platform_system_core/libunwindstack/Memory.cpp
Florian Mayer 3f1f2e07ab Add missing includes.
Test: Builds.
Change-Id: Ia8b79154902503cdd774dc3b4523466123b4324c
2018-12-06 10:09:20 -08:00

455 lines
12 KiB
C++

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <errno.h>
#include <fcntl.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/ptrace.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>
#include <algorithm>
#include <memory>
#include <android-base/unique_fd.h>
#include <unwindstack/Memory.h>
#include "Check.h"
namespace unwindstack {
static size_t ProcessVmRead(pid_t pid, uint64_t remote_src, void* dst, size_t len) {
// Split up the remote read across page boundaries.
// From the manpage:
// A partial read/write may result if one of the remote_iov elements points to an invalid
// memory region in the remote process.
//
// Partial transfers apply at the granularity of iovec elements. These system calls won't
// perform a partial transfer that splits a single iovec element.
constexpr size_t kMaxIovecs = 64;
struct iovec src_iovs[kMaxIovecs];
uint64_t cur = remote_src;
size_t total_read = 0;
while (len > 0) {
struct iovec dst_iov = {
.iov_base = &reinterpret_cast<uint8_t*>(dst)[total_read], .iov_len = len,
};
size_t iovecs_used = 0;
while (len > 0) {
if (iovecs_used == kMaxIovecs) {
break;
}
// struct iovec uses void* for iov_base.
if (cur >= UINTPTR_MAX) {
errno = EFAULT;
return total_read;
}
src_iovs[iovecs_used].iov_base = reinterpret_cast<void*>(cur);
uintptr_t misalignment = cur & (getpagesize() - 1);
size_t iov_len = getpagesize() - misalignment;
iov_len = std::min(iov_len, len);
len -= iov_len;
if (__builtin_add_overflow(cur, iov_len, &cur)) {
errno = EFAULT;
return total_read;
}
src_iovs[iovecs_used].iov_len = iov_len;
++iovecs_used;
}
ssize_t rc = process_vm_readv(pid, &dst_iov, 1, src_iovs, iovecs_used, 0);
if (rc == -1) {
return total_read;
}
total_read += rc;
}
return total_read;
}
static bool PtraceReadLong(pid_t pid, uint64_t addr, long* value) {
// ptrace() returns -1 and sets errno when the operation fails.
// To disambiguate -1 from a valid result, we clear errno beforehand.
errno = 0;
*value = ptrace(PTRACE_PEEKTEXT, pid, reinterpret_cast<void*>(addr), nullptr);
if (*value == -1 && errno) {
return false;
}
return true;
}
static size_t PtraceRead(pid_t pid, uint64_t addr, void* dst, size_t bytes) {
// Make sure that there is no overflow.
uint64_t max_size;
if (__builtin_add_overflow(addr, bytes, &max_size)) {
return 0;
}
size_t bytes_read = 0;
long data;
size_t align_bytes = addr & (sizeof(long) - 1);
if (align_bytes != 0) {
if (!PtraceReadLong(pid, addr & ~(sizeof(long) - 1), &data)) {
return 0;
}
size_t copy_bytes = std::min(sizeof(long) - align_bytes, bytes);
memcpy(dst, reinterpret_cast<uint8_t*>(&data) + align_bytes, copy_bytes);
addr += copy_bytes;
dst = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(dst) + copy_bytes);
bytes -= copy_bytes;
bytes_read += copy_bytes;
}
for (size_t i = 0; i < bytes / sizeof(long); i++) {
if (!PtraceReadLong(pid, addr, &data)) {
return bytes_read;
}
memcpy(dst, &data, sizeof(long));
dst = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(dst) + sizeof(long));
addr += sizeof(long);
bytes_read += sizeof(long);
}
size_t left_over = bytes & (sizeof(long) - 1);
if (left_over) {
if (!PtraceReadLong(pid, addr, &data)) {
return bytes_read;
}
memcpy(dst, &data, left_over);
bytes_read += left_over;
}
return bytes_read;
}
bool Memory::ReadFully(uint64_t addr, void* dst, size_t size) {
size_t rc = Read(addr, dst, size);
return rc == size;
}
bool Memory::ReadString(uint64_t addr, std::string* string, uint64_t max_read) {
string->clear();
uint64_t bytes_read = 0;
while (bytes_read < max_read) {
uint8_t value;
if (!ReadFully(addr, &value, sizeof(value))) {
return false;
}
if (value == '\0') {
return true;
}
string->push_back(value);
addr++;
bytes_read++;
}
return false;
}
std::shared_ptr<Memory> Memory::CreateProcessMemory(pid_t pid) {
if (pid == getpid()) {
return std::shared_ptr<Memory>(new MemoryLocal());
}
return std::shared_ptr<Memory>(new MemoryRemote(pid));
}
std::shared_ptr<Memory> Memory::CreateProcessMemoryCached(pid_t pid) {
if (pid == getpid()) {
return std::shared_ptr<Memory>(new MemoryCache(new MemoryLocal()));
}
return std::shared_ptr<Memory>(new MemoryCache(new MemoryRemote(pid)));
}
size_t MemoryBuffer::Read(uint64_t addr, void* dst, size_t size) {
if (addr >= raw_.size()) {
return 0;
}
size_t bytes_left = raw_.size() - static_cast<size_t>(addr);
const unsigned char* actual_base = static_cast<const unsigned char*>(raw_.data()) + addr;
size_t actual_len = std::min(bytes_left, size);
memcpy(dst, actual_base, actual_len);
return actual_len;
}
uint8_t* MemoryBuffer::GetPtr(size_t offset) {
if (offset < raw_.size()) {
return &raw_[offset];
}
return nullptr;
}
MemoryFileAtOffset::~MemoryFileAtOffset() {
Clear();
}
void MemoryFileAtOffset::Clear() {
if (data_) {
munmap(&data_[-offset_], size_ + offset_);
data_ = nullptr;
}
}
bool MemoryFileAtOffset::Init(const std::string& file, uint64_t offset, uint64_t size) {
// Clear out any previous data if it exists.
Clear();
android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(file.c_str(), O_RDONLY | O_CLOEXEC)));
if (fd == -1) {
return false;
}
struct stat buf;
if (fstat(fd, &buf) == -1) {
return false;
}
if (offset >= static_cast<uint64_t>(buf.st_size)) {
return false;
}
offset_ = offset & (getpagesize() - 1);
uint64_t aligned_offset = offset & ~(getpagesize() - 1);
if (aligned_offset > static_cast<uint64_t>(buf.st_size) ||
offset > static_cast<uint64_t>(buf.st_size)) {
return false;
}
size_ = buf.st_size - aligned_offset;
uint64_t max_size;
if (!__builtin_add_overflow(size, offset_, &max_size) && max_size < size_) {
// Truncate the mapped size.
size_ = max_size;
}
void* map = mmap(nullptr, size_, PROT_READ, MAP_PRIVATE, fd, aligned_offset);
if (map == MAP_FAILED) {
return false;
}
data_ = &reinterpret_cast<uint8_t*>(map)[offset_];
size_ -= offset_;
return true;
}
size_t MemoryFileAtOffset::Read(uint64_t addr, void* dst, size_t size) {
if (addr >= size_) {
return 0;
}
size_t bytes_left = size_ - static_cast<size_t>(addr);
const unsigned char* actual_base = static_cast<const unsigned char*>(data_) + addr;
size_t actual_len = std::min(bytes_left, size);
memcpy(dst, actual_base, actual_len);
return actual_len;
}
size_t MemoryRemote::Read(uint64_t addr, void* dst, size_t size) {
#if !defined(__LP64__)
// Cannot read an address greater than 32 bits in a 32 bit context.
if (addr > UINT32_MAX) {
return 0;
}
#endif
size_t (*read_func)(pid_t, uint64_t, void*, size_t) =
reinterpret_cast<size_t (*)(pid_t, uint64_t, void*, size_t)>(read_redirect_func_.load());
if (read_func != nullptr) {
return read_func(pid_, addr, dst, size);
} else {
// Prefer process_vm_read, try it first. If it doesn't work, use the
// ptrace function. If at least one of them returns at least some data,
// set that as the permanent function to use.
// This assumes that if process_vm_read works once, it will continue
// to work.
size_t bytes = ProcessVmRead(pid_, addr, dst, size);
if (bytes > 0) {
read_redirect_func_ = reinterpret_cast<uintptr_t>(ProcessVmRead);
return bytes;
}
bytes = PtraceRead(pid_, addr, dst, size);
if (bytes > 0) {
read_redirect_func_ = reinterpret_cast<uintptr_t>(PtraceRead);
}
return bytes;
}
}
size_t MemoryLocal::Read(uint64_t addr, void* dst, size_t size) {
return ProcessVmRead(getpid(), addr, dst, size);
}
MemoryRange::MemoryRange(const std::shared_ptr<Memory>& memory, uint64_t begin, uint64_t length,
uint64_t offset)
: memory_(memory), begin_(begin), length_(length), offset_(offset) {}
size_t MemoryRange::Read(uint64_t addr, void* dst, size_t size) {
if (addr < offset_) {
return 0;
}
uint64_t read_offset = addr - offset_;
if (read_offset >= length_) {
return 0;
}
uint64_t read_length = std::min(static_cast<uint64_t>(size), length_ - read_offset);
uint64_t read_addr;
if (__builtin_add_overflow(read_offset, begin_, &read_addr)) {
return 0;
}
return memory_->Read(read_addr, dst, read_length);
}
void MemoryRanges::Insert(MemoryRange* memory) {
maps_.emplace(memory->offset() + memory->length(), memory);
}
size_t MemoryRanges::Read(uint64_t addr, void* dst, size_t size) {
auto entry = maps_.upper_bound(addr);
if (entry != maps_.end()) {
return entry->second->Read(addr, dst, size);
}
return 0;
}
bool MemoryOffline::Init(const std::string& file, uint64_t offset) {
auto memory_file = std::make_shared<MemoryFileAtOffset>();
if (!memory_file->Init(file, offset)) {
return false;
}
// The first uint64_t value is the start of memory.
uint64_t start;
if (!memory_file->ReadFully(0, &start, sizeof(start))) {
return false;
}
uint64_t size = memory_file->Size();
if (__builtin_sub_overflow(size, sizeof(start), &size)) {
return false;
}
memory_ = std::make_unique<MemoryRange>(memory_file, sizeof(start), size, start);
return true;
}
size_t MemoryOffline::Read(uint64_t addr, void* dst, size_t size) {
if (!memory_) {
return 0;
}
return memory_->Read(addr, dst, size);
}
MemoryOfflineBuffer::MemoryOfflineBuffer(const uint8_t* data, uint64_t start, uint64_t end)
: data_(data), start_(start), end_(end) {}
void MemoryOfflineBuffer::Reset(const uint8_t* data, uint64_t start, uint64_t end) {
data_ = data;
start_ = start;
end_ = end;
}
size_t MemoryOfflineBuffer::Read(uint64_t addr, void* dst, size_t size) {
if (addr < start_ || addr >= end_) {
return 0;
}
size_t read_length = std::min(size, static_cast<size_t>(end_ - addr));
memcpy(dst, &data_[addr - start_], read_length);
return read_length;
}
MemoryOfflineParts::~MemoryOfflineParts() {
for (auto memory : memories_) {
delete memory;
}
}
size_t MemoryOfflineParts::Read(uint64_t addr, void* dst, size_t size) {
if (memories_.empty()) {
return 0;
}
// Do a read on each memory object, no support for reading across the
// different memory objects.
for (MemoryOffline* memory : memories_) {
size_t bytes = memory->Read(addr, dst, size);
if (bytes != 0) {
return bytes;
}
}
return 0;
}
size_t MemoryCache::Read(uint64_t addr, void* dst, size_t size) {
// Only bother caching and looking at the cache if this is a small read for now.
if (size > 64) {
return impl_->Read(addr, dst, size);
}
uint64_t addr_page = addr >> kCacheBits;
auto entry = cache_.find(addr_page);
uint8_t* cache_dst;
if (entry != cache_.end()) {
cache_dst = entry->second;
} else {
cache_dst = cache_[addr_page];
if (!impl_->ReadFully(addr_page << kCacheBits, cache_dst, kCacheSize)) {
// Erase the entry.
cache_.erase(addr_page);
return impl_->Read(addr, dst, size);
}
}
size_t max_read = ((addr_page + 1) << kCacheBits) - addr;
if (size <= max_read) {
memcpy(dst, &cache_dst[addr & kCacheMask], size);
return size;
}
// The read crossed into another cached entry, since a read can only cross
// into one extra cached page, duplicate the code rather than looping.
memcpy(dst, &cache_dst[addr & kCacheMask], max_read);
dst = &reinterpret_cast<uint8_t*>(dst)[max_read];
addr_page++;
entry = cache_.find(addr_page);
if (entry != cache_.end()) {
cache_dst = entry->second;
} else {
cache_dst = cache_[addr_page];
if (!impl_->ReadFully(addr_page << kCacheBits, cache_dst, kCacheSize)) {
// Erase the entry.
cache_.erase(addr_page);
return impl_->Read(addr_page << kCacheBits, dst, size - max_read) + max_read;
}
}
memcpy(dst, cache_dst, size - max_read);
return size;
}
} // namespace unwindstack