platform_system_core/libunwindstack/MapInfo.cpp
Christopher Ferris bf373edc3c Add caching of build id in MapInfo object.
Change the GetBuildID function to return a std::string.
Added benchmark to check how long it takes to get the build id from
a file versus an elf object.
Added a way to get an elf without passing in a valid process_memory and
added tests for this.

Test: New unit tests.
Change-Id: I3029019767e0181c758d611fe635bc1bf72d6e8e
2019-01-17 20:14:00 -08:00

314 lines
9.6 KiB
C++

/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <sys/mman.h>
#include <sys/types.h>
#include <unistd.h>
#include <memory>
#include <mutex>
#include <string>
#include <unwindstack/Elf.h>
#include <unwindstack/MapInfo.h>
#include <unwindstack/Maps.h>
#include <unwindstack/Memory.h>
namespace unwindstack {
bool MapInfo::InitFileMemoryFromPreviousReadOnlyMap(MemoryFileAtOffset* memory) {
// One last attempt, see if the previous map is read-only with the
// same name and stretches across this map.
if (prev_map == nullptr || prev_map->flags != PROT_READ) {
return false;
}
uint64_t map_size = end - prev_map->end;
if (!memory->Init(name, prev_map->offset, map_size)) {
return false;
}
uint64_t max_size;
if (!Elf::GetInfo(memory, &max_size) || max_size < map_size) {
return false;
}
if (!memory->Init(name, prev_map->offset, max_size)) {
return false;
}
elf_offset = offset - prev_map->offset;
elf_start_offset = prev_map->offset;
return true;
}
Memory* MapInfo::GetFileMemory() {
std::unique_ptr<MemoryFileAtOffset> memory(new MemoryFileAtOffset);
if (offset == 0) {
if (memory->Init(name, 0)) {
return memory.release();
}
return nullptr;
}
// These are the possibilities when the offset is non-zero.
// - There is an elf file embedded in a file, and the offset is the
// the start of the elf in the file.
// - There is an elf file embedded in a file, and the offset is the
// the start of the executable part of the file. The actual start
// of the elf is in the read-only segment preceeding this map.
// - The whole file is an elf file, and the offset needs to be saved.
//
// Map in just the part of the file for the map. If this is not
// a valid elf, then reinit as if the whole file is an elf file.
// If the offset is a valid elf, then determine the size of the map
// and reinit to that size. This is needed because the dynamic linker
// only maps in a portion of the original elf, and never the symbol
// file data.
uint64_t map_size = end - start;
if (!memory->Init(name, offset, map_size)) {
return nullptr;
}
// Check if the start of this map is an embedded elf.
uint64_t max_size = 0;
if (Elf::GetInfo(memory.get(), &max_size)) {
if (max_size > map_size) {
if (memory->Init(name, offset, max_size)) {
return memory.release();
}
// Try to reinit using the default map_size.
if (memory->Init(name, offset, map_size)) {
return memory.release();
}
return nullptr;
}
return memory.release();
}
// No elf at offset, try to init as if the whole file is an elf.
if (memory->Init(name, 0) && Elf::IsValidElf(memory.get())) {
elf_offset = offset;
// Need to check how to set the elf start offset. If this map is not
// the r-x map of a r-- map, then use the real offset value. Otherwise,
// use 0.
if (prev_map == nullptr || prev_map->offset != 0 || prev_map->flags != PROT_READ ||
prev_map->name != name) {
elf_start_offset = offset;
}
return memory.release();
}
// See if the map previous to this one contains a read-only map
// that represents the real start of the elf data.
if (InitFileMemoryFromPreviousReadOnlyMap(memory.get())) {
return memory.release();
}
// Failed to find elf at start of file or at read-only map, return
// file object from the current map.
if (memory->Init(name, offset, map_size)) {
return memory.release();
}
return nullptr;
}
Memory* MapInfo::CreateMemory(const std::shared_ptr<Memory>& process_memory) {
if (end <= start) {
return nullptr;
}
elf_offset = 0;
// Fail on device maps.
if (flags & MAPS_FLAGS_DEVICE_MAP) {
return nullptr;
}
// First try and use the file associated with the info.
if (!name.empty()) {
Memory* memory = GetFileMemory();
if (memory != nullptr) {
return memory;
}
}
if (process_memory == nullptr) {
return nullptr;
}
// Need to verify that this elf is valid. It's possible that
// only part of the elf file to be mapped into memory is in the executable
// map. In this case, there will be another read-only map that includes the
// first part of the elf file. This is done if the linker rosegment
// option is used.
std::unique_ptr<MemoryRange> memory(new MemoryRange(process_memory, start, end - start, 0));
if (Elf::IsValidElf(memory.get())) {
return memory.release();
}
// Find the read-only map by looking at the previous map. The linker
// doesn't guarantee that this invariant will always be true. However,
// if that changes, there is likely something else that will change and
// break something.
if (offset == 0 || name.empty() || prev_map == nullptr || prev_map->name != name ||
prev_map->offset >= offset) {
return nullptr;
}
// Make sure that relative pc values are corrected properly.
elf_offset = offset - prev_map->offset;
// Use this as the elf start offset, otherwise, you always get offsets into
// the r-x section, which is not quite the right information.
elf_start_offset = prev_map->offset;
MemoryRanges* ranges = new MemoryRanges;
ranges->Insert(
new MemoryRange(process_memory, prev_map->start, prev_map->end - prev_map->start, 0));
ranges->Insert(new MemoryRange(process_memory, start, end - start, elf_offset));
return ranges;
}
Elf* MapInfo::GetElf(const std::shared_ptr<Memory>& process_memory, ArchEnum expected_arch) {
// Make sure no other thread is trying to add the elf to this map.
std::lock_guard<std::mutex> guard(mutex_);
if (elf.get() != nullptr) {
return elf.get();
}
bool locked = false;
if (Elf::CachingEnabled() && !name.empty()) {
Elf::CacheLock();
locked = true;
if (Elf::CacheGet(this)) {
Elf::CacheUnlock();
return elf.get();
}
}
Memory* memory = CreateMemory(process_memory);
if (locked) {
if (Elf::CacheAfterCreateMemory(this)) {
delete memory;
Elf::CacheUnlock();
return elf.get();
}
}
elf.reset(new Elf(memory));
// If the init fails, keep the elf around as an invalid object so we
// don't try to reinit the object.
elf->Init();
if (elf->valid() && expected_arch != elf->arch()) {
// Make the elf invalid, mismatch between arch and expected arch.
elf->Invalidate();
}
if (locked) {
Elf::CacheAdd(this);
Elf::CacheUnlock();
}
return elf.get();
}
bool MapInfo::GetFunctionName(uint64_t addr, std::string* name, uint64_t* func_offset) {
{
// Make sure no other thread is trying to update this elf object.
std::lock_guard<std::mutex> guard(mutex_);
if (elf == nullptr) {
return false;
}
}
// No longer need the lock, once the elf object is created, it is not deleted
// until this object is deleted.
return elf->GetFunctionName(addr, name, func_offset);
}
uint64_t MapInfo::GetLoadBias(const std::shared_ptr<Memory>& process_memory) {
uint64_t cur_load_bias = load_bias.load();
if (cur_load_bias != static_cast<uint64_t>(-1)) {
return cur_load_bias;
}
{
// Make sure no other thread is trying to add the elf to this map.
std::lock_guard<std::mutex> guard(mutex_);
if (elf != nullptr) {
if (elf->valid()) {
cur_load_bias = elf->GetLoadBias();
load_bias = cur_load_bias;
return cur_load_bias;
} else {
load_bias = 0;
return 0;
}
}
}
// Call lightweight static function that will only read enough of the
// elf data to get the load bias.
std::unique_ptr<Memory> memory(CreateMemory(process_memory));
cur_load_bias = Elf::GetLoadBias(memory.get());
load_bias = cur_load_bias;
return cur_load_bias;
}
MapInfo::~MapInfo() {
uintptr_t id = build_id.load();
if (id != 0) {
delete reinterpret_cast<std::string*>(id);
}
}
std::string MapInfo::GetBuildID() {
uintptr_t id = build_id.load();
if (build_id != 0) {
return *reinterpret_cast<std::string*>(id);
}
// No need to lock, at worst if multiple threads do this at the same
// time it should be detected and only one thread should win and
// save the data.
std::unique_ptr<std::string> cur_build_id(new std::string);
// Now need to see if the elf object exists.
// Make sure no other thread is trying to add the elf to this map.
mutex_.lock();
Elf* elf_obj = elf.get();
mutex_.unlock();
if (elf_obj != nullptr) {
*cur_build_id = elf_obj->GetBuildID();
} else {
// This will only work if we can get the file associated with this memory.
// If this is only available in memory, then the section name information
// is not present and we will not be able to find the build id info.
std::unique_ptr<Memory> memory(GetFileMemory());
if (memory != nullptr) {
*cur_build_id = Elf::GetBuildID(memory.get());
}
}
id = reinterpret_cast<uintptr_t>(cur_build_id.get());
uintptr_t expected_id = 0;
if (build_id.compare_exchange_weak(expected_id, id)) {
// Value saved, so make sure the memory is not freed.
cur_build_id.release();
}
return *reinterpret_cast<std::string*>(id);
}
} // namespace unwindstack