platform_system_core/libpixelflinger/buffer.cpp
Chih-Hung Hsieh 502f4864d6 Suppress implicit-fallthrough warnings.
Add FALLTHROUGH_INTENDED for clang compiler.

Bug: 112564944
Test: build with global -Wimplicit-fallthrough.
Change-Id: I40f8bbf94e207c9dd90921e9b762ba51abab5777
2018-09-17 16:50:11 +00:00

389 lines
12 KiB
C++

/* libs/pixelflinger/buffer.cpp
**
** Copyright 2006, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#include <assert.h>
#include <android-base/macros.h>
#include "buffer.h"
namespace android {
// ----------------------------------------------------------------------------
static void read_pixel(const surface_t* s, context_t* c,
uint32_t x, uint32_t y, pixel_t* pixel);
static void write_pixel(const surface_t* s, context_t* c,
uint32_t x, uint32_t y, const pixel_t* pixel);
static void readRGB565(const surface_t* s, context_t* c,
uint32_t x, uint32_t y, pixel_t* pixel);
static void readABGR8888(const surface_t* s, context_t* c,
uint32_t x, uint32_t y, pixel_t* pixel);
static uint32_t logic_op(int op, uint32_t s, uint32_t d);
static uint32_t extract(uint32_t v, int h, int l, int bits);
static uint32_t expand(uint32_t v, int sbits, int dbits);
static uint32_t downshift_component(uint32_t in, uint32_t v,
int sh, int sl, int dh, int dl, int ch, int cl, int dither);
// ----------------------------------------------------------------------------
void ggl_init_texture(context_t* c)
{
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; i++) {
texture_t& t = c->state.texture[i];
t.s_coord = GGL_ONE_TO_ONE;
t.t_coord = GGL_ONE_TO_ONE;
t.s_wrap = GGL_REPEAT;
t.t_wrap = GGL_REPEAT;
t.min_filter = GGL_NEAREST;
t.mag_filter = GGL_NEAREST;
t.env = GGL_MODULATE;
}
c->activeTMU = &(c->state.texture[0]);
}
void ggl_set_surface(context_t* c, surface_t* dst, const GGLSurface* src)
{
dst->width = src->width;
dst->height = src->height;
dst->stride = src->stride;
dst->data = src->data;
dst->format = src->format;
dst->dirty = 1;
if (__builtin_expect(dst->stride < 0, false)) {
const GGLFormat& pixelFormat(c->formats[dst->format]);
const int32_t bpr = -dst->stride * pixelFormat.size;
dst->data += bpr * (dst->height-1);
}
}
static void pick_read_write(surface_t* s)
{
// Choose best reader/writers.
switch (s->format) {
case GGL_PIXEL_FORMAT_RGBA_8888: s->read = readABGR8888; break;
case GGL_PIXEL_FORMAT_RGB_565: s->read = readRGB565; break;
default: s->read = read_pixel; break;
}
s->write = write_pixel;
}
void ggl_pick_texture(context_t* c)
{
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
surface_t& s = c->state.texture[i].surface;
if ((!c->state.texture[i].enable) || (!s.dirty))
continue;
s.dirty = 0;
pick_read_write(&s);
generated_tex_vars_t& gen = c->generated_vars.texture[i];
gen.width = s.width;
gen.height = s.height;
gen.stride = s.stride;
gen.data = uintptr_t(s.data);
}
}
void ggl_pick_cb(context_t* c)
{
surface_t& s = c->state.buffers.color;
if (s.dirty) {
s.dirty = 0;
pick_read_write(&s);
}
}
// ----------------------------------------------------------------------------
void read_pixel(const surface_t* s, context_t* c,
uint32_t x, uint32_t y, pixel_t* pixel)
{
assert((x < s->width) && (y < s->height));
const GGLFormat* f = &(c->formats[s->format]);
int32_t index = x + (s->stride * y);
uint8_t* const data = s->data + index * f->size;
uint32_t v = 0;
switch (f->size) {
case 1: v = *data; break;
case 2: v = *(uint16_t*)data; break;
case 3: v = (data[2]<<16)|(data[1]<<8)|data[0]; break;
case 4: v = GGL_RGBA_TO_HOST(*(uint32_t*)data); break;
}
for (int i=0 ; i<4 ; i++) {
pixel->s[i] = f->c[i].h - f->c[i].l;
if (pixel->s[i])
pixel->c[i] = extract(v, f->c[i].h, f->c[i].l, f->size*8);
}
}
void readRGB565(const surface_t* s, context_t* /*c*/,
uint32_t x, uint32_t y, pixel_t* pixel)
{
uint16_t v = *(reinterpret_cast<uint16_t*>(s->data) + (x + (s->stride * y)));
pixel->c[0] = 0;
pixel->c[1] = v>>11;
pixel->c[2] = (v>>5)&0x3F;
pixel->c[3] = v&0x1F;
pixel->s[0] = 0;
pixel->s[1] = 5;
pixel->s[2] = 6;
pixel->s[3] = 5;
}
void readABGR8888(const surface_t* s, context_t* /*c*/,
uint32_t x, uint32_t y, pixel_t* pixel)
{
uint32_t v = *(reinterpret_cast<uint32_t*>(s->data) + (x + (s->stride * y)));
v = GGL_RGBA_TO_HOST(v);
pixel->c[0] = v>>24; // A
pixel->c[1] = v&0xFF; // R
pixel->c[2] = (v>>8)&0xFF; // G
pixel->c[3] = (v>>16)&0xFF; // B
pixel->s[0] =
pixel->s[1] =
pixel->s[2] =
pixel->s[3] = 8;
}
void write_pixel(const surface_t* s, context_t* c,
uint32_t x, uint32_t y, const pixel_t* pixel)
{
assert((x < s->width) && (y < s->height));
int dither = -1;
if (c->state.enables & GGL_ENABLE_DITHER) {
dither = c->ditherMatrix[ (x & GGL_DITHER_MASK) +
((y & GGL_DITHER_MASK)<<GGL_DITHER_ORDER_SHIFT) ];
}
const GGLFormat* f = &(c->formats[s->format]);
int32_t index = x + (s->stride * y);
uint8_t* const data = s->data + index * f->size;
uint32_t mask = 0;
uint32_t v = 0;
for (int i=0 ; i<4 ; i++) {
const int component_mask = 1 << i;
if (f->components>=GGL_LUMINANCE &&
(i==GGLFormat::GREEN || i==GGLFormat::BLUE)) {
// destinations L formats don't have G or B
continue;
}
const int l = f->c[i].l;
const int h = f->c[i].h;
if (h && (c->state.mask.color & component_mask)) {
mask |= (((1<<(h-l))-1)<<l);
uint32_t u = pixel->c[i];
int32_t pixelSize = pixel->s[i];
if (pixelSize < (h-l)) {
u = expand(u, pixelSize, h-l);
pixelSize = h-l;
}
v = downshift_component(v, u, pixelSize, 0, h, l, 0, 0, dither);
}
}
if ((c->state.mask.color != 0xF) ||
(c->state.enables & GGL_ENABLE_LOGIC_OP)) {
uint32_t d = 0;
switch (f->size) {
case 1: d = *data; break;
case 2: d = *(uint16_t*)data; break;
case 3: d = (data[2]<<16)|(data[1]<<8)|data[0]; break;
case 4: d = GGL_RGBA_TO_HOST(*(uint32_t*)data); break;
}
if (c->state.enables & GGL_ENABLE_LOGIC_OP) {
v = logic_op(c->state.logic_op.opcode, v, d);
v &= mask;
}
v |= (d & ~mask);
}
switch (f->size) {
case 1: *data = v; break;
case 2: *(uint16_t*)data = v; break;
case 3:
data[0] = v;
data[1] = v>>8;
data[2] = v>>16;
break;
case 4: *(uint32_t*)data = GGL_HOST_TO_RGBA(v); break;
}
}
static uint32_t logic_op(int op, uint32_t s, uint32_t d)
{
switch(op) {
case GGL_CLEAR: return 0;
case GGL_AND: return s & d;
case GGL_AND_REVERSE: return s & ~d;
case GGL_COPY: return s;
case GGL_AND_INVERTED: return ~s & d;
case GGL_NOOP: return d;
case GGL_XOR: return s ^ d;
case GGL_OR: return s | d;
case GGL_NOR: return ~(s | d);
case GGL_EQUIV: return ~(s ^ d);
case GGL_INVERT: return ~d;
case GGL_OR_REVERSE: return s | ~d;
case GGL_COPY_INVERTED: return ~s;
case GGL_OR_INVERTED: return ~s | d;
case GGL_NAND: return ~(s & d);
case GGL_SET: return ~0;
};
return s;
}
uint32_t ggl_expand(uint32_t v, int sbits, int dbits)
{
return expand(v, sbits, dbits);
}
uint32_t ggl_pack_color(context_t* c, int32_t format,
GGLcolor r, GGLcolor g, GGLcolor b, GGLcolor a)
{
const GGLFormat* f = &(c->formats[format]);
uint32_t p = 0;
const int32_t hbits = GGL_COLOR_BITS;
const int32_t lbits = GGL_COLOR_BITS - 8;
p = downshift_component(p, r, hbits, lbits, f->rh, f->rl, 0, 1, -1);
p = downshift_component(p, g, hbits, lbits, f->gh, f->gl, 0, 1, -1);
p = downshift_component(p, b, hbits, lbits, f->bh, f->bl, 0, 1, -1);
p = downshift_component(p, a, hbits, lbits, f->ah, f->al, 0, 1, -1);
switch (f->size) {
case 1:
p |= p << 8;
FALLTHROUGH_INTENDED;
case 2:
p |= p << 16;
}
return p;
}
// ----------------------------------------------------------------------------
// extract a component from a word
uint32_t extract(uint32_t v, int h, int l, int bits)
{
assert(h);
if (l) {
v >>= l;
}
if (h != bits) {
v &= (1<<(h-l))-1;
}
return v;
}
// expand a component from sbits to dbits
uint32_t expand(uint32_t v, int sbits, int dbits)
{
if (dbits > sbits) {
assert(sbits);
if (sbits==1) {
v = (v<<dbits) - v;
} else {
if (dbits % sbits) {
v <<= (dbits-sbits);
dbits -= sbits;
do {
v |= v>>sbits;
dbits -= sbits;
sbits *= 2;
} while (dbits>0);
} else {
dbits -= sbits;
do {
v |= v<<sbits;
dbits -= sbits;
if (sbits*2 < dbits) {
sbits *= 2;
}
} while (dbits > 0);
}
}
}
return v;
}
// downsample a component from sbits to dbits
// and shift / construct the pixel
uint32_t downshift_component( uint32_t in, uint32_t v,
int sh, int sl, // src
int dh, int dl, // dst
int ch, int cl, // clear
int dither)
{
const int sbits = sh-sl;
const int dbits = dh-dl;
assert(sbits>=dbits);
if (sbits>dbits) {
if (dither>=0) {
v -= (v>>dbits); // fix up
const int shift = (GGL_DITHER_BITS - (sbits-dbits));
if (shift >= 0) v += (dither >> shift) << sl;
else v += (dither << (-shift)) << sl;
} else {
// don't do that right now, so we can reproduce the same
// artifacts we get on ARM (Where we don't do this)
// -> this is not really needed if we don't dither
//if (dBits > 1) { // result already OK if dBits==1
// v -= (v>>dbits); // fix up
// v += 1 << ((sbits-dbits)-1); // rounding
//}
}
}
// we need to clear the high bits of the source
if (ch) {
v <<= 32-sh;
sl += 32-sh;
sh = 32;
}
if (dl) {
if (cl || (sbits>dbits)) {
v >>= sh-dbits;
sl = 0;
sh = dbits;
in |= v<<dl;
} else {
// sbits==dbits and we don't need to clean the lower bits
// so we just have to shift the component to the right location
int shift = dh-sh;
in |= v<<shift;
}
} else {
// destination starts at bit 0
// ie: sh-dh == sh-dbits
int shift = sh-dh;
if (shift > 0) in |= v>>shift;
else if (shift < 0) in |= v<<shift;
else in |= v;
}
return in;
}
// ----------------------------------------------------------------------------
}; // namespace android