platform_system_core/libunwindstack/RegsArm.cpp
Christopher Ferris f0c82e7bad Use elf offset in signal step check.
The function StepIfSignalHandler assumed that the rel_pc passed
to it was actually an elf offset. A new version of clang created a libc.so
that has a load bias, so tests unwinding through a signal handler
would fail on arm. On other ABIs, there is unwind information that could
be used instead, so the unwind still worked.

The fix is to subtract the load bias from the rel_pc to get an elf
offset to pass to the Register StepIfSignalHandler functions. Change all
of the Register funtions to make it clear what the first parameter means.

Add a unit test for this new code. Also, add an offline test for
this case.

Bug: 145683525

Test: Ran unit tests using the new clang and the old clang.
Change-Id: I3e249653b79bcad6d3a56411a7911fde4888e9d6
2019-12-04 22:29:59 +00:00

205 lines
5.3 KiB
C++

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdint.h>
#include <string.h>
#include <functional>
#include <unwindstack/Elf.h>
#include <unwindstack/MachineArm.h>
#include <unwindstack/MapInfo.h>
#include <unwindstack/Memory.h>
#include <unwindstack/RegsArm.h>
#include <unwindstack/UcontextArm.h>
#include <unwindstack/UserArm.h>
namespace unwindstack {
RegsArm::RegsArm() : RegsImpl<uint32_t>(ARM_REG_LAST, Location(LOCATION_REGISTER, ARM_REG_LR)) {}
ArchEnum RegsArm::Arch() {
return ARCH_ARM;
}
uint64_t RegsArm::pc() {
return regs_[ARM_REG_PC];
}
uint64_t RegsArm::sp() {
return regs_[ARM_REG_SP];
}
void RegsArm::set_pc(uint64_t pc) {
regs_[ARM_REG_PC] = pc;
}
void RegsArm::set_sp(uint64_t sp) {
regs_[ARM_REG_SP] = sp;
}
uint64_t RegsArm::GetPcAdjustment(uint64_t rel_pc, Elf* elf) {
if (!elf->valid()) {
return 2;
}
uint64_t load_bias = elf->GetLoadBias();
if (rel_pc < load_bias) {
if (rel_pc < 2) {
return 0;
}
return 2;
}
uint64_t adjusted_rel_pc = rel_pc - load_bias;
if (adjusted_rel_pc < 5) {
if (adjusted_rel_pc < 2) {
return 0;
}
return 2;
}
if (adjusted_rel_pc & 1) {
// This is a thumb instruction, it could be 2 or 4 bytes.
uint32_t value;
if (!elf->memory()->ReadFully(adjusted_rel_pc - 5, &value, sizeof(value)) ||
(value & 0xe000f000) != 0xe000f000) {
return 2;
}
}
return 4;
}
bool RegsArm::SetPcFromReturnAddress(Memory*) {
uint32_t lr = regs_[ARM_REG_LR];
if (regs_[ARM_REG_PC] == lr) {
return false;
}
regs_[ARM_REG_PC] = lr;
return true;
}
void RegsArm::IterateRegisters(std::function<void(const char*, uint64_t)> fn) {
fn("r0", regs_[ARM_REG_R0]);
fn("r1", regs_[ARM_REG_R1]);
fn("r2", regs_[ARM_REG_R2]);
fn("r3", regs_[ARM_REG_R3]);
fn("r4", regs_[ARM_REG_R4]);
fn("r5", regs_[ARM_REG_R5]);
fn("r6", regs_[ARM_REG_R6]);
fn("r7", regs_[ARM_REG_R7]);
fn("r8", regs_[ARM_REG_R8]);
fn("r9", regs_[ARM_REG_R9]);
fn("r10", regs_[ARM_REG_R10]);
fn("r11", regs_[ARM_REG_R11]);
fn("ip", regs_[ARM_REG_R12]);
fn("sp", regs_[ARM_REG_SP]);
fn("lr", regs_[ARM_REG_LR]);
fn("pc", regs_[ARM_REG_PC]);
}
Regs* RegsArm::Read(void* remote_data) {
arm_user_regs* user = reinterpret_cast<arm_user_regs*>(remote_data);
RegsArm* regs = new RegsArm();
memcpy(regs->RawData(), &user->regs[0], ARM_REG_LAST * sizeof(uint32_t));
return regs;
}
Regs* RegsArm::CreateFromUcontext(void* ucontext) {
arm_ucontext_t* arm_ucontext = reinterpret_cast<arm_ucontext_t*>(ucontext);
RegsArm* regs = new RegsArm();
memcpy(regs->RawData(), &arm_ucontext->uc_mcontext.regs[0], ARM_REG_LAST * sizeof(uint32_t));
return regs;
}
bool RegsArm::StepIfSignalHandler(uint64_t elf_offset, Elf* elf, Memory* process_memory) {
uint32_t data;
Memory* elf_memory = elf->memory();
// Read from elf memory since it is usually more expensive to read from
// process memory.
if (!elf_memory->ReadFully(elf_offset, &data, sizeof(data))) {
return false;
}
uint64_t offset = 0;
if (data == 0xe3a07077 || data == 0xef900077 || data == 0xdf002777) {
uint64_t sp = regs_[ARM_REG_SP];
// non-RT sigreturn call.
// __restore:
//
// Form 1 (arm):
// 0x77 0x70 mov r7, #0x77
// 0xa0 0xe3 svc 0x00000000
//
// Form 2 (arm):
// 0x77 0x00 0x90 0xef svc 0x00900077
//
// Form 3 (thumb):
// 0x77 0x27 movs r7, #77
// 0x00 0xdf svc 0
if (!process_memory->ReadFully(sp, &data, sizeof(data))) {
return false;
}
if (data == 0x5ac3c35a) {
// SP + uc_mcontext offset + r0 offset.
offset = sp + 0x14 + 0xc;
} else {
// SP + r0 offset
offset = sp + 0xc;
}
} else if (data == 0xe3a070ad || data == 0xef9000ad || data == 0xdf0027ad) {
uint64_t sp = regs_[ARM_REG_SP];
// RT sigreturn call.
// __restore_rt:
//
// Form 1 (arm):
// 0xad 0x70 mov r7, #0xad
// 0xa0 0xe3 svc 0x00000000
//
// Form 2 (arm):
// 0xad 0x00 0x90 0xef svc 0x009000ad
//
// Form 3 (thumb):
// 0xad 0x27 movs r7, #ad
// 0x00 0xdf svc 0
if (!process_memory->ReadFully(sp, &data, sizeof(data))) {
return false;
}
if (data == sp + 8) {
// SP + 8 + sizeof(siginfo_t) + uc_mcontext_offset + r0 offset
offset = sp + 8 + 0x80 + 0x14 + 0xc;
} else {
// SP + sizeof(siginfo_t) + uc_mcontext_offset + r0 offset
offset = sp + 0x80 + 0x14 + 0xc;
}
}
if (offset == 0) {
return false;
}
if (!process_memory->ReadFully(offset, regs_.data(), sizeof(uint32_t) * ARM_REG_LAST)) {
return false;
}
return true;
}
Regs* RegsArm::Clone() {
return new RegsArm(*this);
}
} // namespace unwindstack