platform_system_core/libunwindstack/tests/DwarfEhFrameTest.cpp
Christopher Ferris c3d79f7c07 Fix incorrect usage of relative pcs.
When stepping, it's necessary to use both the unaltered relative pc
and the adjusted relative pc. If the adjusted pc is not used, the
wrong unwind information can be used.

Added new offline unit tests that take real data and verifies that it
unwinds properly.

Fix a bug in the map code that would not properly parse map data for
a 64 bit process when done in a 32 bit process.

Fix bug in eh_frame processing that didn't adjust the pc correctly.
Fix unit tests related to the pc adjustment.

Bug: 69475565

Test: Passes libbacktrace/libunwindstack unit tests.
Test: Run debuggerd -b on processes on a hikey.
Change-Id: Ic501a1c4549c5f61d2742a7105c42a960f2c892b
2017-11-29 16:10:08 -08:00

458 lines
16 KiB
C++

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdint.h>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "DwarfEhFrame.h"
#include "DwarfEncoding.h"
#include "DwarfError.h"
#include "LogFake.h"
#include "MemoryFake.h"
namespace unwindstack {
template <typename TypeParam>
class MockDwarfEhFrame : public DwarfEhFrame<TypeParam> {
public:
MockDwarfEhFrame(Memory* memory) : DwarfEhFrame<TypeParam>(memory) {}
~MockDwarfEhFrame() = default;
void TestSetFdeCount(uint64_t count) { this->fde_count_ = count; }
void TestSetOffset(uint64_t offset) { this->entries_offset_ = offset; }
void TestSetEndOffset(uint64_t offset) { this->entries_end_ = offset; }
void TestPushFdeInfo(const typename DwarfEhFrame<TypeParam>::FdeInfo& info) {
this->fdes_.push_back(info);
}
uint64_t TestGetFdeCount() { return this->fde_count_; }
uint8_t TestGetOffset() { return this->offset_; }
uint8_t TestGetEndOffset() { return this->end_offset_; }
void TestGetFdeInfo(size_t index, typename DwarfEhFrame<TypeParam>::FdeInfo* info) {
*info = this->fdes_[index];
}
};
template <typename TypeParam>
class DwarfEhFrameTest : public ::testing::Test {
protected:
void SetUp() override {
memory_.Clear();
eh_frame_ = new MockDwarfEhFrame<TypeParam>(&memory_);
ResetLogs();
}
void TearDown() override { delete eh_frame_; }
MemoryFake memory_;
MockDwarfEhFrame<TypeParam>* eh_frame_ = nullptr;
};
TYPED_TEST_CASE_P(DwarfEhFrameTest);
// NOTE: All test class variables need to be referenced as this->.
TYPED_TEST_P(DwarfEhFrameTest, Init32) {
// CIE 32 information.
this->memory_.SetData32(0x5000, 0xfc);
this->memory_.SetData32(0x5004, 0);
this->memory_.SetData8(0x5008, 1);
this->memory_.SetData8(0x5009, '\0');
// FDE 32 information.
this->memory_.SetData32(0x5100, 0xfc);
this->memory_.SetData32(0x5104, 0x104);
this->memory_.SetData32(0x5108, 0x1500);
this->memory_.SetData32(0x510c, 0x200);
this->memory_.SetData32(0x5200, 0xfc);
this->memory_.SetData32(0x5204, 0x204);
this->memory_.SetData32(0x5208, 0x2500);
this->memory_.SetData32(0x520c, 0x300);
// CIE 32 information.
this->memory_.SetData32(0x5300, 0xfc);
this->memory_.SetData32(0x5304, 0);
this->memory_.SetData8(0x5308, 1);
this->memory_.SetData8(0x5309, '\0');
// FDE 32 information.
this->memory_.SetData32(0x5400, 0xfc);
this->memory_.SetData32(0x5404, 0x104);
this->memory_.SetData32(0x5408, 0x3500);
this->memory_.SetData32(0x540c, 0x400);
this->memory_.SetData32(0x5500, 0xfc);
this->memory_.SetData32(0x5504, 0x204);
this->memory_.SetData32(0x5508, 0x4500);
this->memory_.SetData32(0x550c, 0x500);
ASSERT_TRUE(this->eh_frame_->Init(0x5000, 0x600));
ASSERT_EQ(4U, this->eh_frame_->TestGetFdeCount());
typename DwarfEhFrame<TypeParam>::FdeInfo info(0, 0, 0);
this->eh_frame_->TestGetFdeInfo(0, &info);
EXPECT_EQ(0x5100U, info.offset);
EXPECT_EQ(0x6608U, info.start);
EXPECT_EQ(0x6808U, info.end);
this->eh_frame_->TestGetFdeInfo(1, &info);
EXPECT_EQ(0x5200U, info.offset);
EXPECT_EQ(0x7708U, info.start);
EXPECT_EQ(0x7a08U, info.end);
this->eh_frame_->TestGetFdeInfo(2, &info);
EXPECT_EQ(0x5400U, info.offset);
EXPECT_EQ(0x8908U, info.start);
EXPECT_EQ(0x8d08U, info.end);
this->eh_frame_->TestGetFdeInfo(3, &info);
EXPECT_EQ(0x5500U, info.offset);
EXPECT_EQ(0x9a08U, info.start);
EXPECT_EQ(0x9f08U, info.end);
}
TYPED_TEST_P(DwarfEhFrameTest, Init32_fde_not_following_cie) {
// CIE 32 information.
this->memory_.SetData32(0x5000, 0xfc);
this->memory_.SetData32(0x5004, 0);
this->memory_.SetData8(0x5008, 1);
this->memory_.SetData8(0x5009, '\0');
// FDE 32 information.
this->memory_.SetData32(0x5100, 0xfc);
this->memory_.SetData32(0x5104, 0x1000);
this->memory_.SetData32(0x5108, 0x1500);
this->memory_.SetData32(0x510c, 0x200);
ASSERT_FALSE(this->eh_frame_->Init(0x5000, 0x600));
ASSERT_EQ(DWARF_ERROR_ILLEGAL_VALUE, this->eh_frame_->last_error());
}
TYPED_TEST_P(DwarfEhFrameTest, Init64) {
// CIE 64 information.
this->memory_.SetData32(0x5000, 0xffffffff);
this->memory_.SetData64(0x5004, 0xf4);
this->memory_.SetData64(0x500c, 0);
this->memory_.SetData8(0x5014, 1);
this->memory_.SetData8(0x5015, '\0');
// FDE 64 information.
this->memory_.SetData32(0x5100, 0xffffffff);
this->memory_.SetData64(0x5104, 0xf4);
this->memory_.SetData64(0x510c, 0x10c);
this->memory_.SetData64(0x5114, 0x1500);
this->memory_.SetData64(0x511c, 0x200);
this->memory_.SetData32(0x5200, 0xffffffff);
this->memory_.SetData64(0x5204, 0xf4);
this->memory_.SetData64(0x520c, 0x20c);
this->memory_.SetData64(0x5214, 0x2500);
this->memory_.SetData64(0x521c, 0x300);
// CIE 64 information.
this->memory_.SetData32(0x5300, 0xffffffff);
this->memory_.SetData64(0x5304, 0xf4);
this->memory_.SetData64(0x530c, 0);
this->memory_.SetData8(0x5314, 1);
this->memory_.SetData8(0x5315, '\0');
// FDE 64 information.
this->memory_.SetData32(0x5400, 0xffffffff);
this->memory_.SetData64(0x5404, 0xf4);
this->memory_.SetData64(0x540c, 0x10c);
this->memory_.SetData64(0x5414, 0x3500);
this->memory_.SetData64(0x541c, 0x400);
this->memory_.SetData32(0x5500, 0xffffffff);
this->memory_.SetData64(0x5504, 0xf4);
this->memory_.SetData64(0x550c, 0x20c);
this->memory_.SetData64(0x5514, 0x4500);
this->memory_.SetData64(0x551c, 0x500);
ASSERT_TRUE(this->eh_frame_->Init(0x5000, 0x600));
ASSERT_EQ(4U, this->eh_frame_->TestGetFdeCount());
typename DwarfEhFrame<TypeParam>::FdeInfo info(0, 0, 0);
this->eh_frame_->TestGetFdeInfo(0, &info);
EXPECT_EQ(0x5100U, info.offset);
EXPECT_EQ(0x6618U, info.start);
EXPECT_EQ(0x6818U, info.end);
this->eh_frame_->TestGetFdeInfo(1, &info);
EXPECT_EQ(0x5200U, info.offset);
EXPECT_EQ(0x7718U, info.start);
EXPECT_EQ(0x7a18U, info.end);
this->eh_frame_->TestGetFdeInfo(2, &info);
EXPECT_EQ(0x5400U, info.offset);
EXPECT_EQ(0x8918U, info.start);
EXPECT_EQ(0x8d18U, info.end);
this->eh_frame_->TestGetFdeInfo(3, &info);
EXPECT_EQ(0x5500U, info.offset);
EXPECT_EQ(0x9a18U, info.start);
EXPECT_EQ(0x9f18U, info.end);
}
TYPED_TEST_P(DwarfEhFrameTest, Init64_fde_not_following_cie) {
// CIE 64 information.
this->memory_.SetData32(0x5000, 0xffffffff);
this->memory_.SetData64(0x5004, 0xf4);
this->memory_.SetData64(0x500c, 0);
this->memory_.SetData8(0x5014, 1);
this->memory_.SetData8(0x5015, '\0');
// FDE 64 information.
this->memory_.SetData32(0x5100, 0xffffffff);
this->memory_.SetData64(0x5104, 0xf4);
this->memory_.SetData64(0x510c, 0x1000);
this->memory_.SetData64(0x5114, 0x1500);
this->memory_.SetData64(0x511c, 0x200);
ASSERT_FALSE(this->eh_frame_->Init(0x5000, 0x600));
ASSERT_EQ(DWARF_ERROR_ILLEGAL_VALUE, this->eh_frame_->last_error());
}
TYPED_TEST_P(DwarfEhFrameTest, Init_version1) {
// CIE 32 information.
this->memory_.SetData32(0x5000, 0xfc);
this->memory_.SetData32(0x5004, 0);
this->memory_.SetData8(0x5008, 1);
// Augment string.
this->memory_.SetMemory(0x5009, std::vector<uint8_t>{'z', 'R', 'P', 'L', '\0'});
// Code alignment factor.
this->memory_.SetMemory(0x500e, std::vector<uint8_t>{0x80, 0x00});
// Data alignment factor.
this->memory_.SetMemory(0x5010, std::vector<uint8_t>{0x81, 0x80, 0x80, 0x00});
// Return address register
this->memory_.SetData8(0x5014, 0x84);
// Augmentation length
this->memory_.SetMemory(0x5015, std::vector<uint8_t>{0x84, 0x00});
// R data.
this->memory_.SetData8(0x5017, DW_EH_PE_pcrel | DW_EH_PE_udata2);
// FDE 32 information.
this->memory_.SetData32(0x5100, 0xfc);
this->memory_.SetData32(0x5104, 0x104);
this->memory_.SetData16(0x5108, 0x1500);
this->memory_.SetData16(0x510a, 0x200);
ASSERT_TRUE(this->eh_frame_->Init(0x5000, 0x200));
ASSERT_EQ(1U, this->eh_frame_->TestGetFdeCount());
typename DwarfEhFrame<TypeParam>::FdeInfo info(0, 0, 0);
this->eh_frame_->TestGetFdeInfo(0, &info);
EXPECT_EQ(0x5100U, info.offset);
EXPECT_EQ(0x6606U, info.start);
EXPECT_EQ(0x6806U, info.end);
}
TYPED_TEST_P(DwarfEhFrameTest, Init_version4) {
// CIE 32 information.
this->memory_.SetData32(0x5000, 0xfc);
this->memory_.SetData32(0x5004, 0);
this->memory_.SetData8(0x5008, 4);
// Augment string.
this->memory_.SetMemory(0x5009, std::vector<uint8_t>{'z', 'L', 'P', 'R', '\0'});
// Address size.
this->memory_.SetData8(0x500e, 4);
// Segment size.
this->memory_.SetData8(0x500f, 0);
// Code alignment factor.
this->memory_.SetMemory(0x5010, std::vector<uint8_t>{0x80, 0x00});
// Data alignment factor.
this->memory_.SetMemory(0x5012, std::vector<uint8_t>{0x81, 0x80, 0x80, 0x00});
// Return address register
this->memory_.SetMemory(0x5016, std::vector<uint8_t>{0x85, 0x10});
// Augmentation length
this->memory_.SetMemory(0x5018, std::vector<uint8_t>{0x84, 0x00});
// L data.
this->memory_.SetData8(0x501a, 0x10);
// P data.
this->memory_.SetData8(0x501b, DW_EH_PE_udata4);
this->memory_.SetData32(0x501c, 0x100);
// R data.
this->memory_.SetData8(0x5020, DW_EH_PE_pcrel | DW_EH_PE_udata2);
// FDE 32 information.
this->memory_.SetData32(0x5100, 0xfc);
this->memory_.SetData32(0x5104, 0x104);
this->memory_.SetData16(0x5108, 0x1500);
this->memory_.SetData16(0x510a, 0x200);
ASSERT_TRUE(this->eh_frame_->Init(0x5000, 0x200));
ASSERT_EQ(1U, this->eh_frame_->TestGetFdeCount());
typename DwarfEhFrame<TypeParam>::FdeInfo info(0, 0, 0);
this->eh_frame_->TestGetFdeInfo(0, &info);
EXPECT_EQ(0x5100U, info.offset);
EXPECT_EQ(0x6606U, info.start);
EXPECT_EQ(0x6806U, info.end);
}
TYPED_TEST_P(DwarfEhFrameTest, GetFdeOffsetFromPc) {
typename DwarfEhFrame<TypeParam>::FdeInfo info(0, 0, 0);
for (size_t i = 0; i < 9; i++) {
info.start = 0x1000 * (i + 1);
info.end = 0x1000 * (i + 2) - 0x10;
info.offset = 0x5000 + i * 0x20;
this->eh_frame_->TestPushFdeInfo(info);
}
this->eh_frame_->TestSetFdeCount(0);
uint64_t fde_offset;
ASSERT_FALSE(this->eh_frame_->GetFdeOffsetFromPc(0x1000, &fde_offset));
ASSERT_EQ(DWARF_ERROR_NONE, this->eh_frame_->last_error());
this->eh_frame_->TestSetFdeCount(9);
ASSERT_FALSE(this->eh_frame_->GetFdeOffsetFromPc(0x100, &fde_offset));
ASSERT_EQ(DWARF_ERROR_NONE, this->eh_frame_->last_error());
// Odd number of elements.
for (size_t i = 0; i < 9; i++) {
TypeParam pc = 0x1000 * (i + 1);
ASSERT_TRUE(this->eh_frame_->GetFdeOffsetFromPc(pc, &fde_offset)) << "Failed at index " << i;
EXPECT_EQ(0x5000 + i * 0x20, fde_offset) << "Failed at index " << i;
ASSERT_TRUE(this->eh_frame_->GetFdeOffsetFromPc(pc + 1, &fde_offset)) << "Failed at index " << i;
EXPECT_EQ(0x5000 + i * 0x20, fde_offset) << "Failed at index " << i;
ASSERT_TRUE(this->eh_frame_->GetFdeOffsetFromPc(pc + 0xeff, &fde_offset))
<< "Failed at index " << i;
EXPECT_EQ(0x5000 + i * 0x20, fde_offset) << "Failed at index " << i;
ASSERT_FALSE(this->eh_frame_->GetFdeOffsetFromPc(pc + 0xfff, &fde_offset))
<< "Failed at index " << i;
ASSERT_EQ(DWARF_ERROR_NONE, this->eh_frame_->last_error());
}
// Even number of elements.
this->eh_frame_->TestSetFdeCount(10);
info.start = 0xa000;
info.end = 0xaff0;
info.offset = 0x5120;
this->eh_frame_->TestPushFdeInfo(info);
for (size_t i = 0; i < 10; i++) {
TypeParam pc = 0x1000 * (i + 1);
ASSERT_TRUE(this->eh_frame_->GetFdeOffsetFromPc(pc, &fde_offset)) << "Failed at index " << i;
EXPECT_EQ(0x5000 + i * 0x20, fde_offset) << "Failed at index " << i;
ASSERT_TRUE(this->eh_frame_->GetFdeOffsetFromPc(pc + 1, &fde_offset)) << "Failed at index " << i;
EXPECT_EQ(0x5000 + i * 0x20, fde_offset) << "Failed at index " << i;
ASSERT_TRUE(this->eh_frame_->GetFdeOffsetFromPc(pc + 0xeff, &fde_offset))
<< "Failed at index " << i;
EXPECT_EQ(0x5000 + i * 0x20, fde_offset) << "Failed at index " << i;
ASSERT_FALSE(this->eh_frame_->GetFdeOffsetFromPc(pc + 0xfff, &fde_offset))
<< "Failed at index " << i;
ASSERT_EQ(DWARF_ERROR_NONE, this->eh_frame_->last_error());
}
}
TYPED_TEST_P(DwarfEhFrameTest, GetCieFde32) {
this->eh_frame_->TestSetOffset(0x4000);
// CIE 32 information.
this->memory_.SetData32(0xf000, 0x100);
this->memory_.SetData32(0xf004, 0);
this->memory_.SetData8(0xf008, 0x1);
this->memory_.SetData8(0xf009, '\0');
this->memory_.SetData8(0xf00a, 4);
this->memory_.SetData8(0xf00b, 8);
this->memory_.SetData8(0xf00c, 0x20);
// FDE 32 information.
this->memory_.SetData32(0x14000, 0x20);
this->memory_.SetData32(0x14004, 0x5004);
this->memory_.SetData32(0x14008, 0x9000);
this->memory_.SetData32(0x1400c, 0x100);
const DwarfFde* fde = this->eh_frame_->GetFdeFromOffset(0x14000);
ASSERT_TRUE(fde != nullptr);
EXPECT_EQ(0x14010U, fde->cfa_instructions_offset);
EXPECT_EQ(0x14024U, fde->cfa_instructions_end);
EXPECT_EQ(0x1d008U, fde->pc_start);
EXPECT_EQ(0x1d108U, fde->pc_end);
EXPECT_EQ(0xf000U, fde->cie_offset);
EXPECT_EQ(0U, fde->lsda_address);
ASSERT_TRUE(fde->cie != nullptr);
EXPECT_EQ(1U, fde->cie->version);
EXPECT_EQ(DW_EH_PE_sdata4, fde->cie->fde_address_encoding);
EXPECT_EQ(DW_EH_PE_omit, fde->cie->lsda_encoding);
EXPECT_EQ(0U, fde->cie->segment_size);
EXPECT_EQ(1U, fde->cie->augmentation_string.size());
EXPECT_EQ('\0', fde->cie->augmentation_string[0]);
EXPECT_EQ(0U, fde->cie->personality_handler);
EXPECT_EQ(0xf00dU, fde->cie->cfa_instructions_offset);
EXPECT_EQ(0xf104U, fde->cie->cfa_instructions_end);
EXPECT_EQ(4U, fde->cie->code_alignment_factor);
EXPECT_EQ(8, fde->cie->data_alignment_factor);
EXPECT_EQ(0x20U, fde->cie->return_address_register);
}
TYPED_TEST_P(DwarfEhFrameTest, GetCieFde64) {
this->eh_frame_->TestSetOffset(0x2000);
// CIE 64 information.
this->memory_.SetData32(0x6000, 0xffffffff);
this->memory_.SetData64(0x6004, 0x100);
this->memory_.SetData64(0x600c, 0);
this->memory_.SetData8(0x6014, 0x1);
this->memory_.SetData8(0x6015, '\0');
this->memory_.SetData8(0x6016, 4);
this->memory_.SetData8(0x6017, 8);
this->memory_.SetData8(0x6018, 0x20);
// FDE 64 information.
this->memory_.SetData32(0x8000, 0xffffffff);
this->memory_.SetData64(0x8004, 0x200);
this->memory_.SetData64(0x800c, 0x200c);
this->memory_.SetData64(0x8014, 0x5000);
this->memory_.SetData64(0x801c, 0x300);
const DwarfFde* fde = this->eh_frame_->GetFdeFromOffset(0x8000);
ASSERT_TRUE(fde != nullptr);
EXPECT_EQ(0x8024U, fde->cfa_instructions_offset);
EXPECT_EQ(0x820cU, fde->cfa_instructions_end);
EXPECT_EQ(0xd018U, fde->pc_start);
EXPECT_EQ(0xd318U, fde->pc_end);
EXPECT_EQ(0x6000U, fde->cie_offset);
EXPECT_EQ(0U, fde->lsda_address);
ASSERT_TRUE(fde->cie != nullptr);
EXPECT_EQ(1U, fde->cie->version);
EXPECT_EQ(DW_EH_PE_sdata8, fde->cie->fde_address_encoding);
EXPECT_EQ(DW_EH_PE_omit, fde->cie->lsda_encoding);
EXPECT_EQ(0U, fde->cie->segment_size);
EXPECT_EQ(1U, fde->cie->augmentation_string.size());
EXPECT_EQ('\0', fde->cie->augmentation_string[0]);
EXPECT_EQ(0U, fde->cie->personality_handler);
EXPECT_EQ(0x6019U, fde->cie->cfa_instructions_offset);
EXPECT_EQ(0x610cU, fde->cie->cfa_instructions_end);
EXPECT_EQ(4U, fde->cie->code_alignment_factor);
EXPECT_EQ(8, fde->cie->data_alignment_factor);
EXPECT_EQ(0x20U, fde->cie->return_address_register);
}
REGISTER_TYPED_TEST_CASE_P(DwarfEhFrameTest, Init32, Init32_fde_not_following_cie, Init64,
Init64_fde_not_following_cie, Init_version1, Init_version4,
GetFdeOffsetFromPc, GetCieFde32, GetCieFde64);
typedef ::testing::Types<uint32_t, uint64_t> DwarfEhFrameTestTypes;
INSTANTIATE_TYPED_TEST_CASE_P(, DwarfEhFrameTest, DwarfEhFrameTestTypes);
} // namespace unwindstack