// const8u
0x0e, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x0e, 0x87, 0x98, 0xa9, 0xba, 0xcb,
0xdc, 0xed, 0xfe,
};
this->op_memory_.SetMemory(0, opcode_buffer);
// const1u
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x08, this->op_->cur_op());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_EQ(0x12U, this->op_->StackAt(0));
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x08, this->op_->cur_op());
ASSERT_EQ(2U, this->op_->StackSize());
ASSERT_EQ(0xffU, this->op_->StackAt(0));
// const2u
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x0a, this->op_->cur_op());
ASSERT_EQ(3U, this->op_->StackSize());
ASSERT_EQ(0x1245U, this->op_->StackAt(0));
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x0a, this->op_->cur_op());
ASSERT_EQ(4U, this->op_->StackSize());
ASSERT_EQ(0xff00U, this->op_->StackAt(0));
// const4u
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x0c, this->op_->cur_op());
ASSERT_EQ(5U, this->op_->StackSize());
ASSERT_EQ(0x45342312U, this->op_->StackAt(0));
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x0c, this->op_->cur_op());
ASSERT_EQ(6U, this->op_->StackSize());
ASSERT_EQ(0xff010203U, this->op_->StackAt(0));
// const8u
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x0e, this->op_->cur_op());
ASSERT_EQ(7U, this->op_->StackSize());
if (sizeof(TypeParam) == 4) {
ASSERT_EQ(0x05060708U, this->op_->StackAt(0));
} else {
ASSERT_EQ(0x0102030405060708ULL, this->op_->StackAt(0));
}
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x0e, this->op_->cur_op());
ASSERT_EQ(8U, this->op_->StackSize());
if (sizeof(TypeParam) == 4) {
ASSERT_EQ(0xbaa99887UL, this->op_->StackAt(0));
} else {
ASSERT_EQ(0xfeeddccbbaa99887ULL, this->op_->StackAt(0));
}
}
TYPED_TEST_P(DwarfOpTest, const_signed) {
std::vector<uint8_t> opcode_buffer = {
// const1s
0x09, 0x12, 0x09, 0xff,
// const2s
0x0b, 0x21, 0x32, 0x0b, 0x08, 0xff,
// const4s
0x0d, 0x45, 0x34, 0x23, 0x12, 0x0d, 0x01, 0x02, 0x03, 0xff,
// const8s
0x0f, 0x89, 0x78, 0x67, 0x56, 0x45, 0x34, 0x23, 0x12, 0x0f, 0x04, 0x03, 0x02, 0x01, 0xef,
0xef, 0xef, 0xff,
};
this->op_memory_.SetMemory(0, opcode_buffer);
// const1s
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x09, this->op_->cur_op());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_EQ(0x12U, this->op_->StackAt(0));
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x09, this->op_->cur_op());
ASSERT_EQ(2U, this->op_->StackSize());
ASSERT_EQ(static_cast<TypeParam>(-1), this->op_->StackAt(0));
// const2s
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x0b, this->op_->cur_op());
ASSERT_EQ(3U, this->op_->StackSize());
ASSERT_EQ(0x3221U, this->op_->StackAt(0));
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x0b, this->op_->cur_op());
ASSERT_EQ(4U, this->op_->StackSize());
ASSERT_EQ(static_cast<TypeParam>(-248), this->op_->StackAt(0));
// const4s
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x0d, this->op_->cur_op());
ASSERT_EQ(5U, this->op_->StackSize());
ASSERT_EQ(0x12233445U, this->op_->StackAt(0));
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x0d, this->op_->cur_op());
ASSERT_EQ(6U, this->op_->StackSize());
ASSERT_EQ(static_cast<TypeParam>(-16580095), this->op_->StackAt(0));
// const8s
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x0f, this->op_->cur_op());
ASSERT_EQ(7U, this->op_->StackSize());
if (sizeof(TypeParam) == 4) {
ASSERT_EQ(0x56677889ULL, this->op_->StackAt(0));
} else {
ASSERT_EQ(0x1223344556677889ULL, this->op_->StackAt(0));
}
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x0f, this->op_->cur_op());
ASSERT_EQ(8U, this->op_->StackSize());
if (sizeof(TypeParam) == 4) {
ASSERT_EQ(0x01020304U, this->op_->StackAt(0));
} else {
ASSERT_EQ(static_cast<TypeParam>(-4521264810949884LL), this->op_->StackAt(0));
}
}
TYPED_TEST_P(DwarfOpTest, const_uleb) {
std::vector<uint8_t> opcode_buffer = {
// Single byte ULEB128
0x10, 0x22, 0x10, 0x7f,
// Multi byte ULEB128
0x10, 0xa2, 0x22, 0x10, 0xa2, 0x74, 0x10, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88,
0x09, 0x10, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x79,
};
this->op_memory_.SetMemory(0, opcode_buffer);
// Single byte ULEB128
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x10, this->op_->cur_op());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_EQ(0x22U, this->op_->StackAt(0));
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x10, this->op_->cur_op());
ASSERT_EQ(2U, this->op_->StackSize());
ASSERT_EQ(0x7fU, this->op_->StackAt(0));
// Multi byte ULEB128
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x10, this->op_->cur_op());
ASSERT_EQ(3U, this->op_->StackSize());
ASSERT_EQ(0x1122U, this->op_->StackAt(0));
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x10, this->op_->cur_op());
ASSERT_EQ(4U, this->op_->StackSize());
ASSERT_EQ(0x3a22U, this->op_->StackAt(0));
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x10, this->op_->cur_op());
ASSERT_EQ(5U, this->op_->StackSize());
if (sizeof(TypeParam) == 4) {
ASSERT_EQ(0x5080c101U, this->op_->StackAt(0));
} else {
ASSERT_EQ(0x9101c305080c101ULL, this->op_->StackAt(0));
}
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x10, this->op_->cur_op());
ASSERT_EQ(6U, this->op_->StackSize());
if (sizeof(TypeParam) == 4) {
ASSERT_EQ(0x5080c101U, this->op_->StackAt(0));
} else {
ASSERT_EQ(0x79101c305080c101ULL, this->op_->StackAt(0));
}
}
TYPED_TEST_P(DwarfOpTest, const_sleb) {
std::vector<uint8_t> opcode_buffer = {
// Single byte SLEB128
0x11, 0x22, 0x11, 0x7f,
// Multi byte SLEB128
0x11, 0xa2, 0x22, 0x11, 0xa2, 0x74, 0x11, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88,
0x09, 0x11,
};
if (sizeof(TypeParam) == 4) {
opcode_buffer.push_back(0xb8);
opcode_buffer.push_back(0xd3);
opcode_buffer.push_back(0x63);
} else {
opcode_buffer.push_back(0x81);
opcode_buffer.push_back(0x82);
opcode_buffer.push_back(0x83);
opcode_buffer.push_back(0x84);
opcode_buffer.push_back(0x85);
opcode_buffer.push_back(0x86);
opcode_buffer.push_back(0x87);
opcode_buffer.push_back(0x88);
opcode_buffer.push_back(0x79);
}
this->op_memory_.SetMemory(0, opcode_buffer);
// Single byte SLEB128
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x11, this->op_->cur_op());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_EQ(0x22U, this->op_->StackAt(0));
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x11, this->op_->cur_op());
ASSERT_EQ(2U, this->op_->StackSize());
ASSERT_EQ(static_cast<TypeParam>(-1), this->op_->StackAt(0));
// Multi byte SLEB128
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x11, this->op_->cur_op());
ASSERT_EQ(3U, this->op_->StackSize());
ASSERT_EQ(0x1122U, this->op_->StackAt(0));
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x11, this->op_->cur_op());
ASSERT_EQ(4U, this->op_->StackSize());
ASSERT_EQ(static_cast<TypeParam>(-1502), this->op_->StackAt(0));
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x11, this->op_->cur_op());
ASSERT_EQ(5U, this->op_->StackSize());
if (sizeof(TypeParam) == 4) {
ASSERT_EQ(0x5080c101U, this->op_->StackAt(0));
} else {
ASSERT_EQ(0x9101c305080c101ULL, this->op_->StackAt(0));
}
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x11, this->op_->cur_op());
ASSERT_EQ(6U, this->op_->StackSize());
if (sizeof(TypeParam) == 4) {
ASSERT_EQ(static_cast<TypeParam>(-464456), this->op_->StackAt(0));
} else {
ASSERT_EQ(static_cast<TypeParam>(-499868564803501823LL), this->op_->StackAt(0));
}
}
TYPED_TEST_P(DwarfOpTest, op_dup) {
std::vector<uint8_t> opcode_buffer = {
// Should fail since nothing is on the stack.
0x12,
// Push on a value and dup.
0x08, 0x15, 0x12,
// Do it again.
0x08, 0x23, 0x12,
};
this->op_memory_.SetMemory(0, opcode_buffer);
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(0x12, this->op_->cur_op());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x12, this->op_->cur_op());
ASSERT_EQ(2U, this->op_->StackSize());
ASSERT_EQ(0x15U, this->op_->StackAt(0));
ASSERT_EQ(0x15U, this->op_->StackAt(1));
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(3U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x12, this->op_->cur_op());
ASSERT_EQ(4U, this->op_->StackSize());
ASSERT_EQ(0x23U, this->op_->StackAt(0));
ASSERT_EQ(0x23U, this->op_->StackAt(1));
ASSERT_EQ(0x15U, this->op_->StackAt(2));
ASSERT_EQ(0x15U, this->op_->StackAt(3));
}
TYPED_TEST_P(DwarfOpTest, op_drop) {
std::vector<uint8_t> opcode_buffer = {
// Push a couple of values.
0x08, 0x10, 0x08, 0x20,
// Drop the values.
0x13, 0x13,
// Attempt to drop empty stack.
0x13,
};
this->op_memory_.SetMemory(0, opcode_buffer);
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(2U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x13, this->op_->cur_op());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_EQ(0x10U, this->op_->StackAt(0));
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x13, this->op_->cur_op());
ASSERT_EQ(0U, this->op_->StackSize());
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(0x13, this->op_->cur_op());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
}
TYPED_TEST_P(DwarfOpTest, op_over) {
std::vector<uint8_t> opcode_buffer = {
// Push a couple of values.
0x08, 0x1a, 0x08, 0xed,
// Copy a value.
0x14,
// Remove all but one element.
0x13, 0x13,
// Provoke a failure with this opcode.
0x14,
};
this->op_memory_.SetMemory(0, opcode_buffer);
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(2U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x14, this->op_->cur_op());
ASSERT_EQ(3U, this->op_->StackSize());
ASSERT_EQ(0x1aU, this->op_->StackAt(0));
ASSERT_EQ(0xedU, this->op_->StackAt(1));
ASSERT_EQ(0x1aU, this->op_->StackAt(2));
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(2U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(0x14, this->op_->cur_op());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
}
TYPED_TEST_P(DwarfOpTest, op_pick) {
std::vector<uint8_t> opcode_buffer = {
// Push a few values.
0x08, 0x1a, 0x08, 0xed, 0x08, 0x34,
// Copy the value at offset 2.
0x15, 0x01,
// Copy the last value in the stack.
0x15, 0x03,
// Choose an invalid index.
0x15, 0x10,
};
this->op_memory_.SetMemory(0, opcode_buffer);
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(2U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(3U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x15, this->op_->cur_op());
ASSERT_EQ(4U, this->op_->StackSize());
ASSERT_EQ(0xedU, this->op_->StackAt(0));
ASSERT_EQ(0x34U, this->op_->StackAt(1));
ASSERT_EQ(0xedU, this->op_->StackAt(2));
ASSERT_EQ(0x1aU, this->op_->StackAt(3));
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x15, this->op_->cur_op());
ASSERT_EQ(5U, this->op_->StackSize());
ASSERT_EQ(0x1aU, this->op_->StackAt(0));
ASSERT_EQ(0xedU, this->op_->StackAt(1));
ASSERT_EQ(0x34U, this->op_->StackAt(2));
ASSERT_EQ(0xedU, this->op_->StackAt(3));
ASSERT_EQ(0x1aU, this->op_->StackAt(4));
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(0x15, this->op_->cur_op());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
}
TYPED_TEST_P(DwarfOpTest, op_swap) {
std::vector<uint8_t> opcode_buffer = {
// Push a couple of values.
0x08, 0x26, 0x08, 0xab,
// Swap values.
0x16,
// Pop a value to cause a failure.
0x13, 0x16,
};
this->op_memory_.SetMemory(0, opcode_buffer);
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(2U, this->op_->StackSize());
ASSERT_EQ(0xabU, this->op_->StackAt(0));
ASSERT_EQ(0x26U, this->op_->StackAt(1));
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x16, this->op_->cur_op());
ASSERT_EQ(2U, this->op_->StackSize());
ASSERT_EQ(0x26U, this->op_->StackAt(0));
ASSERT_EQ(0xabU, this->op_->StackAt(1));
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(0x16, this->op_->cur_op());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
}
TYPED_TEST_P(DwarfOpTest, op_rot) {
std::vector<uint8_t> opcode_buffer = {
// Rotate that should cause a failure.
0x17, 0x08, 0x10,
// Only 1 value on stack, should fail.
0x17, 0x08, 0x20,
// Only 2 values on stack, should fail.
0x17, 0x08, 0x30,
// Should rotate properly.
0x17,
};
this->op_memory_.SetMemory(0, opcode_buffer);
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(2U, this->op_->StackSize());
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(3U, this->op_->StackSize());
ASSERT_EQ(0x30U, this->op_->StackAt(0));
ASSERT_EQ(0x20U, this->op_->StackAt(1));
ASSERT_EQ(0x10U, this->op_->StackAt(2));
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x17, this->op_->cur_op());
ASSERT_EQ(3U, this->op_->StackSize());
ASSERT_EQ(0x20U, this->op_->StackAt(0));
ASSERT_EQ(0x10U, this->op_->StackAt(1));
ASSERT_EQ(0x30U, this->op_->StackAt(2));
}
TYPED_TEST_P(DwarfOpTest, op_abs) {
std::vector<uint8_t> opcode_buffer = {
// Abs that should fail.
0x19,
// A value that is already positive.
0x08, 0x10, 0x19,
// A value that is negative.
0x11, 0x7f, 0x19,
// A value that is large and negative.
0x11, 0x81, 0x80, 0x80, 0x80,
};
if (sizeof(TypeParam) == 4) {
opcode_buffer.push_back(0x08);
} else {
opcode_buffer.push_back(0x80);
opcode_buffer.push_back(0x80);
opcode_buffer.push_back(0x01);
}
opcode_buffer.push_back(0x19);
this->op_memory_.SetMemory(0, opcode_buffer);
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_EQ(0x10U, this->op_->StackAt(0));
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x19, this->op_->cur_op());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_EQ(0x10U, this->op_->StackAt(0));
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(2U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x19, this->op_->cur_op());
ASSERT_EQ(2U, this->op_->StackSize());
ASSERT_EQ(0x1U, this->op_->StackAt(0));
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(3U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x19, this->op_->cur_op());
ASSERT_EQ(3U, this->op_->StackSize());
if (sizeof(TypeParam) == 4) {
ASSERT_EQ(2147483647U, this->op_->StackAt(0));
} else {
ASSERT_EQ(4398046511105UL, this->op_->StackAt(0));
}
}
TYPED_TEST_P(DwarfOpTest, op_and) {
std::vector<uint8_t> opcode_buffer = {
// No stack, and op will fail.
0x1b,
// Push a single value.
0x08, 0x20,
// One element stack, and op will fail.
0x1b,
// Push another value.
0x08, 0x02, 0x1b,
// Push on two negative values.
0x11, 0x7c, 0x11, 0x7f, 0x1b,
// Push one negative, one positive.
0x11, 0x10, 0x11, 0x7c, 0x1b,
// Divide by zero.
0x11, 0x10, 0x11, 0x00, 0x1b,
};
this->op_memory_.SetMemory(0, opcode_buffer);
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
// Two positive values.
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(2U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x1b, this->op_->cur_op());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_EQ(0x10U, this->op_->StackAt(0));
// Two negative values.
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(2U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(3U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x1b, this->op_->cur_op());
ASSERT_EQ(2U, this->op_->StackSize());
ASSERT_EQ(0x04U, this->op_->StackAt(0));
// One negative value, one positive value.
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(3U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(4U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x1b, this->op_->cur_op());
ASSERT_EQ(3U, this->op_->StackSize());
ASSERT_EQ(static_cast<TypeParam>(-4), this->op_->StackAt(0));
// Divide by zero.
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(4U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(5U, this->op_->StackSize());
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_ILLEGAL_VALUE, this->op_->LastErrorCode());
}
TYPED_TEST_P(DwarfOpTest, op_div) {
std::vector<uint8_t> opcode_buffer = {
// No stack, and op will fail.
0x1a,
// Push a single value.
0x08, 0x48,
// One element stack, and op will fail.
0x1a,
// Push another value.
0x08, 0xf0, 0x1a,
};
this->op_memory_.SetMemory(0, opcode_buffer);
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(2U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x1a, this->op_->cur_op());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_EQ(0x40U, this->op_->StackAt(0));
}
TYPED_TEST_P(DwarfOpTest, op_minus) {
std::vector<uint8_t> opcode_buffer = {
// No stack, and op will fail.
0x1c,
// Push a single value.
0x08, 0x48,
// One element stack, and op will fail.
0x1c,
// Push another value.
0x08, 0x04, 0x1c,
};
this->op_memory_.SetMemory(0, opcode_buffer);
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(2U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x1c, this->op_->cur_op());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_EQ(0x44U, this->op_->StackAt(0));
}
TYPED_TEST_P(DwarfOpTest, op_mod) {
std::vector<uint8_t> opcode_buffer = {
// No stack, and op will fail.
0x1d,
// Push a single value.
0x08, 0x47,
// One element stack, and op will fail.
0x1d,
// Push another value.
0x08, 0x04, 0x1d,
// Try a mod of zero.
0x08, 0x01, 0x08, 0x00, 0x1d,
};
this->op_memory_.SetMemory(0, opcode_buffer);
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(2U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x1d, this->op_->cur_op());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_EQ(0x03U, this->op_->StackAt(0));
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(2U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(3U, this->op_->StackSize());
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_ILLEGAL_VALUE, this->op_->LastErrorCode());
}
TYPED_TEST_P(DwarfOpTest, op_mul) {
std::vector<uint8_t> opcode_buffer = {
// No stack, and op will fail.
0x1e,
// Push a single value.
0x08, 0x48,
// One element stack, and op will fail.
0x1e,
// Push another value.
0x08, 0x04, 0x1e,
};
this->op_memory_.SetMemory(0, opcode_buffer);
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(2U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x1e, this->op_->cur_op());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_EQ(0x120U, this->op_->StackAt(0));
}
TYPED_TEST_P(DwarfOpTest, op_neg) {
std::vector<uint8_t> opcode_buffer = {
// No stack, and op will fail.
0x1f,
// Push a single value.
0x08, 0x48, 0x1f,
// Push a negative value.
0x11, 0x7f, 0x1f,
};
this->op_memory_.SetMemory(0, opcode_buffer);
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x1f, this->op_->cur_op());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_EQ(static_cast<TypeParam>(-72), this->op_->StackAt(0));
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(2U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x1f, this->op_->cur_op());
ASSERT_EQ(2U, this->op_->StackSize());
ASSERT_EQ(0x01U, this->op_->StackAt(0));
}
TYPED_TEST_P(DwarfOpTest, op_not) {
std::vector<uint8_t> opcode_buffer = {
// No stack, and op will fail.
0x20,
// Push a single value.
0x08, 0x4, 0x20,
// Push a negative value.
0x11, 0x7c, 0x20,
};
this->op_memory_.SetMemory(0, opcode_buffer);
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x20, this->op_->cur_op());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_EQ(static_cast<TypeParam>(-5), this->op_->StackAt(0));
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(2U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x20, this->op_->cur_op());
ASSERT_EQ(2U, this->op_->StackSize());
ASSERT_EQ(0x03U, this->op_->StackAt(0));
}
TYPED_TEST_P(DwarfOpTest, op_or) {
std::vector<uint8_t> opcode_buffer = {
// No stack, and op will fail.
0x21,
// Push a single value.
0x08, 0x48,
// One element stack, and op will fail.
0x21,
// Push another value.
0x08, 0xf4, 0x21,
};
this->op_memory_.SetMemory(0, opcode_buffer);
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(2U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x21, this->op_->cur_op());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_EQ(0xfcU, this->op_->StackAt(0));
}
TYPED_TEST_P(DwarfOpTest, op_plus) {
std::vector<uint8_t> opcode_buffer = {
// No stack, and op will fail.
0x22,
// Push a single value.
0x08, 0xff,
// One element stack, and op will fail.
0x22,
// Push another value.
0x08, 0xf2, 0x22,
};
this->op_memory_.SetMemory(0, opcode_buffer);
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(2U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x22, this->op_->cur_op());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_EQ(0x1f1U, this->op_->StackAt(0));
}
TYPED_TEST_P(DwarfOpTest, op_plus_uconst) {
std::vector<uint8_t> opcode_buffer = {
// No stack, and op will fail.
0x23,
// Push a single value.
0x08, 0x50, 0x23, 0x80, 0x51,
};
this->op_memory_.SetMemory(0, opcode_buffer);
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x23, this->op_->cur_op());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_EQ(0x28d0U, this->op_->StackAt(0));
}
TYPED_TEST_P(DwarfOpTest, op_shl) {
std::vector<uint8_t> opcode_buffer = {
// No stack, and op will fail.
0x24,
// Push a single value.
0x08, 0x67,
// One element stack, and op will fail.
0x24,
// Push another value.
0x08, 0x03, 0x24,
};
this->op_memory_.SetMemory(0, opcode_buffer);
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(2U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x24, this->op_->cur_op());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_EQ(0x338U, this->op_->StackAt(0));
}
TYPED_TEST_P(DwarfOpTest, op_shr) {
std::vector<uint8_t> opcode_buffer = {
// No stack, and op will fail.
0x25,
// Push a single value.
0x11, 0x70,
// One element stack, and op will fail.
0x25,
// Push another value.
0x08, 0x03, 0x25,
};
this->op_memory_.SetMemory(0, opcode_buffer);
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(2U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x25, this->op_->cur_op());
ASSERT_EQ(1U, this->op_->StackSize());
if (sizeof(TypeParam) == 4) {
ASSERT_EQ(0x1ffffffeU, this->op_->StackAt(0));
} else {
ASSERT_EQ(0x1ffffffffffffffeULL, this->op_->StackAt(0));
}
}
TYPED_TEST_P(DwarfOpTest, op_shra) {
std::vector<uint8_t> opcode_buffer = {
// No stack, and op will fail.
0x26,
// Push a single value.
0x11, 0x70,
// One element stack, and op will fail.
0x26,
// Push another value.
0x08, 0x03, 0x26,
};
this->op_memory_.SetMemory(0, opcode_buffer);
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(2U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x26, this->op_->cur_op());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_EQ(static_cast<TypeParam>(-2), this->op_->StackAt(0));
}
TYPED_TEST_P(DwarfOpTest, op_xor) {
std::vector<uint8_t> opcode_buffer = {
// No stack, and op will fail.
0x27,
// Push a single value.
0x08, 0x11,
// One element stack, and op will fail.
0x27,
// Push another value.
0x08, 0x41, 0x27,
};
this->op_memory_.SetMemory(0, opcode_buffer);
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(2U, this->op_->StackSize());
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x27, this->op_->cur_op());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_EQ(0x50U, this->op_->StackAt(0));
}
TYPED_TEST_P(DwarfOpTest, op_bra) {
std::vector<uint8_t> opcode_buffer = {
// No stack, and op will fail.
0x28,
// Push on a non-zero value with a positive branch.
0x08, 0x11, 0x28, 0x02, 0x01,
// Push on a zero value with a positive branch.
0x08, 0x00, 0x28, 0x05, 0x00,
// Push on a non-zero value with a negative branch.
0x08, 0x11, 0x28, 0xfc, 0xff,
// Push on a zero value with a negative branch.
0x08, 0x00, 0x28, 0xf0, 0xff,
};
this->op_memory_.SetMemory(0, opcode_buffer);
ASSERT_FALSE(this->op_->Decode());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
// Push on a non-zero value with a positive branch.
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(1U, this->op_->StackSize());
uint64_t offset = this->mem_->cur_offset() + 3;
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x28, this->op_->cur_op());
ASSERT_EQ(0U, this->op_->StackSize());
ASSERT_EQ(offset + 0x102, this->mem_->cur_offset());
// Push on a zero value with a positive branch.
this->mem_->set_cur_offset(offset);
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(1U, this->op_->StackSize());
offset = this->mem_->cur_offset() + 3;
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x28, this->op_->cur_op());
ASSERT_EQ(0U, this->op_->StackSize());
ASSERT_EQ(offset - 5, this->mem_->cur_offset());
// Push on a non-zero value with a negative branch.
this->mem_->set_cur_offset(offset);
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(1U, this->op_->StackSize());
offset = this->mem_->cur_offset() + 3;
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x28, this->op_->cur_op());
ASSERT_EQ(0U, this->op_->StackSize());
ASSERT_EQ(offset - 4, this->mem_->cur_offset());
// Push on a zero value with a negative branch.
this->mem_->set_cur_offset(offset);
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(1U, this->op_->StackSize());
offset = this->mem_->cur_offset() + 3;
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x28, this->op_->cur_op());
ASSERT_EQ(0U, this->op_->StackSize());
ASSERT_EQ(offset + 16, this->mem_->cur_offset());
}
TYPED_TEST_P(DwarfOpTest, compare_opcode_stack_error) {
// All of the ops require two stack elements. Loop through all of these
// ops with potential errors.
std::vector<uint8_t> opcode_buffer = {
0xff, // Place holder for compare op.
0x08, 0x11,
0xff, // Place holder for compare op.
};
for (uint8_t opcode = 0x29; opcode <= 0x2e; opcode++) {
opcode_buffer[0] = opcode;
opcode_buffer[3] = opcode;
this->op_memory_.SetMemory(0, opcode_buffer);
ASSERT_FALSE(this->op_->Eval(0, 1));
ASSERT_EQ(opcode, this->op_->cur_op());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
ASSERT_FALSE(this->op_->Eval(1, 4));
ASSERT_EQ(opcode, this->op_->cur_op());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode());
}
}
TYPED_TEST_P(DwarfOpTest, compare_opcodes) {
// Have three different checks for each compare op:
// - Both values the same.
// - The first value larger than the second.
// - The second value larger than the first.
std::vector<uint8_t> opcode_buffer = {
// Values the same.
0x08, 0x11, 0x08, 0x11,
0xff, // Placeholder.
// First value larger.
0x08, 0x12, 0x08, 0x10,
0xff, // Placeholder.
// Second value larger.
0x08, 0x10, 0x08, 0x12,
0xff, // Placeholder.
};
// Opcode followed by the expected values on the stack.
std::vector<uint8_t> expected = {
0x29, 1, 0, 0, // eq
0x2a, 1, 1, 0, // ge
0x2b, 0, 1, 0, // gt
0x2c, 1, 0, 1, // le
0x2d, 0, 0, 1, // lt
0x2e, 0, 1, 1, // ne
};
for (size_t i = 0; i < expected.size(); i += 4) {
opcode_buffer[4] = expected[i];
opcode_buffer[9] = expected[i];
opcode_buffer[14] = expected[i];
this->op_memory_.SetMemory(0, opcode_buffer);
ASSERT_TRUE(this->op_->Eval(0, 15))
<< "Op: 0x" << std::hex << static_cast<uint32_t>(expected[i]) << " failed";
ASSERT_EQ(3U, this->op_->StackSize());
ASSERT_EQ(expected[i + 1], this->op_->StackAt(2));
ASSERT_EQ(expected[i + 2], this->op_->StackAt(1));
ASSERT_EQ(expected[i + 3], this->op_->StackAt(0));
}
}
TYPED_TEST_P(DwarfOpTest, op_skip) {
std::vector<uint8_t> opcode_buffer = {
// Positive value.
0x2f, 0x10, 0x20,
// Negative value.
0x2f, 0xfd, 0xff,
};
this->op_memory_.SetMemory(0, opcode_buffer);
uint64_t offset = this->mem_->cur_offset() + 3;
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x2f, this->op_->cur_op());
ASSERT_EQ(0U, this->op_->StackSize());
ASSERT_EQ(offset + 0x2010, this->mem_->cur_offset());
this->mem_->set_cur_offset(offset);
offset = this->mem_->cur_offset() + 3;
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x2f, this->op_->cur_op());
ASSERT_EQ(0U, this->op_->StackSize());
ASSERT_EQ(offset - 3, this->mem_->cur_offset());
}
TYPED_TEST_P(DwarfOpTest, op_lit) {
std::vector<uint8_t> opcode_buffer;
// Verify every lit opcode.
for (uint8_t op = 0x30; op <= 0x4f; op++) {
opcode_buffer.push_back(op);
}
this->op_memory_.SetMemory(0, opcode_buffer);
for (size_t i = 0; i < opcode_buffer.size(); i++) {
uint32_t op = opcode_buffer[i];
ASSERT_TRUE(this->op_->Eval(i, i + 1)) << "Failed op: 0x" << std::hex << op;
ASSERT_EQ(op, this->op_->cur_op());
ASSERT_EQ(1U, this->op_->StackSize()) << "Failed op: 0x" << std::hex << op;
ASSERT_EQ(op - 0x30U, this->op_->StackAt(0)) << "Failed op: 0x" << std::hex << op;
}
}
TYPED_TEST_P(DwarfOpTest, op_reg) {
std::vector<uint8_t> opcode_buffer;
// Verify every reg opcode.
for (uint8_t op = 0x50; op <= 0x6f; op++) {
opcode_buffer.push_back(op);
}
this->op_memory_.SetMemory(0, opcode_buffer);
for (size_t i = 0; i < opcode_buffer.size(); i++) {
uint32_t op = opcode_buffer[i];
ASSERT_TRUE(this->op_->Eval(i, i + 1)) << "Failed op: 0x" << std::hex << op;
ASSERT_EQ(op, this->op_->cur_op());
ASSERT_TRUE(this->op_->is_register()) << "Failed op: 0x" << std::hex << op;
ASSERT_EQ(1U, this->op_->StackSize()) << "Failed op: 0x" << std::hex << op;
ASSERT_EQ(op - 0x50U, this->op_->StackAt(0)) << "Failed op: 0x" << std::hex << op;
}
}
TYPED_TEST_P(DwarfOpTest, op_regx) {
std::vector<uint8_t> opcode_buffer = {
0x90, 0x02, 0x90, 0x80, 0x15,
};
this->op_memory_.SetMemory(0, opcode_buffer);
ASSERT_TRUE(this->op_->Eval(0, 2));
ASSERT_EQ(0x90, this->op_->cur_op());
ASSERT_TRUE(this->op_->is_register());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_EQ(0x02U, this->op_->StackAt(0));
ASSERT_TRUE(this->op_->Eval(2, 5));
ASSERT_EQ(0x90, this->op_->cur_op());
ASSERT_TRUE(this->op_->is_register());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_EQ(0xa80U, this->op_->StackAt(0));
}
TYPED_TEST_P(DwarfOpTest, op_breg) {
std::vector<uint8_t> opcode_buffer;
// Verify every reg opcode.
for (uint8_t op = 0x70; op <= 0x8f; op++) {
// Positive value added to register.
opcode_buffer.push_back(op);
opcode_buffer.push_back(0x12);
// Negative value added to register.
opcode_buffer.push_back(op);
opcode_buffer.push_back(0x7e);
}
this->op_memory_.SetMemory(0, opcode_buffer);
RegsImplFake<TypeParam> regs(32);
for (size_t i = 0; i < 32; i++) {
regs[i] = i + 10;
}
RegsInfo<TypeParam> regs_info(&regs);
this->op_->set_regs_info(&regs_info);
uint64_t offset = 0;
for (uint32_t op = 0x70; op <= 0x8f; op++) {
// Positive value added to register.
ASSERT_TRUE(this->op_->Eval(offset, offset + 2)) << "Failed op: 0x" << std::hex << op;
ASSERT_EQ(op, this->op_->cur_op());
ASSERT_EQ(1U, this->op_->StackSize()) << "Failed op: 0x" << std::hex << op;
ASSERT_EQ(op - 0x70 + 10 + 0x12, this->op_->StackAt(0)) << "Failed op: 0x" << std::hex << op;
offset += 2;
// Negative value added to register.
ASSERT_TRUE(this->op_->Eval(offset, offset + 2)) << "Failed op: 0x" << std::hex << op;
ASSERT_EQ(op, this->op_->cur_op());
ASSERT_EQ(1U, this->op_->StackSize()) << "Failed op: 0x" << std::hex << op;
ASSERT_EQ(op - 0x70 + 10 - 2, this->op_->StackAt(0)) << "Failed op: 0x" << std::hex << op;
offset += 2;
}
}
TYPED_TEST_P(DwarfOpTest, op_breg_invalid_register) {
std::vector<uint8_t> opcode_buffer = {
0x7f, 0x12, 0x80, 0x12,
};
this->op_memory_.SetMemory(0, opcode_buffer);
RegsImplFake<TypeParam> regs(16);
for (size_t i = 0; i < 16; i++) {
regs[i] = i + 10;
}
RegsInfo<TypeParam> regs_info(&regs);
this->op_->set_regs_info(&regs_info);
// Should pass since this references the last regsister.
ASSERT_TRUE(this->op_->Eval(0, 2));
ASSERT_EQ(0x7fU, this->op_->cur_op());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_EQ(0x2bU, this->op_->StackAt(0));
// Should fail since this references a non-existent register.
ASSERT_FALSE(this->op_->Eval(2, 4));
ASSERT_EQ(DWARF_ERROR_ILLEGAL_VALUE, this->op_->LastErrorCode());
}
TYPED_TEST_P(DwarfOpTest, op_bregx) {
std::vector<uint8_t> opcode_buffer = {// Positive value added to register.
0x92, 0x05, 0x20,
// Negative value added to register.
0x92, 0x06, 0x80, 0x7e,
// Illegal register.
0x92, 0x80, 0x15, 0x80, 0x02};
this->op_memory_.SetMemory(0, opcode_buffer);
RegsImplFake<TypeParam> regs(10);
regs[5] = 0x45;
regs[6] = 0x190;
RegsInfo<TypeParam> regs_info(&regs);
this->op_->set_regs_info(&regs_info);
ASSERT_TRUE(this->op_->Eval(0, 3));
ASSERT_EQ(0x92, this->op_->cur_op());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_EQ(0x65U, this->op_->StackAt(0));
ASSERT_TRUE(this->op_->Eval(3, 7));
ASSERT_EQ(0x92, this->op_->cur_op());
ASSERT_EQ(1U, this->op_->StackSize());
ASSERT_EQ(0x90U, this->op_->StackAt(0));
ASSERT_FALSE(this->op_->Eval(7, 12));
ASSERT_EQ(DWARF_ERROR_ILLEGAL_VALUE, this->op_->LastErrorCode());
}
TYPED_TEST_P(DwarfOpTest, op_nop) {
this->op_memory_.SetMemory(0, std::vector<uint8_t>{0x96});
ASSERT_TRUE(this->op_->Decode());
ASSERT_EQ(0x96, this->op_->cur_op());
ASSERT_EQ(0U, this->op_->StackSize());
}
TYPED_TEST_P(DwarfOpTest, is_dex_pc) {
// Special sequence that indicates this is a dex pc.
this->op_memory_.SetMemory(0, std::vector<uint8_t>{0x0c, 'D', 'E', 'X', '1', 0x13});
ASSERT_TRUE(this->op_->Eval(0, 6));
EXPECT_TRUE(this->op_->dex_pc_set());
// Try without the last op.
ASSERT_TRUE(this->op_->Eval(0, 5));
EXPECT_FALSE(this->op_->dex_pc_set());
// Change the constant.
this->op_memory_.SetMemory(0, std::vector<uint8_t>{0x0c, 'D', 'E', 'X', '2', 0x13});
ASSERT_TRUE(this->op_->Eval(0, 6));
EXPECT_FALSE(this->op_->dex_pc_set());
}
REGISTER_TYPED_TEST_SUITE_P(DwarfOpTest, decode, eval, illegal_opcode, not_implemented, op_addr,
op_deref, op_deref_size, const_unsigned, const_signed, const_uleb,
const_sleb, op_dup, op_drop, op_over, op_pick, op_swap, op_rot, op_abs,
op_and, op_div, op_minus, op_mod, op_mul, op_neg, op_not, op_or,
op_plus, op_plus_uconst, op_shl, op_shr, op_shra, op_xor, op_bra,
compare_opcode_stack_error, compare_opcodes, op_skip, op_lit, op_reg,
op_regx, op_breg, op_breg_invalid_register, op_bregx, op_nop,
is_dex_pc);
typedef ::testing::Types<uint32_t, uint64_t> DwarfOpTestTypes;
INSTANTIATE_TYPED_TEST_SUITE_P(Libunwindstack, DwarfOpTest, DwarfOpTestTypes);
} // namespace unwindstack