platform_system_core/logd/LogStatistics.h
Tom Cherry a26f7dffe5 logd: refactor chatty deduplication logging
This code and comment is hard to follow, despite the operation being
simple, so refactor the code to be easier to follow.

Also, use std::unique_ptr instead of raw pointers as appropriate.

Test: logging unit tests
Change-Id: Id1f29f4deeca730d1e3b6856e1581d0b840f883e
2020-05-21 11:14:18 -07:00

721 lines
21 KiB
C++

/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <ctype.h>
#include <inttypes.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <algorithm> // std::max
#include <array>
#include <memory>
#include <mutex>
#include <string>
#include <string_view>
#include <unordered_map>
#include <android-base/stringprintf.h>
#include <android-base/thread_annotations.h>
#include <android/log.h>
#include <log/log_time.h>
#include <private/android_filesystem_config.h>
#include <utils/FastStrcmp.h>
#include "LogBufferElement.h"
#include "LogUtils.h"
#define log_id_for_each(i) \
for (log_id_t i = LOG_ID_MIN; (i) < LOG_ID_MAX; (i) = (log_id_t)((i) + 1))
class LogStatistics;
template <typename TKey, typename TEntry>
class LogHashtable {
std::unordered_map<TKey, TEntry> map;
size_t bucket_size() const {
size_t count = 0;
for (size_t idx = 0; idx < map.bucket_count(); ++idx) {
size_t bucket_size = map.bucket_size(idx);
if (bucket_size == 0) bucket_size = 1;
count += bucket_size;
}
float load_factor = map.max_load_factor();
if (load_factor < 1.0) return count;
return count * load_factor;
}
static const size_t unordered_map_per_entry_overhead = sizeof(void*);
static const size_t unordered_map_bucket_overhead = sizeof(void*);
public:
size_t size() const {
return map.size();
}
// Estimate unordered_map memory usage.
size_t sizeOf() const {
return sizeof(*this) +
(size() * (sizeof(TEntry) + unordered_map_per_entry_overhead)) +
(bucket_size() * sizeof(size_t) + unordered_map_bucket_overhead);
}
typedef typename std::unordered_map<TKey, TEntry>::iterator iterator;
typedef
typename std::unordered_map<TKey, TEntry>::const_iterator const_iterator;
// Returns a sorted array of up to len highest entries sorted by size. If fewer than len
// entries are found, their positions are set to nullptr.
template <size_t len>
void MaxEntries(uid_t uid, pid_t pid, std::array<const TEntry*, len>* out) const {
auto& retval = *out;
retval.fill(nullptr);
for (const_iterator it = map.begin(); it != map.end(); ++it) {
const TEntry& entry = it->second;
if ((uid != AID_ROOT) && (uid != entry.getUid())) {
continue;
}
if (pid && entry.getPid() && (pid != entry.getPid())) {
continue;
}
size_t sizes = entry.getSizes();
ssize_t index = len - 1;
while ((!retval[index] || (sizes > retval[index]->getSizes())) &&
(--index >= 0))
;
if (++index < (ssize_t)len) {
size_t num = len - index - 1;
if (num) {
memmove(&retval[index + 1], &retval[index],
num * sizeof(retval[0]));
}
retval[index] = &entry;
}
}
}
inline iterator add(const TKey& key, const LogBufferElement* element) {
iterator it = map.find(key);
if (it == map.end()) {
it = map.insert(std::make_pair(key, TEntry(element))).first;
} else {
it->second.add(element);
}
return it;
}
inline iterator add(TKey key) {
iterator it = map.find(key);
if (it == map.end()) {
it = map.insert(std::make_pair(key, TEntry(key))).first;
} else {
it->second.add(key);
}
return it;
}
void subtract(TKey&& key, const LogBufferElement* element) {
iterator it = map.find(std::move(key));
if ((it != map.end()) && it->second.subtract(element)) {
map.erase(it);
}
}
void subtract(const TKey& key, const LogBufferElement* element) {
iterator it = map.find(key);
if ((it != map.end()) && it->second.subtract(element)) {
map.erase(it);
}
}
inline void drop(TKey key, const LogBufferElement* element) {
iterator it = map.find(key);
if (it != map.end()) {
it->second.drop(element);
}
}
inline iterator begin() {
return map.begin();
}
inline const_iterator begin() const {
return map.begin();
}
inline iterator end() {
return map.end();
}
inline const_iterator end() const {
return map.end();
}
};
namespace EntryBaseConstants {
static constexpr size_t pruned_len = 14;
static constexpr size_t total_len = 80;
}
struct EntryBase {
size_t size;
EntryBase() : size(0) {
}
explicit EntryBase(const LogBufferElement* element)
: size(element->getMsgLen()) {
}
size_t getSizes() const {
return size;
}
inline void add(const LogBufferElement* element) {
size += element->getMsgLen();
}
inline bool subtract(const LogBufferElement* element) {
size -= element->getMsgLen();
return !size;
}
static std::string formatLine(const std::string& name,
const std::string& size,
const std::string& pruned) {
ssize_t drop_len =
std::max(pruned.length() + 1, EntryBaseConstants::pruned_len);
ssize_t size_len =
std::max(size.length() + 1, EntryBaseConstants::total_len -
name.length() - drop_len - 1);
std::string ret = android::base::StringPrintf(
"%s%*s%*s", name.c_str(), (int)size_len, size.c_str(),
(int)drop_len, pruned.c_str());
// remove any trailing spaces
size_t pos = ret.size();
size_t len = 0;
while (pos && isspace(ret[--pos])) ++len;
if (len) ret.erase(pos + 1, len);
return ret + "\n";
}
};
struct EntryBaseDropped : public EntryBase {
size_t dropped;
EntryBaseDropped() : dropped(0) {
}
explicit EntryBaseDropped(const LogBufferElement* element)
: EntryBase(element), dropped(element->getDropped()) {
}
size_t getDropped() const {
return dropped;
}
inline void add(const LogBufferElement* element) {
dropped += element->getDropped();
EntryBase::add(element);
}
inline bool subtract(const LogBufferElement* element) {
dropped -= element->getDropped();
return EntryBase::subtract(element) && !dropped;
}
inline void drop(const LogBufferElement* element) {
dropped += 1;
EntryBase::subtract(element);
}
};
struct UidEntry : public EntryBaseDropped {
const uid_t uid;
pid_t pid;
explicit UidEntry(const LogBufferElement* element)
: EntryBaseDropped(element),
uid(element->getUid()),
pid(element->getPid()) {
}
inline const uid_t& getKey() const {
return uid;
}
inline const uid_t& getUid() const {
return getKey();
}
inline const pid_t& getPid() const {
return pid;
}
inline void add(const LogBufferElement* element) {
if (pid != element->getPid()) {
pid = -1;
}
EntryBaseDropped::add(element);
}
std::string formatHeader(const std::string& name, log_id_t id) const;
std::string format(const LogStatistics& stat, log_id_t id) const;
};
namespace android {
uid_t pidToUid(pid_t pid);
}
struct PidEntry : public EntryBaseDropped {
const pid_t pid;
uid_t uid;
char* name;
explicit PidEntry(pid_t pid)
: EntryBaseDropped(),
pid(pid),
uid(android::pidToUid(pid)),
name(android::pidToName(pid)) {
}
explicit PidEntry(const LogBufferElement* element)
: EntryBaseDropped(element),
pid(element->getPid()),
uid(element->getUid()),
name(android::pidToName(pid)) {
}
PidEntry(const PidEntry& element)
: EntryBaseDropped(element),
pid(element.pid),
uid(element.uid),
name(element.name ? strdup(element.name) : nullptr) {
}
~PidEntry() {
free(name);
}
const pid_t& getKey() const {
return pid;
}
const pid_t& getPid() const {
return getKey();
}
const uid_t& getUid() const {
return uid;
}
const char* getName() const {
return name;
}
inline void add(pid_t newPid) {
if (name && !fastcmp<strncmp>(name, "zygote", 6)) {
free(name);
name = nullptr;
}
if (!name) {
name = android::pidToName(newPid);
}
}
inline void add(const LogBufferElement* element) {
uid_t incomingUid = element->getUid();
if (getUid() != incomingUid) {
uid = incomingUid;
free(name);
name = android::pidToName(element->getPid());
} else {
add(element->getPid());
}
EntryBaseDropped::add(element);
}
std::string formatHeader(const std::string& name, log_id_t id) const;
std::string format(const LogStatistics& stat, log_id_t id) const;
};
struct TidEntry : public EntryBaseDropped {
const pid_t tid;
pid_t pid;
uid_t uid;
char* name;
TidEntry(pid_t tid, pid_t pid)
: EntryBaseDropped(),
tid(tid),
pid(pid),
uid(android::pidToUid(tid)),
name(android::tidToName(tid)) {
}
explicit TidEntry(const LogBufferElement* element)
: EntryBaseDropped(element),
tid(element->getTid()),
pid(element->getPid()),
uid(element->getUid()),
name(android::tidToName(tid)) {
}
TidEntry(const TidEntry& element)
: EntryBaseDropped(element),
tid(element.tid),
pid(element.pid),
uid(element.uid),
name(element.name ? strdup(element.name) : nullptr) {
}
~TidEntry() {
free(name);
}
const pid_t& getKey() const {
return tid;
}
const pid_t& getTid() const {
return getKey();
}
const pid_t& getPid() const {
return pid;
}
const uid_t& getUid() const {
return uid;
}
const char* getName() const {
return name;
}
inline void add(pid_t incomingTid) {
if (name && !fastcmp<strncmp>(name, "zygote", 6)) {
free(name);
name = nullptr;
}
if (!name) {
name = android::tidToName(incomingTid);
}
}
inline void add(const LogBufferElement* element) {
uid_t incomingUid = element->getUid();
pid_t incomingPid = element->getPid();
if ((getUid() != incomingUid) || (getPid() != incomingPid)) {
uid = incomingUid;
pid = incomingPid;
free(name);
name = android::tidToName(element->getTid());
} else {
add(element->getTid());
}
EntryBaseDropped::add(element);
}
std::string formatHeader(const std::string& name, log_id_t id) const;
std::string format(const LogStatistics& stat, log_id_t id) const;
};
struct TagEntry : public EntryBaseDropped {
const uint32_t tag;
pid_t pid;
uid_t uid;
explicit TagEntry(const LogBufferElement* element)
: EntryBaseDropped(element),
tag(element->getTag()),
pid(element->getPid()),
uid(element->getUid()) {
}
const uint32_t& getKey() const {
return tag;
}
const pid_t& getPid() const {
return pid;
}
const uid_t& getUid() const {
return uid;
}
const char* getName() const {
return android::tagToName(tag);
}
inline void add(const LogBufferElement* element) {
if (uid != element->getUid()) {
uid = -1;
}
if (pid != element->getPid()) {
pid = -1;
}
EntryBaseDropped::add(element);
}
std::string formatHeader(const std::string& name, log_id_t id) const;
std::string format(const LogStatistics& stat, log_id_t id) const;
};
struct TagNameKey {
std::string* alloc;
std::string_view name; // Saves space if const char*
explicit TagNameKey(const LogBufferElement* element)
: alloc(nullptr), name("", strlen("")) {
if (element->isBinary()) {
uint32_t tag = element->getTag();
if (tag) {
const char* cp = android::tagToName(tag);
if (cp) {
name = std::string_view(cp, strlen(cp));
return;
}
}
alloc = new std::string(
android::base::StringPrintf("[%" PRIu32 "]", tag));
if (!alloc) return;
name = std::string_view(alloc->c_str(), alloc->size());
return;
}
const char* msg = element->getMsg();
if (!msg) {
name = std::string_view("chatty", strlen("chatty"));
return;
}
++msg;
uint16_t len = element->getMsgLen();
len = (len <= 1) ? 0 : strnlen(msg, len - 1);
if (!len) {
name = std::string_view("<NULL>", strlen("<NULL>"));
return;
}
alloc = new std::string(msg, len);
if (!alloc) return;
name = std::string_view(alloc->c_str(), alloc->size());
}
explicit TagNameKey(TagNameKey&& rval) noexcept
: alloc(rval.alloc), name(rval.name.data(), rval.name.length()) {
rval.alloc = nullptr;
}
explicit TagNameKey(const TagNameKey& rval)
: alloc(rval.alloc ? new std::string(*rval.alloc) : nullptr),
name(alloc ? alloc->data() : rval.name.data(), rval.name.length()) {
}
~TagNameKey() {
if (alloc) delete alloc;
}
operator const std::string_view() const {
return name;
}
const char* data() const {
return name.data();
}
size_t length() const {
return name.length();
}
bool operator==(const TagNameKey& rval) const {
if (length() != rval.length()) return false;
if (length() == 0) return true;
return fastcmp<strncmp>(data(), rval.data(), length()) == 0;
}
bool operator!=(const TagNameKey& rval) const {
return !(*this == rval);
}
size_t getAllocLength() const {
return alloc ? alloc->length() + 1 + sizeof(std::string) : 0;
}
};
// Hash for TagNameKey
template <>
struct std::hash<TagNameKey>
: public std::unary_function<const TagNameKey&, size_t> {
size_t operator()(const TagNameKey& __t) const noexcept {
if (!__t.length()) return 0;
return std::hash<std::string_view>()(std::string_view(__t));
}
};
struct TagNameEntry : public EntryBase {
pid_t tid;
pid_t pid;
uid_t uid;
TagNameKey name;
explicit TagNameEntry(const LogBufferElement* element)
: EntryBase(element),
tid(element->getTid()),
pid(element->getPid()),
uid(element->getUid()),
name(element) {
}
const TagNameKey& getKey() const {
return name;
}
const pid_t& getTid() const {
return tid;
}
const pid_t& getPid() const {
return pid;
}
const uid_t& getUid() const {
return uid;
}
const char* getName() const {
return name.data();
}
size_t getNameAllocLength() const {
return name.getAllocLength();
}
inline void add(const LogBufferElement* element) {
if (uid != element->getUid()) {
uid = -1;
}
if (pid != element->getPid()) {
pid = -1;
}
if (tid != element->getTid()) {
tid = -1;
}
EntryBase::add(element);
}
std::string formatHeader(const std::string& name, log_id_t id) const;
std::string format(const LogStatistics& stat, log_id_t id) const;
};
// Log Statistics
class LogStatistics {
friend UidEntry;
friend PidEntry;
friend TidEntry;
size_t mSizes[LOG_ID_MAX] GUARDED_BY(lock_);
size_t mElements[LOG_ID_MAX] GUARDED_BY(lock_);
size_t mDroppedElements[LOG_ID_MAX] GUARDED_BY(lock_);
size_t mSizesTotal[LOG_ID_MAX] GUARDED_BY(lock_);
size_t mElementsTotal[LOG_ID_MAX] GUARDED_BY(lock_);
log_time mOldest[LOG_ID_MAX] GUARDED_BY(lock_);
log_time mNewest[LOG_ID_MAX] GUARDED_BY(lock_);
log_time mNewestDropped[LOG_ID_MAX] GUARDED_BY(lock_);
static std::atomic<size_t> SizesTotal;
bool enable;
// uid to size list
typedef LogHashtable<uid_t, UidEntry> uidTable_t;
uidTable_t uidTable[LOG_ID_MAX] GUARDED_BY(lock_);
// pid of system to size list
typedef LogHashtable<pid_t, PidEntry> pidSystemTable_t;
pidSystemTable_t pidSystemTable[LOG_ID_MAX] GUARDED_BY(lock_);
// pid to uid list
typedef LogHashtable<pid_t, PidEntry> pidTable_t;
pidTable_t pidTable GUARDED_BY(lock_);
// tid to uid list
typedef LogHashtable<pid_t, TidEntry> tidTable_t;
tidTable_t tidTable GUARDED_BY(lock_);
// tag list
typedef LogHashtable<uint32_t, TagEntry> tagTable_t;
tagTable_t tagTable GUARDED_BY(lock_);
// security tag list
tagTable_t securityTagTable GUARDED_BY(lock_);
// global tag list
typedef LogHashtable<TagNameKey, TagNameEntry> tagNameTable_t;
tagNameTable_t tagNameTable;
size_t sizeOf() const REQUIRES(lock_) {
size_t size = sizeof(*this) + pidTable.sizeOf() + tidTable.sizeOf() +
tagTable.sizeOf() + securityTagTable.sizeOf() +
tagNameTable.sizeOf() +
(pidTable.size() * sizeof(pidTable_t::iterator)) +
(tagTable.size() * sizeof(tagTable_t::iterator));
for (auto it : pidTable) {
const char* name = it.second.getName();
if (name) size += strlen(name) + 1;
}
for (auto it : tidTable) {
const char* name = it.second.getName();
if (name) size += strlen(name) + 1;
}
for (auto it : tagNameTable) size += it.second.getNameAllocLength();
log_id_for_each(id) {
size += uidTable[id].sizeOf();
size += uidTable[id].size() * sizeof(uidTable_t::iterator);
size += pidSystemTable[id].sizeOf();
size +=
pidSystemTable[id].size() * sizeof(pidSystemTable_t::iterator);
}
return size;
}
public:
LogStatistics(bool enable_statistics);
void AddTotal(log_id_t log_id, uint16_t size) EXCLUDES(lock_);
void Add(LogBufferElement* entry) EXCLUDES(lock_);
void Subtract(LogBufferElement* entry) EXCLUDES(lock_);
// entry->setDropped(1) must follow this call
void Drop(LogBufferElement* entry) EXCLUDES(lock_);
// Correct for coalescing two entries referencing dropped content
void Erase(LogBufferElement* element) EXCLUDES(lock_) {
auto lock = std::lock_guard{lock_};
log_id_t log_id = element->getLogId();
--mElements[log_id];
--mDroppedElements[log_id];
}
void WorstTwoUids(log_id id, size_t threshold, int* worst, size_t* worst_sizes,
size_t* second_worst_sizes) const EXCLUDES(lock_);
void WorstTwoTags(size_t threshold, int* worst, size_t* worst_sizes,
size_t* second_worst_sizes) const EXCLUDES(lock_);
void WorstTwoSystemPids(log_id id, size_t worst_uid_sizes, int* worst,
size_t* second_worst_sizes) const EXCLUDES(lock_);
bool ShouldPrune(log_id id, unsigned long max_size, unsigned long* prune_rows) const
EXCLUDES(lock_);
// Snapshot of the sizes for a given log buffer.
size_t Sizes(log_id_t id) const EXCLUDES(lock_) {
auto lock = std::lock_guard{lock_};
return mSizes[id];
}
// TODO: Get rid of this entirely.
static size_t sizesTotal() {
return SizesTotal;
}
std::string Format(uid_t uid, pid_t pid, unsigned int logMask) const EXCLUDES(lock_);
const char* PidToName(pid_t pid) const EXCLUDES(lock_);
uid_t PidToUid(pid_t pid) EXCLUDES(lock_);
const char* UidToName(uid_t uid) const EXCLUDES(lock_);
private:
template <typename TKey, typename TEntry>
void WorstTwoWithThreshold(const LogHashtable<TKey, TEntry>& table, size_t threshold,
int* worst, size_t* worst_sizes, size_t* second_worst_sizes) const;
template <typename TKey, typename TEntry>
std::string FormatTable(const LogHashtable<TKey, TEntry>& table, uid_t uid, pid_t pid,
const std::string& name = std::string(""),
log_id_t id = LOG_ID_MAX) const REQUIRES(lock_);
void FormatTmp(const char* nameTmp, uid_t uid, std::string& name, std::string& size,
size_t nameLen) const REQUIRES(lock_);
const char* UidToNameLocked(uid_t uid) const REQUIRES(lock_);
mutable std::mutex lock_;
};