platform_system_core/libbacktrace/backtrace_test.cpp
Christopher Ferris 17e91d44ed Rewrite libbacktrace using C++.
The old code was essentially trying to be C++ in C and was awkward. This
change makes it all objects with a thin layer that C code can use.

There is a C++ backtrace object that is not very useful, this code will
replace it.

This change also includes moving the backtrace test to a gtest, and adding
coverage of all major functionality.

Bug: 8410085
Change-Id: Iae0f1b09b3dd60395f71ed66010c1ea5cdd37841
2013-10-28 17:55:25 -07:00

660 lines
19 KiB
C++

/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <dirent.h>
#include <errno.h>
#include <pthread.h>
#include <signal.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ptrace.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <time.h>
#include <unistd.h>
#include <backtrace/backtrace.h>
#include <cutils/atomic.h>
#include <gtest/gtest.h>
#include <vector>
#include "thread_utils.h"
// Number of microseconds per milliseconds.
#define US_PER_MSEC 1000
// Number of nanoseconds in a second.
#define NS_PER_SEC 1000000000ULL
// Number of simultaneous dumping operations to perform.
#define NUM_THREADS 20
// Number of simultaneous threads running in our forked process.
#define NUM_PTRACE_THREADS 5
typedef struct {
pid_t tid;
int32_t state;
pthread_t threadId;
} thread_t;
typedef struct {
thread_t thread;
backtrace_context_t context;
int32_t* now;
int32_t done;
} dump_thread_t;
extern "C" {
// Prototypes for functions in the test library.
int test_level_one(int, int, int, int, void (*)(void*), void*);
int test_recursive_call(int, void (*)(void*), void*);
}
uint64_t NanoTime() {
struct timespec t = { 0, 0 };
clock_gettime(CLOCK_MONOTONIC, &t);
return static_cast<uint64_t>(t.tv_sec * NS_PER_SEC + t.tv_nsec);
}
void DumpFrames(const backtrace_context_t* context) {
if (context->backtrace->num_frames == 0) {
printf(" No frames to dump\n");
} else {
char line[512];
for (size_t i = 0; i < context->backtrace->num_frames; i++) {
backtrace_format_frame_data(context, i, line, sizeof(line));
printf(" %s\n", line);
}
}
}
void WaitForStop(pid_t pid) {
uint64_t start = NanoTime();
siginfo_t si;
while (ptrace(PTRACE_GETSIGINFO, pid, 0, &si) < 0 && (errno == EINTR || errno == ESRCH)) {
if ((NanoTime() - start) > NS_PER_SEC) {
printf("The process did not get to a stopping point in 1 second.\n");
break;
}
usleep(US_PER_MSEC);
}
}
bool ReadyLevelBacktrace(const backtrace_t* backtrace) {
// See if test_level_four is in the backtrace.
bool found = false;
for (size_t i = 0; i < backtrace->num_frames; i++) {
if (backtrace->frames[i].func_name != NULL &&
strcmp(backtrace->frames[i].func_name, "test_level_four") == 0) {
found = true;
break;
}
}
return found;
}
void VerifyLevelDump(const backtrace_t* backtrace) {
ASSERT_GT(backtrace->num_frames, static_cast<size_t>(0));
ASSERT_LT(backtrace->num_frames, static_cast<size_t>(MAX_BACKTRACE_FRAMES));
// Look through the frames starting at the highest to find the
// frame we want.
size_t frame_num = 0;
for (size_t i = backtrace->num_frames-1; i > 2; i--) {
if (backtrace->frames[i].func_name != NULL &&
strcmp(backtrace->frames[i].func_name, "test_level_one") == 0) {
frame_num = i;
break;
}
}
ASSERT_GT(frame_num, static_cast<size_t>(0));
ASSERT_TRUE(NULL != backtrace->frames[frame_num].func_name);
ASSERT_STREQ(backtrace->frames[frame_num].func_name, "test_level_one");
ASSERT_TRUE(NULL != backtrace->frames[frame_num-1].func_name);
ASSERT_STREQ(backtrace->frames[frame_num-1].func_name, "test_level_two");
ASSERT_TRUE(NULL != backtrace->frames[frame_num-2].func_name);
ASSERT_STREQ(backtrace->frames[frame_num-2].func_name, "test_level_three");
ASSERT_TRUE(NULL != backtrace->frames[frame_num-3].func_name);
ASSERT_STREQ(backtrace->frames[frame_num-3].func_name, "test_level_four");
}
void VerifyLevelBacktrace(void*) {
backtrace_context_t context;
ASSERT_TRUE(backtrace_create_context(&context, -1, -1, 0));
VerifyLevelDump(context.backtrace);
backtrace_destroy_context(&context);
}
bool ReadyMaxBacktrace(const backtrace_t* backtrace) {
return (backtrace->num_frames == MAX_BACKTRACE_FRAMES);
}
void VerifyMaxDump(const backtrace_t* backtrace) {
ASSERT_EQ(backtrace->num_frames, static_cast<size_t>(MAX_BACKTRACE_FRAMES));
// Verify that the last frame is our recursive call.
ASSERT_TRUE(NULL != backtrace->frames[MAX_BACKTRACE_FRAMES-1].func_name);
ASSERT_STREQ(backtrace->frames[MAX_BACKTRACE_FRAMES-1].func_name,
"test_recursive_call");
}
void VerifyMaxBacktrace(void*) {
backtrace_context_t context;
ASSERT_TRUE(backtrace_create_context(&context, -1, -1, 0));
VerifyMaxDump(context.backtrace);
backtrace_destroy_context(&context);
}
void ThreadSetState(void* data) {
thread_t* thread = reinterpret_cast<thread_t*>(data);
android_atomic_acquire_store(1, &thread->state);
volatile int i = 0;
while (thread->state) {
i++;
}
}
void VerifyThreadTest(pid_t tid, void (*VerifyFunc)(const backtrace_t*)) {
backtrace_context_t context;
backtrace_create_context(&context, getpid(), tid, 0);
VerifyFunc(context.backtrace);
backtrace_destroy_context(&context);
}
bool WaitForNonZero(int32_t* value, uint64_t seconds) {
uint64_t start = NanoTime();
do {
if (android_atomic_acquire_load(value)) {
return true;
}
} while ((NanoTime() - start) < seconds * NS_PER_SEC);
return false;
}
TEST(libbacktrace, local_trace) {
ASSERT_NE(test_level_one(1, 2, 3, 4, VerifyLevelBacktrace, NULL), 0);
}
void VerifyIgnoreFrames(
const backtrace_t* bt_all, const backtrace_t* bt_ign1,
const backtrace_t* bt_ign2, const char* cur_proc) {
EXPECT_EQ(bt_all->num_frames, bt_ign1->num_frames + 1);
EXPECT_EQ(bt_all->num_frames, bt_ign2->num_frames + 2);
// Check all of the frames are the same > the current frame.
bool check = (cur_proc == NULL);
for (size_t i = 0; i < bt_ign2->num_frames; i++) {
if (check) {
EXPECT_EQ(bt_ign2->frames[i].pc, bt_ign1->frames[i+1].pc);
EXPECT_EQ(bt_ign2->frames[i].sp, bt_ign1->frames[i+1].sp);
EXPECT_EQ(bt_ign2->frames[i].stack_size, bt_ign1->frames[i+1].stack_size);
EXPECT_EQ(bt_ign2->frames[i].pc, bt_all->frames[i+2].pc);
EXPECT_EQ(bt_ign2->frames[i].sp, bt_all->frames[i+2].sp);
EXPECT_EQ(bt_ign2->frames[i].stack_size, bt_all->frames[i+2].stack_size);
}
if (!check && bt_ign2->frames[i].func_name &&
strcmp(bt_ign2->frames[i].func_name, cur_proc) == 0) {
check = true;
}
}
}
void VerifyLevelIgnoreFrames(void*) {
backtrace_context_t all;
ASSERT_TRUE(backtrace_create_context(&all, -1, -1, 0));
ASSERT_TRUE(all.backtrace != NULL);
backtrace_context_t ign1;
ASSERT_TRUE(backtrace_create_context(&ign1, -1, -1, 1));
ASSERT_TRUE(ign1.backtrace != NULL);
backtrace_context_t ign2;
ASSERT_TRUE(backtrace_create_context(&ign2, -1, -1, 2));
ASSERT_TRUE(ign2.backtrace != NULL);
VerifyIgnoreFrames(all.backtrace, ign1.backtrace, ign2.backtrace,
"VerifyLevelIgnoreFrames");
backtrace_destroy_context(&all);
backtrace_destroy_context(&ign1);
backtrace_destroy_context(&ign2);
}
TEST(libbacktrace, local_trace_ignore_frames) {
ASSERT_NE(test_level_one(1, 2, 3, 4, VerifyLevelIgnoreFrames, NULL), 0);
}
TEST(libbacktrace, local_max_trace) {
ASSERT_NE(test_recursive_call(MAX_BACKTRACE_FRAMES+10, VerifyMaxBacktrace, NULL), 0);
}
void VerifyProcTest(pid_t pid, pid_t tid,
bool (*ReadyFunc)(const backtrace_t*),
void (*VerifyFunc)(const backtrace_t*)) {
pid_t ptrace_tid;
if (tid < 0) {
ptrace_tid = pid;
} else {
ptrace_tid = tid;
}
uint64_t start = NanoTime();
bool verified = false;
do {
usleep(US_PER_MSEC);
if (ptrace(PTRACE_ATTACH, ptrace_tid, 0, 0) == 0) {
// Wait for the process to get to a stopping point.
WaitForStop(ptrace_tid);
backtrace_context_t context;
ASSERT_TRUE(backtrace_create_context(&context, pid, tid, 0));
if (ReadyFunc(context.backtrace)) {
VerifyFunc(context.backtrace);
verified = true;
}
backtrace_destroy_context(&context);
ASSERT_TRUE(ptrace(PTRACE_DETACH, ptrace_tid, 0, 0) == 0);
}
// If 5 seconds have passed, then we are done.
} while (!verified && (NanoTime() - start) <= 5 * NS_PER_SEC);
ASSERT_TRUE(verified);
}
TEST(libbacktrace, ptrace_trace) {
pid_t pid;
if ((pid = fork()) == 0) {
ASSERT_NE(test_level_one(1, 2, 3, 4, NULL, NULL), 0);
exit(1);
}
VerifyProcTest(pid, -1, ReadyLevelBacktrace, VerifyLevelDump);
kill(pid, SIGKILL);
int status;
ASSERT_EQ(waitpid(pid, &status, 0), pid);
}
TEST(libbacktrace, ptrace_max_trace) {
pid_t pid;
if ((pid = fork()) == 0) {
ASSERT_NE(test_recursive_call(MAX_BACKTRACE_FRAMES+10, NULL, NULL), 0);
exit(1);
}
VerifyProcTest(pid, -1, ReadyMaxBacktrace, VerifyMaxDump);
kill(pid, SIGKILL);
int status;
ASSERT_EQ(waitpid(pid, &status, 0), pid);
}
void VerifyProcessIgnoreFrames(const backtrace_t* bt_all) {
pid_t pid = bt_all->pid;
backtrace_context_t ign1;
ASSERT_TRUE(backtrace_create_context(&ign1, pid, -1, 1));
ASSERT_TRUE(ign1.backtrace != NULL);
backtrace_context_t ign2;
ASSERT_TRUE(backtrace_create_context(&ign2, pid, -1, 2));
ASSERT_TRUE(ign2.backtrace != NULL);
VerifyIgnoreFrames(bt_all, ign1.backtrace, ign2.backtrace, NULL);
backtrace_destroy_context(&ign1);
backtrace_destroy_context(&ign2);
}
TEST(libbacktrace, ptrace_ignore_frames) {
pid_t pid;
if ((pid = fork()) == 0) {
ASSERT_NE(test_level_one(1, 2, 3, 4, NULL, NULL), 0);
exit(1);
}
VerifyProcTest(pid, -1, ReadyLevelBacktrace, VerifyProcessIgnoreFrames);
kill(pid, SIGKILL);
int status;
ASSERT_EQ(waitpid(pid, &status, 0), pid);
}
// Create a process with multiple threads and dump all of the threads.
void* PtraceThreadLevelRun(void*) {
EXPECT_NE(test_level_one(1, 2, 3, 4, NULL, NULL), 0);
return NULL;
}
void GetThreads(pid_t pid, std::vector<pid_t>* threads) {
// Get the list of tasks.
char task_path[128];
snprintf(task_path, sizeof(task_path), "/proc/%d/task", pid);
DIR* tasks_dir = opendir(task_path);
ASSERT_TRUE(tasks_dir != NULL);
struct dirent* entry;
while ((entry = readdir(tasks_dir)) != NULL) {
char* end;
pid_t tid = strtoul(entry->d_name, &end, 10);
if (*end == '\0') {
threads->push_back(tid);
}
}
closedir(tasks_dir);
}
TEST(libbacktrace, ptrace_threads) {
pid_t pid;
if ((pid = fork()) == 0) {
for (size_t i = 0; i < NUM_PTRACE_THREADS; i++) {
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
pthread_t thread;
ASSERT_TRUE(pthread_create(&thread, &attr, PtraceThreadLevelRun, NULL) == 0);
}
ASSERT_NE(test_level_one(1, 2, 3, 4, NULL, NULL), 0);
exit(1);
}
// Check to see that all of the threads are running before unwinding.
std::vector<pid_t> threads;
uint64_t start = NanoTime();
do {
usleep(US_PER_MSEC);
threads.clear();
GetThreads(pid, &threads);
} while ((threads.size() != NUM_PTRACE_THREADS + 1) &&
((NanoTime() - start) <= 5 * NS_PER_SEC));
ASSERT_EQ(threads.size(), static_cast<size_t>(NUM_PTRACE_THREADS + 1));
ASSERT_TRUE(ptrace(PTRACE_ATTACH, pid, 0, 0) == 0);
WaitForStop(pid);
for (std::vector<int>::const_iterator it = threads.begin(); it != threads.end(); ++it) {
// Skip the current forked process, we only care about the threads.
if (pid == *it) {
continue;
}
VerifyProcTest(pid, *it, ReadyLevelBacktrace, VerifyLevelDump);
}
ASSERT_TRUE(ptrace(PTRACE_DETACH, pid, 0, 0) == 0);
kill(pid, SIGKILL);
int status;
ASSERT_EQ(waitpid(pid, &status, 0), pid);
}
void VerifyLevelThread(void*) {
backtrace_context_t context;
ASSERT_TRUE(backtrace_create_context(&context, getpid(), gettid(), 0));
VerifyLevelDump(context.backtrace);
backtrace_destroy_context(&context);
}
TEST(libbacktrace, thread_current_level) {
ASSERT_NE(test_level_one(1, 2, 3, 4, VerifyLevelThread, NULL), 0);
}
void VerifyMaxThread(void*) {
backtrace_context_t context;
ASSERT_TRUE(backtrace_create_context(&context, getpid(), gettid(), 0));
VerifyMaxDump(context.backtrace);
backtrace_destroy_context(&context);
}
TEST(libbacktrace, thread_current_max) {
ASSERT_NE(test_recursive_call(MAX_BACKTRACE_FRAMES+10, VerifyMaxThread, NULL), 0);
}
void* ThreadLevelRun(void* data) {
thread_t* thread = reinterpret_cast<thread_t*>(data);
thread->tid = gettid();
EXPECT_NE(test_level_one(1, 2, 3, 4, ThreadSetState, data), 0);
return NULL;
}
TEST(libbacktrace, thread_level_trace) {
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
thread_t thread_data = { 0, 0, 0 };
pthread_t thread;
ASSERT_TRUE(pthread_create(&thread, &attr, ThreadLevelRun, &thread_data) == 0);
// Wait up to 2 seconds for the tid to be set.
ASSERT_TRUE(WaitForNonZero(&thread_data.state, 2));
// Save the current signal action and make sure it is restored afterwards.
struct sigaction cur_action;
ASSERT_TRUE(sigaction(SIGURG, NULL, &cur_action) == 0);
backtrace_context_t context;
ASSERT_TRUE(backtrace_create_context(&context, getpid(), thread_data.tid,0));
VerifyLevelDump(context.backtrace);
backtrace_destroy_context(&context);
// Tell the thread to exit its infinite loop.
android_atomic_acquire_store(0, &thread_data.state);
// Verify that the old action was restored.
struct sigaction new_action;
ASSERT_TRUE(sigaction(SIGURG, NULL, &new_action) == 0);
EXPECT_EQ(cur_action.sa_sigaction, new_action.sa_sigaction);
EXPECT_EQ(cur_action.sa_flags, new_action.sa_flags);
}
TEST(libbacktrace, thread_ignore_frames) {
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
thread_t thread_data = { 0, 0, 0 };
pthread_t thread;
ASSERT_TRUE(pthread_create(&thread, &attr, ThreadLevelRun, &thread_data) == 0);
// Wait up to 2 seconds for the tid to be set.
ASSERT_TRUE(WaitForNonZero(&thread_data.state, 2));
backtrace_context_t all;
ASSERT_TRUE(backtrace_create_context(&all, getpid(), thread_data.tid, 0));
backtrace_context_t ign1;
ASSERT_TRUE(backtrace_create_context(&ign1, getpid(), thread_data.tid, 1));
backtrace_context_t ign2;
ASSERT_TRUE(backtrace_create_context(&ign2, getpid(), thread_data.tid, 2));
VerifyIgnoreFrames(all.backtrace, ign1.backtrace, ign2.backtrace, NULL);
backtrace_destroy_context(&all);
backtrace_destroy_context(&ign1);
backtrace_destroy_context(&ign2);
// Tell the thread to exit its infinite loop.
android_atomic_acquire_store(0, &thread_data.state);
}
void* ThreadMaxRun(void* data) {
thread_t* thread = reinterpret_cast<thread_t*>(data);
thread->tid = gettid();
EXPECT_NE(test_recursive_call(MAX_BACKTRACE_FRAMES+10, ThreadSetState, data), 0);
return NULL;
}
TEST(libbacktrace, thread_max_trace) {
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
thread_t thread_data = { 0, 0, 0 };
pthread_t thread;
ASSERT_TRUE(pthread_create(&thread, &attr, ThreadMaxRun, &thread_data) == 0);
// Wait for the tid to be set.
ASSERT_TRUE(WaitForNonZero(&thread_data.state, 2));
backtrace_context_t context;
ASSERT_TRUE(backtrace_create_context(&context, getpid(), thread_data.tid, 0));
VerifyMaxDump(context.backtrace);
backtrace_destroy_context(&context);
// Tell the thread to exit its infinite loop.
android_atomic_acquire_store(0, &thread_data.state);
}
void* ThreadDump(void* data) {
dump_thread_t* dump = reinterpret_cast<dump_thread_t*>(data);
while (true) {
if (android_atomic_acquire_load(dump->now)) {
break;
}
}
dump->context.data = NULL;
dump->context.backtrace = NULL;
// The status of the actual unwind will be checked elsewhere.
backtrace_create_context(&dump->context, getpid(), dump->thread.tid, 0);
android_atomic_acquire_store(1, &dump->done);
return NULL;
}
TEST(libbacktrace, thread_multiple_dump) {
// Dump NUM_THREADS simultaneously.
std::vector<thread_t> runners(NUM_THREADS);
std::vector<dump_thread_t> dumpers(NUM_THREADS);
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
for (size_t i = 0; i < NUM_THREADS; i++) {
// Launch the runners, they will spin in hard loops doing nothing.
runners[i].tid = 0;
runners[i].state = 0;
ASSERT_TRUE(pthread_create(&runners[i].threadId, &attr, ThreadMaxRun, &runners[i]) == 0);
}
// Wait for tids to be set.
for (std::vector<thread_t>::iterator it = runners.begin(); it != runners.end(); ++it) {
ASSERT_TRUE(WaitForNonZero(&it->state, 10));
}
// Start all of the dumpers at once, they will spin until they are signalled
// to begin their dump run.
int32_t dump_now = 0;
for (size_t i = 0; i < NUM_THREADS; i++) {
dumpers[i].thread.tid = runners[i].tid;
dumpers[i].thread.state = 0;
dumpers[i].done = 0;
dumpers[i].now = &dump_now;
ASSERT_TRUE(pthread_create(&dumpers[i].thread.threadId, &attr, ThreadDump, &dumpers[i]) == 0);
}
// Start all of the dumpers going at once.
android_atomic_acquire_store(1, &dump_now);
for (size_t i = 0; i < NUM_THREADS; i++) {
ASSERT_TRUE(WaitForNonZero(&dumpers[i].done, 10));
// Tell the runner thread to exit its infinite loop.
android_atomic_acquire_store(0, &runners[i].state);
ASSERT_TRUE(dumpers[i].context.backtrace != NULL);
VerifyMaxDump(dumpers[i].context.backtrace);
backtrace_destroy_context(&dumpers[i].context);
}
}
TEST(libbacktrace, format_test) {
backtrace_context_t context;
ASSERT_TRUE(backtrace_create_context(&context, -1, -1, 0));
ASSERT_TRUE(context.backtrace != NULL);
backtrace_frame_data_t* frame = &context.backtrace->frames[1];
backtrace_frame_data_t save_frame = *frame;
memset(frame, 0, sizeof(backtrace_frame_data_t));
char buf[512];
backtrace_format_frame_data(&context, 1, buf, sizeof(buf));
#if defined(__LP64__)
EXPECT_STREQ(buf, "#01 pc 0000000000000000 <unknown>");
#else
EXPECT_STREQ(buf, "#01 pc 00000000 <unknown>");
#endif
frame->pc = 0x12345678;
frame->map_name = "MapFake";
backtrace_format_frame_data(&context, 1, buf, sizeof(buf));
#if defined(__LP64__)
EXPECT_STREQ(buf, "#01 pc 0000000012345678 MapFake");
#else
EXPECT_STREQ(buf, "#01 pc 12345678 MapFake");
#endif
frame->func_name = "ProcFake";
backtrace_format_frame_data(&context, 1, buf, sizeof(buf));
#if defined(__LP64__)
EXPECT_STREQ(buf, "#01 pc 0000000012345678 MapFake (ProcFake)");
#else
EXPECT_STREQ(buf, "#01 pc 12345678 MapFake (ProcFake)");
#endif
frame->func_offset = 645;
backtrace_format_frame_data(&context, 1, buf, sizeof(buf));
#if defined(__LP64__)
EXPECT_STREQ(buf, "#01 pc 0000000012345678 MapFake (ProcFake+645)");
#else
EXPECT_STREQ(buf, "#01 pc 12345678 MapFake (ProcFake+645)");
#endif
*frame = save_frame;
backtrace_destroy_context(&context);
}