platform_system_core/adb/sysdeps_test.cpp
Yabin Cui b74c6498aa adb: retry connecting disconnected emulators instead of always looping.
Previously we loop through local ports every second, this patch improves
the strategy by retrying only just disconnected emulators.

Bug: 26468076
Bug: 19974213
Bug: 22920867

Change-Id: I43ccb746922d104202b0f81a3d163d850bbc890e
2016-05-24 16:38:47 -07:00

322 lines
8.4 KiB
C++

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <gtest/gtest.h>
#include <unistd.h>
#include <atomic>
#include "adb_io.h"
#include "sysdeps.h"
#include "sysdeps/condition_variable.h"
#include "sysdeps/mutex.h"
static void increment_atomic_int(void* c) {
sleep(1);
reinterpret_cast<std::atomic<int>*>(c)->fetch_add(1);
}
TEST(sysdeps_thread, smoke) {
std::atomic<int> counter(0);
for (int i = 0; i < 100; ++i) {
ASSERT_TRUE(adb_thread_create(increment_atomic_int, &counter));
}
sleep(2);
ASSERT_EQ(100, counter.load());
}
TEST(sysdeps_thread, join) {
std::atomic<int> counter(0);
std::vector<adb_thread_t> threads(500);
for (size_t i = 0; i < threads.size(); ++i) {
ASSERT_TRUE(adb_thread_create(increment_atomic_int, &counter, &threads[i]));
}
int current = counter.load();
ASSERT_GE(current, 0);
// Make sure that adb_thread_create actually creates threads, and doesn't do something silly
// like synchronously run the function passed in. The sleep in increment_atomic_int should be
// enough to keep this from being flakey.
ASSERT_LT(current, 500);
for (const auto& thread : threads) {
ASSERT_TRUE(adb_thread_join(thread));
}
ASSERT_EQ(500, counter.load());
}
TEST(sysdeps_thread, exit) {
adb_thread_t thread;
ASSERT_TRUE(adb_thread_create(
[](void*) {
adb_thread_exit();
for (;;) continue;
},
nullptr, &thread));
ASSERT_TRUE(adb_thread_join(thread));
}
TEST(sysdeps_socketpair, smoke) {
int fds[2];
ASSERT_EQ(0, adb_socketpair(fds)) << strerror(errno);
ASSERT_TRUE(WriteFdExactly(fds[0], "foo", 4));
ASSERT_TRUE(WriteFdExactly(fds[1], "bar", 4));
char buf[4];
ASSERT_TRUE(ReadFdExactly(fds[1], buf, 4));
ASSERT_STREQ(buf, "foo");
ASSERT_TRUE(ReadFdExactly(fds[0], buf, 4));
ASSERT_STREQ(buf, "bar");
ASSERT_EQ(0, adb_close(fds[0]));
ASSERT_EQ(0, adb_close(fds[1]));
}
TEST(sysdeps_fd, exhaustion) {
std::vector<int> fds;
int socketpair[2];
while (adb_socketpair(socketpair) == 0) {
fds.push_back(socketpair[0]);
fds.push_back(socketpair[1]);
}
ASSERT_EQ(EMFILE, errno) << strerror(errno);
for (int fd : fds) {
ASSERT_EQ(0, adb_close(fd));
}
ASSERT_EQ(0, adb_socketpair(socketpair));
ASSERT_EQ(socketpair[0], fds[0]);
ASSERT_EQ(socketpair[1], fds[1]);
ASSERT_EQ(0, adb_close(socketpair[0]));
ASSERT_EQ(0, adb_close(socketpair[1]));
}
class sysdeps_poll : public ::testing::Test {
protected:
int fds[2];
void SetUp() override {
ASSERT_EQ(0, adb_socketpair(fds)) << strerror(errno);
}
void TearDown() override {
if (fds[0] >= 0) {
ASSERT_EQ(0, adb_close(fds[0]));
}
if (fds[1] >= 0) {
ASSERT_EQ(0, adb_close(fds[1]));
}
}
};
TEST_F(sysdeps_poll, smoke) {
adb_pollfd pfd[2] = {};
pfd[0].fd = fds[0];
pfd[0].events = POLLRDNORM;
pfd[1].fd = fds[1];
pfd[1].events = POLLWRNORM;
pfd[0].revents = -1;
pfd[1].revents = -1;
EXPECT_EQ(1, adb_poll(pfd, 2, 0));
EXPECT_EQ(0, pfd[0].revents);
EXPECT_EQ(POLLWRNORM, pfd[1].revents);
ASSERT_TRUE(WriteFdExactly(fds[1], "foo", 4));
// Wait for the socketpair to be flushed.
pfd[0].revents = -1;
EXPECT_EQ(1, adb_poll(pfd, 1, 100));
EXPECT_EQ(POLLRDNORM, pfd[0].revents);
pfd[0].revents = -1;
pfd[1].revents = -1;
EXPECT_EQ(2, adb_poll(pfd, 2, 0));
EXPECT_EQ(POLLRDNORM, pfd[0].revents);
EXPECT_EQ(POLLWRNORM, pfd[1].revents);
}
TEST_F(sysdeps_poll, timeout) {
adb_pollfd pfd = {};
pfd.fd = fds[0];
pfd.events = POLLRDNORM;
EXPECT_EQ(0, adb_poll(&pfd, 1, 100));
EXPECT_EQ(0, pfd.revents);
ASSERT_TRUE(WriteFdExactly(fds[1], "foo", 4));
EXPECT_EQ(1, adb_poll(&pfd, 1, 100));
EXPECT_EQ(POLLRDNORM, pfd.revents);
}
TEST_F(sysdeps_poll, invalid_fd) {
adb_pollfd pfd[3] = {};
pfd[0].fd = fds[0];
pfd[0].events = POLLRDNORM;
pfd[1].fd = INT_MAX;
pfd[1].events = POLLRDNORM;
pfd[2].fd = fds[1];
pfd[2].events = POLLWRNORM;
ASSERT_TRUE(WriteFdExactly(fds[1], "foo", 4));
// Wait for the socketpair to be flushed.
EXPECT_EQ(1, adb_poll(pfd, 1, 100));
EXPECT_EQ(POLLRDNORM, pfd[0].revents);
EXPECT_EQ(3, adb_poll(pfd, 3, 0));
EXPECT_EQ(POLLRDNORM, pfd[0].revents);
EXPECT_EQ(POLLNVAL, pfd[1].revents);
EXPECT_EQ(POLLWRNORM, pfd[2].revents);
}
TEST_F(sysdeps_poll, duplicate_fd) {
adb_pollfd pfd[2] = {};
pfd[0].fd = fds[0];
pfd[0].events = POLLRDNORM;
pfd[1] = pfd[0];
EXPECT_EQ(0, adb_poll(pfd, 2, 0));
EXPECT_EQ(0, pfd[0].revents);
EXPECT_EQ(0, pfd[1].revents);
ASSERT_TRUE(WriteFdExactly(fds[1], "foo", 4));
EXPECT_EQ(2, adb_poll(pfd, 2, 100));
EXPECT_EQ(POLLRDNORM, pfd[0].revents);
EXPECT_EQ(POLLRDNORM, pfd[1].revents);
}
TEST_F(sysdeps_poll, disconnect) {
adb_pollfd pfd = {};
pfd.fd = fds[0];
pfd.events = POLLIN;
EXPECT_EQ(0, adb_poll(&pfd, 1, 0));
EXPECT_EQ(0, pfd.revents);
EXPECT_EQ(0, adb_close(fds[1]));
fds[1] = -1;
EXPECT_EQ(1, adb_poll(&pfd, 1, 100));
// Linux returns POLLIN | POLLHUP, Windows returns just POLLHUP.
EXPECT_EQ(POLLHUP, pfd.revents & POLLHUP);
}
TEST_F(sysdeps_poll, fd_count) {
// https://code.google.com/p/android/issues/detail?id=12141
static constexpr int num_sockets = 256;
std::vector<int> sockets;
std::vector<adb_pollfd> pfds;
sockets.resize(num_sockets * 2);
for (int32_t i = 0; i < num_sockets; ++i) {
ASSERT_EQ(0, adb_socketpair(&sockets[i * 2])) << strerror(errno);
ASSERT_TRUE(WriteFdExactly(sockets[i * 2], &i, sizeof(i)));
adb_pollfd pfd;
pfd.events = POLLIN;
pfd.fd = sockets[i * 2 + 1];
pfds.push_back(pfd);
}
ASSERT_EQ(num_sockets, adb_poll(pfds.data(), pfds.size(), 0));
for (int i = 0; i < num_sockets; ++i) {
ASSERT_NE(0, pfds[i].revents & POLLIN);
int32_t buf[2] = { -1, -1 };
ASSERT_EQ(adb_read(pfds[i].fd, buf, sizeof(buf)), static_cast<ssize_t>(sizeof(int32_t)));
ASSERT_EQ(i, buf[0]);
}
for (int fd : sockets) {
adb_close(fd);
}
}
TEST(sysdeps_mutex, mutex_smoke) {
static std::atomic<bool> finished(false);
static std::mutex &m = *new std::mutex();
m.lock();
ASSERT_FALSE(m.try_lock());
adb_thread_create([](void*) {
ASSERT_FALSE(m.try_lock());
m.lock();
finished.store(true);
adb_sleep_ms(200);
m.unlock();
}, nullptr);
ASSERT_FALSE(finished.load());
adb_sleep_ms(100);
ASSERT_FALSE(finished.load());
m.unlock();
adb_sleep_ms(100);
m.lock();
ASSERT_TRUE(finished.load());
m.unlock();
}
// Our implementation on Windows aborts on double lock.
#if defined(_WIN32)
TEST(sysdeps_mutex, mutex_reentrant_lock) {
std::mutex &m = *new std::mutex();
m.lock();
ASSERT_FALSE(m.try_lock());
EXPECT_DEATH(m.lock(), "non-recursive mutex locked reentrantly");
}
#endif
TEST(sysdeps_mutex, recursive_mutex_smoke) {
static std::recursive_mutex &m = *new std::recursive_mutex();
m.lock();
ASSERT_TRUE(m.try_lock());
m.unlock();
adb_thread_create([](void*) {
ASSERT_FALSE(m.try_lock());
m.lock();
adb_sleep_ms(500);
m.unlock();
}, nullptr);
adb_sleep_ms(100);
m.unlock();
adb_sleep_ms(100);
ASSERT_FALSE(m.try_lock());
m.lock();
m.unlock();
}
TEST(sysdeps_condition_variable, smoke) {
static std::mutex &m = *new std::mutex;
static std::condition_variable &cond = *new std::condition_variable;
static volatile bool flag = false;
std::unique_lock<std::mutex> lock(m);
adb_thread_create([](void*) {
m.lock();
flag = true;
cond.notify_one();
m.unlock();
}, nullptr);
while (!flag) {
cond.wait(lock);
}
}