ab5265ebe6
Added ARMtoMips64Assembler class that translates ARM instructions to MIPS64r6 instructions. Added MIPS64r6 assembly implementations for col32cb16_blend and t32cb16_blend functions. Added MIPS32r2 assembly implementation for col32cb16_blend function. Added tests for MIPS64r6 (assembler, disassembler and assembly implementation functions). Added MIPS32 tests for assembly implementation functions. Minor bug fixes for MIPS32r2 branch. Change-Id: I69e49622117be5b8167628e9702db6aafb1849d7
1197 lines
40 KiB
C++
1197 lines
40 KiB
C++
/* libs/pixelflinger/codeflinger/GGLAssembler.cpp
|
|
**
|
|
** Copyright 2006, The Android Open Source Project
|
|
**
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
**
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
**
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
*/
|
|
|
|
#define LOG_TAG "GGLAssembler"
|
|
|
|
#include <assert.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <sys/types.h>
|
|
#include <cutils/log.h>
|
|
|
|
#include "GGLAssembler.h"
|
|
|
|
namespace android {
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
GGLAssembler::GGLAssembler(ARMAssemblerInterface* target)
|
|
: ARMAssemblerProxy(target),
|
|
RegisterAllocator(ARMAssemblerProxy::getCodegenArch()), mOptLevel(7)
|
|
{
|
|
}
|
|
|
|
GGLAssembler::~GGLAssembler()
|
|
{
|
|
}
|
|
|
|
void GGLAssembler::prolog()
|
|
{
|
|
ARMAssemblerProxy::prolog();
|
|
}
|
|
|
|
void GGLAssembler::epilog(uint32_t touched)
|
|
{
|
|
ARMAssemblerProxy::epilog(touched);
|
|
}
|
|
|
|
void GGLAssembler::reset(int opt_level)
|
|
{
|
|
ARMAssemblerProxy::reset();
|
|
RegisterAllocator::reset();
|
|
mOptLevel = opt_level;
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
int GGLAssembler::scanline(const needs_t& needs, context_t const* c)
|
|
{
|
|
int err = 0;
|
|
int opt_level = mOptLevel;
|
|
while (opt_level >= 0) {
|
|
reset(opt_level);
|
|
err = scanline_core(needs, c);
|
|
if (err == 0)
|
|
break;
|
|
opt_level--;
|
|
}
|
|
|
|
// XXX: in theory, pcForLabel is not valid before generate()
|
|
uint32_t* fragment_start_pc = pcForLabel("fragment_loop");
|
|
uint32_t* fragment_end_pc = pcForLabel("epilog");
|
|
const int per_fragment_ops = int(fragment_end_pc - fragment_start_pc);
|
|
|
|
// build a name for our pipeline
|
|
char name[64];
|
|
sprintf(name,
|
|
"scanline__%08X:%08X_%08X_%08X [%3d ipp]",
|
|
needs.p, needs.n, needs.t[0], needs.t[1], per_fragment_ops);
|
|
|
|
if (err) {
|
|
ALOGE("Error while generating ""%s""\n", name);
|
|
disassemble(name);
|
|
return -1;
|
|
}
|
|
|
|
return generate(name);
|
|
}
|
|
|
|
int GGLAssembler::scanline_core(const needs_t& needs, context_t const* c)
|
|
{
|
|
int64_t duration = ggl_system_time();
|
|
|
|
mBlendFactorCached = 0;
|
|
mBlending = 0;
|
|
mMasking = 0;
|
|
mAA = GGL_READ_NEEDS(P_AA, needs.p);
|
|
mDithering = GGL_READ_NEEDS(P_DITHER, needs.p);
|
|
mAlphaTest = GGL_READ_NEEDS(P_ALPHA_TEST, needs.p) + GGL_NEVER;
|
|
mDepthTest = GGL_READ_NEEDS(P_DEPTH_TEST, needs.p) + GGL_NEVER;
|
|
mFog = GGL_READ_NEEDS(P_FOG, needs.p) != 0;
|
|
mSmooth = GGL_READ_NEEDS(SHADE, needs.n) != 0;
|
|
mBuilderContext.needs = needs;
|
|
mBuilderContext.c = c;
|
|
mBuilderContext.Rctx = reserveReg(R0); // context always in R0
|
|
mCbFormat = c->formats[ GGL_READ_NEEDS(CB_FORMAT, needs.n) ];
|
|
|
|
// ------------------------------------------------------------------------
|
|
|
|
decodeLogicOpNeeds(needs);
|
|
|
|
decodeTMUNeeds(needs, c);
|
|
|
|
mBlendSrc = ggl_needs_to_blendfactor(GGL_READ_NEEDS(BLEND_SRC, needs.n));
|
|
mBlendDst = ggl_needs_to_blendfactor(GGL_READ_NEEDS(BLEND_DST, needs.n));
|
|
mBlendSrcA = ggl_needs_to_blendfactor(GGL_READ_NEEDS(BLEND_SRCA, needs.n));
|
|
mBlendDstA = ggl_needs_to_blendfactor(GGL_READ_NEEDS(BLEND_DSTA, needs.n));
|
|
|
|
if (!mCbFormat.c[GGLFormat::ALPHA].h) {
|
|
if ((mBlendSrc == GGL_ONE_MINUS_DST_ALPHA) ||
|
|
(mBlendSrc == GGL_DST_ALPHA)) {
|
|
mBlendSrc = GGL_ONE;
|
|
}
|
|
if ((mBlendSrcA == GGL_ONE_MINUS_DST_ALPHA) ||
|
|
(mBlendSrcA == GGL_DST_ALPHA)) {
|
|
mBlendSrcA = GGL_ONE;
|
|
}
|
|
if ((mBlendDst == GGL_ONE_MINUS_DST_ALPHA) ||
|
|
(mBlendDst == GGL_DST_ALPHA)) {
|
|
mBlendDst = GGL_ONE;
|
|
}
|
|
if ((mBlendDstA == GGL_ONE_MINUS_DST_ALPHA) ||
|
|
(mBlendDstA == GGL_DST_ALPHA)) {
|
|
mBlendDstA = GGL_ONE;
|
|
}
|
|
}
|
|
|
|
// if we need the framebuffer, read it now
|
|
const int blending = blending_codes(mBlendSrc, mBlendDst) |
|
|
blending_codes(mBlendSrcA, mBlendDstA);
|
|
|
|
// XXX: handle special cases, destination not modified...
|
|
if ((mBlendSrc==GGL_ZERO) && (mBlendSrcA==GGL_ZERO) &&
|
|
(mBlendDst==GGL_ONE) && (mBlendDstA==GGL_ONE)) {
|
|
// Destination unmodified (beware of logic ops)
|
|
} else if ((mBlendSrc==GGL_ZERO) && (mBlendSrcA==GGL_ZERO) &&
|
|
(mBlendDst==GGL_ZERO) && (mBlendDstA==GGL_ZERO)) {
|
|
// Destination is zero (beware of logic ops)
|
|
}
|
|
|
|
int fbComponents = 0;
|
|
const int masking = GGL_READ_NEEDS(MASK_ARGB, needs.n);
|
|
for (int i=0 ; i<4 ; i++) {
|
|
const int mask = 1<<i;
|
|
component_info_t& info = mInfo[i];
|
|
int fs = i==GGLFormat::ALPHA ? mBlendSrcA : mBlendSrc;
|
|
int fd = i==GGLFormat::ALPHA ? mBlendDstA : mBlendDst;
|
|
if (fs==GGL_SRC_ALPHA_SATURATE && i==GGLFormat::ALPHA)
|
|
fs = GGL_ONE;
|
|
info.masked = !!(masking & mask);
|
|
info.inDest = !info.masked && mCbFormat.c[i].h &&
|
|
((mLogicOp & LOGIC_OP_SRC) || (!mLogicOp));
|
|
if (mCbFormat.components >= GGL_LUMINANCE &&
|
|
(i==GGLFormat::GREEN || i==GGLFormat::BLUE)) {
|
|
info.inDest = false;
|
|
}
|
|
info.needed = (i==GGLFormat::ALPHA) &&
|
|
(isAlphaSourceNeeded() || mAlphaTest != GGL_ALWAYS);
|
|
info.replaced = !!(mTextureMachine.replaced & mask);
|
|
info.iterated = (!info.replaced && (info.inDest || info.needed));
|
|
info.smooth = mSmooth && info.iterated;
|
|
info.fog = mFog && info.inDest && (i != GGLFormat::ALPHA);
|
|
info.blend = (fs != int(GGL_ONE)) || (fd > int(GGL_ZERO));
|
|
|
|
mBlending |= (info.blend ? mask : 0);
|
|
mMasking |= (mCbFormat.c[i].h && info.masked) ? mask : 0;
|
|
fbComponents |= mCbFormat.c[i].h ? mask : 0;
|
|
}
|
|
|
|
mAllMasked = (mMasking == fbComponents);
|
|
if (mAllMasked) {
|
|
mDithering = 0;
|
|
}
|
|
|
|
fragment_parts_t parts;
|
|
|
|
// ------------------------------------------------------------------------
|
|
prolog();
|
|
// ------------------------------------------------------------------------
|
|
|
|
build_scanline_prolog(parts, needs);
|
|
|
|
if (registerFile().status())
|
|
return registerFile().status();
|
|
|
|
// ------------------------------------------------------------------------
|
|
label("fragment_loop");
|
|
// ------------------------------------------------------------------------
|
|
{
|
|
Scratch regs(registerFile());
|
|
|
|
if (mDithering) {
|
|
// update the dither index.
|
|
MOV(AL, 0, parts.count.reg,
|
|
reg_imm(parts.count.reg, ROR, GGL_DITHER_ORDER_SHIFT));
|
|
ADD(AL, 0, parts.count.reg, parts.count.reg,
|
|
imm( 1 << (32 - GGL_DITHER_ORDER_SHIFT)));
|
|
MOV(AL, 0, parts.count.reg,
|
|
reg_imm(parts.count.reg, ROR, 32 - GGL_DITHER_ORDER_SHIFT));
|
|
}
|
|
|
|
// XXX: could we do an early alpha-test here in some cases?
|
|
// It would probaly be used only with smooth-alpha and no texture
|
|
// (or no alpha component in the texture).
|
|
|
|
// Early z-test
|
|
if (mAlphaTest==GGL_ALWAYS) {
|
|
build_depth_test(parts, Z_TEST|Z_WRITE);
|
|
} else {
|
|
// we cannot do the z-write here, because
|
|
// it might be killed by the alpha-test later
|
|
build_depth_test(parts, Z_TEST);
|
|
}
|
|
|
|
{ // texture coordinates
|
|
Scratch scratches(registerFile());
|
|
|
|
// texel generation
|
|
build_textures(parts, regs);
|
|
if (registerFile().status())
|
|
return registerFile().status();
|
|
}
|
|
|
|
if ((blending & (FACTOR_DST|BLEND_DST)) ||
|
|
(mMasking && !mAllMasked) ||
|
|
(mLogicOp & LOGIC_OP_DST))
|
|
{
|
|
// blending / logic_op / masking need the framebuffer
|
|
mDstPixel.setTo(regs.obtain(), &mCbFormat);
|
|
|
|
// load the framebuffer pixel
|
|
comment("fetch color-buffer");
|
|
load(parts.cbPtr, mDstPixel);
|
|
}
|
|
|
|
if (registerFile().status())
|
|
return registerFile().status();
|
|
|
|
pixel_t pixel;
|
|
int directTex = mTextureMachine.directTexture;
|
|
if (directTex | parts.packed) {
|
|
// note: we can't have both here
|
|
// iterated color or direct texture
|
|
pixel = directTex ? parts.texel[directTex-1] : parts.iterated;
|
|
pixel.flags &= ~CORRUPTIBLE;
|
|
} else {
|
|
if (mDithering) {
|
|
const int ctxtReg = mBuilderContext.Rctx;
|
|
const int mask = GGL_DITHER_SIZE-1;
|
|
parts.dither = reg_t(regs.obtain());
|
|
AND(AL, 0, parts.dither.reg, parts.count.reg, imm(mask));
|
|
ADDR_ADD(AL, 0, parts.dither.reg, ctxtReg, parts.dither.reg);
|
|
LDRB(AL, parts.dither.reg, parts.dither.reg,
|
|
immed12_pre(GGL_OFFSETOF(ditherMatrix)));
|
|
}
|
|
|
|
// allocate a register for the resulting pixel
|
|
pixel.setTo(regs.obtain(), &mCbFormat, FIRST);
|
|
|
|
build_component(pixel, parts, GGLFormat::ALPHA, regs);
|
|
|
|
if (mAlphaTest!=GGL_ALWAYS) {
|
|
// only handle the z-write part here. We know z-test
|
|
// was successful, as well as alpha-test.
|
|
build_depth_test(parts, Z_WRITE);
|
|
}
|
|
|
|
build_component(pixel, parts, GGLFormat::RED, regs);
|
|
build_component(pixel, parts, GGLFormat::GREEN, regs);
|
|
build_component(pixel, parts, GGLFormat::BLUE, regs);
|
|
|
|
pixel.flags |= CORRUPTIBLE;
|
|
}
|
|
|
|
if (registerFile().status())
|
|
return registerFile().status();
|
|
|
|
if (pixel.reg == -1) {
|
|
// be defensive here. if we're here it's probably
|
|
// that this whole fragment is a no-op.
|
|
pixel = mDstPixel;
|
|
}
|
|
|
|
if (!mAllMasked) {
|
|
// logic operation
|
|
build_logic_op(pixel, regs);
|
|
|
|
// masking
|
|
build_masking(pixel, regs);
|
|
|
|
comment("store");
|
|
store(parts.cbPtr, pixel, WRITE_BACK);
|
|
}
|
|
}
|
|
|
|
if (registerFile().status())
|
|
return registerFile().status();
|
|
|
|
// update the iterated color...
|
|
if (parts.reload != 3) {
|
|
build_smooth_shade(parts);
|
|
}
|
|
|
|
// update iterated z
|
|
build_iterate_z(parts);
|
|
|
|
// update iterated fog
|
|
build_iterate_f(parts);
|
|
|
|
SUB(AL, S, parts.count.reg, parts.count.reg, imm(1<<16));
|
|
B(PL, "fragment_loop");
|
|
label("epilog");
|
|
epilog(registerFile().touched());
|
|
|
|
if ((mAlphaTest!=GGL_ALWAYS) || (mDepthTest!=GGL_ALWAYS)) {
|
|
if (mDepthTest!=GGL_ALWAYS) {
|
|
label("discard_before_textures");
|
|
build_iterate_texture_coordinates(parts);
|
|
}
|
|
label("discard_after_textures");
|
|
build_smooth_shade(parts);
|
|
build_iterate_z(parts);
|
|
build_iterate_f(parts);
|
|
if (!mAllMasked) {
|
|
ADDR_ADD(AL, 0, parts.cbPtr.reg, parts.cbPtr.reg, imm(parts.cbPtr.size>>3));
|
|
}
|
|
SUB(AL, S, parts.count.reg, parts.count.reg, imm(1<<16));
|
|
B(PL, "fragment_loop");
|
|
epilog(registerFile().touched());
|
|
}
|
|
|
|
return registerFile().status();
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
void GGLAssembler::build_scanline_prolog(
|
|
fragment_parts_t& parts, const needs_t& needs)
|
|
{
|
|
Scratch scratches(registerFile());
|
|
int Rctx = mBuilderContext.Rctx;
|
|
|
|
// compute count
|
|
comment("compute ct (# of pixels to process)");
|
|
parts.count.setTo(obtainReg());
|
|
int Rx = scratches.obtain();
|
|
int Ry = scratches.obtain();
|
|
CONTEXT_LOAD(Rx, iterators.xl);
|
|
CONTEXT_LOAD(parts.count.reg, iterators.xr);
|
|
CONTEXT_LOAD(Ry, iterators.y);
|
|
|
|
// parts.count = iterators.xr - Rx
|
|
SUB(AL, 0, parts.count.reg, parts.count.reg, Rx);
|
|
SUB(AL, 0, parts.count.reg, parts.count.reg, imm(1));
|
|
|
|
if (mDithering) {
|
|
// parts.count.reg = 0xNNNNXXDD
|
|
// NNNN = count-1
|
|
// DD = dither offset
|
|
// XX = 0xxxxxxx (x = garbage)
|
|
Scratch scratches(registerFile());
|
|
int tx = scratches.obtain();
|
|
int ty = scratches.obtain();
|
|
AND(AL, 0, tx, Rx, imm(GGL_DITHER_MASK));
|
|
AND(AL, 0, ty, Ry, imm(GGL_DITHER_MASK));
|
|
ADD(AL, 0, tx, tx, reg_imm(ty, LSL, GGL_DITHER_ORDER_SHIFT));
|
|
ORR(AL, 0, parts.count.reg, tx, reg_imm(parts.count.reg, LSL, 16));
|
|
} else {
|
|
// parts.count.reg = 0xNNNN0000
|
|
// NNNN = count-1
|
|
MOV(AL, 0, parts.count.reg, reg_imm(parts.count.reg, LSL, 16));
|
|
}
|
|
|
|
if (!mAllMasked) {
|
|
// compute dst ptr
|
|
comment("compute color-buffer pointer");
|
|
const int cb_bits = mCbFormat.size*8;
|
|
int Rs = scratches.obtain();
|
|
parts.cbPtr.setTo(obtainReg(), cb_bits);
|
|
CONTEXT_LOAD(Rs, state.buffers.color.stride);
|
|
CONTEXT_ADDR_LOAD(parts.cbPtr.reg, state.buffers.color.data);
|
|
SMLABB(AL, Rs, Ry, Rs, Rx); // Rs = Rx + Ry*Rs
|
|
base_offset(parts.cbPtr, parts.cbPtr, Rs);
|
|
scratches.recycle(Rs);
|
|
}
|
|
|
|
// init fog
|
|
const int need_fog = GGL_READ_NEEDS(P_FOG, needs.p);
|
|
if (need_fog) {
|
|
comment("compute initial fog coordinate");
|
|
Scratch scratches(registerFile());
|
|
int dfdx = scratches.obtain();
|
|
int ydfdy = scratches.obtain();
|
|
int f = ydfdy;
|
|
CONTEXT_LOAD(dfdx, generated_vars.dfdx);
|
|
CONTEXT_LOAD(ydfdy, iterators.ydfdy);
|
|
MLA(AL, 0, f, Rx, dfdx, ydfdy);
|
|
CONTEXT_STORE(f, generated_vars.f);
|
|
}
|
|
|
|
// init Z coordinate
|
|
if ((mDepthTest != GGL_ALWAYS) || GGL_READ_NEEDS(P_MASK_Z, needs.p)) {
|
|
parts.z = reg_t(obtainReg());
|
|
comment("compute initial Z coordinate");
|
|
Scratch scratches(registerFile());
|
|
int dzdx = scratches.obtain();
|
|
int ydzdy = parts.z.reg;
|
|
CONTEXT_LOAD(dzdx, generated_vars.dzdx); // 1.31 fixed-point
|
|
CONTEXT_LOAD(ydzdy, iterators.ydzdy); // 1.31 fixed-point
|
|
MLA(AL, 0, parts.z.reg, Rx, dzdx, ydzdy);
|
|
|
|
// we're going to index zbase of parts.count
|
|
// zbase = base + (xl-count + stride*y)*2
|
|
int Rs = dzdx;
|
|
int zbase = scratches.obtain();
|
|
CONTEXT_LOAD(Rs, state.buffers.depth.stride);
|
|
CONTEXT_ADDR_LOAD(zbase, state.buffers.depth.data);
|
|
SMLABB(AL, Rs, Ry, Rs, Rx);
|
|
ADD(AL, 0, Rs, Rs, reg_imm(parts.count.reg, LSR, 16));
|
|
ADDR_ADD(AL, 0, zbase, zbase, reg_imm(Rs, LSL, 1));
|
|
CONTEXT_ADDR_STORE(zbase, generated_vars.zbase);
|
|
}
|
|
|
|
// init texture coordinates
|
|
init_textures(parts.coords, reg_t(Rx), reg_t(Ry));
|
|
scratches.recycle(Ry);
|
|
|
|
// iterated color
|
|
init_iterated_color(parts, reg_t(Rx));
|
|
|
|
// init coverage factor application (anti-aliasing)
|
|
if (mAA) {
|
|
parts.covPtr.setTo(obtainReg(), 16);
|
|
CONTEXT_ADDR_LOAD(parts.covPtr.reg, state.buffers.coverage);
|
|
ADDR_ADD(AL, 0, parts.covPtr.reg, parts.covPtr.reg, reg_imm(Rx, LSL, 1));
|
|
}
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
void GGLAssembler::build_component( pixel_t& pixel,
|
|
const fragment_parts_t& parts,
|
|
int component,
|
|
Scratch& regs)
|
|
{
|
|
static char const * comments[] = {"alpha", "red", "green", "blue"};
|
|
comment(comments[component]);
|
|
|
|
// local register file
|
|
Scratch scratches(registerFile());
|
|
const int dst_component_size = pixel.component_size(component);
|
|
|
|
component_t temp(-1);
|
|
build_incoming_component( temp, dst_component_size,
|
|
parts, component, scratches, regs);
|
|
|
|
if (mInfo[component].inDest) {
|
|
|
|
// blending...
|
|
build_blending( temp, mDstPixel, component, scratches );
|
|
|
|
// downshift component and rebuild pixel...
|
|
downshift(pixel, component, temp, parts.dither);
|
|
}
|
|
}
|
|
|
|
void GGLAssembler::build_incoming_component(
|
|
component_t& temp,
|
|
int dst_size,
|
|
const fragment_parts_t& parts,
|
|
int component,
|
|
Scratch& scratches,
|
|
Scratch& global_regs)
|
|
{
|
|
const uint32_t component_mask = 1<<component;
|
|
|
|
// Figure out what we need for the blending stage...
|
|
int fs = component==GGLFormat::ALPHA ? mBlendSrcA : mBlendSrc;
|
|
int fd = component==GGLFormat::ALPHA ? mBlendDstA : mBlendDst;
|
|
if (fs==GGL_SRC_ALPHA_SATURATE && component==GGLFormat::ALPHA) {
|
|
fs = GGL_ONE;
|
|
}
|
|
|
|
// Figure out what we need to extract and for what reason
|
|
const int blending = blending_codes(fs, fd);
|
|
|
|
// Are we actually going to blend?
|
|
const int need_blending = (fs != int(GGL_ONE)) || (fd > int(GGL_ZERO));
|
|
|
|
// expand the source if the destination has more bits
|
|
int need_expander = false;
|
|
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT-1 ; i++) {
|
|
texture_unit_t& tmu = mTextureMachine.tmu[i];
|
|
if ((tmu.format_idx) &&
|
|
(parts.texel[i].component_size(component) < dst_size)) {
|
|
need_expander = true;
|
|
}
|
|
}
|
|
|
|
// do we need to extract this component?
|
|
const bool multiTexture = mTextureMachine.activeUnits > 1;
|
|
const int blend_needs_alpha_source = (component==GGLFormat::ALPHA) &&
|
|
(isAlphaSourceNeeded());
|
|
int need_extract = mInfo[component].needed;
|
|
if (mInfo[component].inDest)
|
|
{
|
|
need_extract |= ((need_blending ?
|
|
(blending & (BLEND_SRC|FACTOR_SRC)) : need_expander));
|
|
need_extract |= (mTextureMachine.mask != mTextureMachine.replaced);
|
|
need_extract |= mInfo[component].smooth;
|
|
need_extract |= mInfo[component].fog;
|
|
need_extract |= mDithering;
|
|
need_extract |= multiTexture;
|
|
}
|
|
|
|
if (need_extract) {
|
|
Scratch& regs = blend_needs_alpha_source ? global_regs : scratches;
|
|
component_t fragment;
|
|
|
|
// iterated color
|
|
build_iterated_color(fragment, parts, component, regs);
|
|
|
|
// texture environement (decal, modulate, replace)
|
|
build_texture_environment(fragment, parts, component, regs);
|
|
|
|
// expand the source if the destination has more bits
|
|
if (need_expander && (fragment.size() < dst_size)) {
|
|
// we're here only if we fetched a texel
|
|
// (so we know for sure fragment is CORRUPTIBLE)
|
|
expand(fragment, fragment, dst_size);
|
|
}
|
|
|
|
// We have a few specific things to do for the alpha-channel
|
|
if ((component==GGLFormat::ALPHA) &&
|
|
(mInfo[component].needed || fragment.size()<dst_size))
|
|
{
|
|
// convert to integer_t first and make sure
|
|
// we don't corrupt a needed register
|
|
if (fragment.l) {
|
|
component_t incoming(fragment);
|
|
modify(fragment, regs);
|
|
MOV(AL, 0, fragment.reg, reg_imm(incoming.reg, LSR, incoming.l));
|
|
fragment.h -= fragment.l;
|
|
fragment.l = 0;
|
|
}
|
|
|
|
// coverage factor application
|
|
build_coverage_application(fragment, parts, regs);
|
|
|
|
// alpha-test
|
|
build_alpha_test(fragment, parts);
|
|
|
|
if (blend_needs_alpha_source) {
|
|
// We keep only 8 bits for the blending stage
|
|
const int shift = fragment.h <= 8 ? 0 : fragment.h-8;
|
|
if (fragment.flags & CORRUPTIBLE) {
|
|
fragment.flags &= ~CORRUPTIBLE;
|
|
mAlphaSource.setTo(fragment.reg,
|
|
fragment.size(), fragment.flags);
|
|
if (shift) {
|
|
MOV(AL, 0, mAlphaSource.reg,
|
|
reg_imm(mAlphaSource.reg, LSR, shift));
|
|
}
|
|
} else {
|
|
// XXX: it would better to do this in build_blend_factor()
|
|
// so we can avoid the extra MOV below.
|
|
mAlphaSource.setTo(regs.obtain(),
|
|
fragment.size(), CORRUPTIBLE);
|
|
if (shift) {
|
|
MOV(AL, 0, mAlphaSource.reg,
|
|
reg_imm(fragment.reg, LSR, shift));
|
|
} else {
|
|
MOV(AL, 0, mAlphaSource.reg, fragment.reg);
|
|
}
|
|
}
|
|
mAlphaSource.s -= shift;
|
|
}
|
|
}
|
|
|
|
// fog...
|
|
build_fog( fragment, component, regs );
|
|
|
|
temp = fragment;
|
|
} else {
|
|
if (mInfo[component].inDest) {
|
|
// extraction not needed and replace
|
|
// we just select the right component
|
|
if ((mTextureMachine.replaced & component_mask) == 0) {
|
|
// component wasn't replaced, so use it!
|
|
temp = component_t(parts.iterated, component);
|
|
}
|
|
for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; i++) {
|
|
const texture_unit_t& tmu = mTextureMachine.tmu[i];
|
|
if ((tmu.mask & component_mask) &&
|
|
((tmu.replaced & component_mask) == 0)) {
|
|
temp = component_t(parts.texel[i], component);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool GGLAssembler::isAlphaSourceNeeded() const
|
|
{
|
|
// XXX: also needed for alpha-test
|
|
const int bs = mBlendSrc;
|
|
const int bd = mBlendDst;
|
|
return bs==GGL_SRC_ALPHA_SATURATE ||
|
|
bs==GGL_SRC_ALPHA || bs==GGL_ONE_MINUS_SRC_ALPHA ||
|
|
bd==GGL_SRC_ALPHA || bd==GGL_ONE_MINUS_SRC_ALPHA ;
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
void GGLAssembler::build_smooth_shade(const fragment_parts_t& parts)
|
|
{
|
|
if (mSmooth && !parts.iterated_packed) {
|
|
// update the iterated color in a pipelined way...
|
|
comment("update iterated color");
|
|
Scratch scratches(registerFile());
|
|
|
|
const int reload = parts.reload;
|
|
for (int i=0 ; i<4 ; i++) {
|
|
if (!mInfo[i].iterated)
|
|
continue;
|
|
|
|
int c = parts.argb[i].reg;
|
|
int dx = parts.argb_dx[i].reg;
|
|
|
|
if (reload & 1) {
|
|
c = scratches.obtain();
|
|
CONTEXT_LOAD(c, generated_vars.argb[i].c);
|
|
}
|
|
if (reload & 2) {
|
|
dx = scratches.obtain();
|
|
CONTEXT_LOAD(dx, generated_vars.argb[i].dx);
|
|
}
|
|
|
|
if (mSmooth) {
|
|
ADD(AL, 0, c, c, dx);
|
|
}
|
|
|
|
if (reload & 1) {
|
|
CONTEXT_STORE(c, generated_vars.argb[i].c);
|
|
scratches.recycle(c);
|
|
}
|
|
if (reload & 2) {
|
|
scratches.recycle(dx);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
void GGLAssembler::build_coverage_application(component_t& fragment,
|
|
const fragment_parts_t& parts, Scratch& regs)
|
|
{
|
|
// here fragment.l is guarenteed to be 0
|
|
if (mAA) {
|
|
// coverages are 1.15 fixed-point numbers
|
|
comment("coverage application");
|
|
|
|
component_t incoming(fragment);
|
|
modify(fragment, regs);
|
|
|
|
Scratch scratches(registerFile());
|
|
int cf = scratches.obtain();
|
|
LDRH(AL, cf, parts.covPtr.reg, immed8_post(2));
|
|
if (fragment.h > 31) {
|
|
fragment.h--;
|
|
SMULWB(AL, fragment.reg, incoming.reg, cf);
|
|
} else {
|
|
MOV(AL, 0, fragment.reg, reg_imm(incoming.reg, LSL, 1));
|
|
SMULWB(AL, fragment.reg, fragment.reg, cf);
|
|
}
|
|
}
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
void GGLAssembler::build_alpha_test(component_t& fragment,
|
|
const fragment_parts_t& /*parts*/)
|
|
{
|
|
if (mAlphaTest != GGL_ALWAYS) {
|
|
comment("Alpha Test");
|
|
Scratch scratches(registerFile());
|
|
int ref = scratches.obtain();
|
|
const int shift = GGL_COLOR_BITS-fragment.size();
|
|
CONTEXT_LOAD(ref, state.alpha_test.ref);
|
|
if (shift) CMP(AL, fragment.reg, reg_imm(ref, LSR, shift));
|
|
else CMP(AL, fragment.reg, ref);
|
|
int cc = NV;
|
|
switch (mAlphaTest) {
|
|
case GGL_NEVER: cc = NV; break;
|
|
case GGL_LESS: cc = LT; break;
|
|
case GGL_EQUAL: cc = EQ; break;
|
|
case GGL_LEQUAL: cc = LS; break;
|
|
case GGL_GREATER: cc = HI; break;
|
|
case GGL_NOTEQUAL: cc = NE; break;
|
|
case GGL_GEQUAL: cc = HS; break;
|
|
}
|
|
B(cc^1, "discard_after_textures");
|
|
}
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
void GGLAssembler::build_depth_test(
|
|
const fragment_parts_t& parts, uint32_t mask)
|
|
{
|
|
mask &= Z_TEST|Z_WRITE;
|
|
const needs_t& needs = mBuilderContext.needs;
|
|
const int zmask = GGL_READ_NEEDS(P_MASK_Z, needs.p);
|
|
Scratch scratches(registerFile());
|
|
|
|
if (mDepthTest != GGL_ALWAYS || zmask) {
|
|
int cc=AL, ic=AL;
|
|
switch (mDepthTest) {
|
|
case GGL_LESS: ic = HI; break;
|
|
case GGL_EQUAL: ic = EQ; break;
|
|
case GGL_LEQUAL: ic = HS; break;
|
|
case GGL_GREATER: ic = LT; break;
|
|
case GGL_NOTEQUAL: ic = NE; break;
|
|
case GGL_GEQUAL: ic = LS; break;
|
|
case GGL_NEVER:
|
|
// this never happens, because it's taken care of when
|
|
// computing the needs. but we keep it for completness.
|
|
comment("Depth Test (NEVER)");
|
|
B(AL, "discard_before_textures");
|
|
return;
|
|
case GGL_ALWAYS:
|
|
// we're here because zmask is enabled
|
|
mask &= ~Z_TEST; // test always passes.
|
|
break;
|
|
}
|
|
|
|
// inverse the condition
|
|
cc = ic^1;
|
|
|
|
if ((mask & Z_WRITE) && !zmask) {
|
|
mask &= ~Z_WRITE;
|
|
}
|
|
|
|
if (!mask)
|
|
return;
|
|
|
|
comment("Depth Test");
|
|
|
|
int zbase = scratches.obtain();
|
|
int depth = scratches.obtain();
|
|
int z = parts.z.reg;
|
|
|
|
CONTEXT_ADDR_LOAD(zbase, generated_vars.zbase); // stall
|
|
ADDR_SUB(AL, 0, zbase, zbase, reg_imm(parts.count.reg, LSR, 15));
|
|
// above does zbase = zbase + ((count >> 16) << 1)
|
|
|
|
if (mask & Z_TEST) {
|
|
LDRH(AL, depth, zbase); // stall
|
|
CMP(AL, depth, reg_imm(z, LSR, 16));
|
|
B(cc, "discard_before_textures");
|
|
}
|
|
if (mask & Z_WRITE) {
|
|
if (mask == Z_WRITE) {
|
|
// only z-write asked, cc is meaningless
|
|
ic = AL;
|
|
}
|
|
MOV(AL, 0, depth, reg_imm(z, LSR, 16));
|
|
STRH(ic, depth, zbase);
|
|
}
|
|
}
|
|
}
|
|
|
|
void GGLAssembler::build_iterate_z(const fragment_parts_t& parts)
|
|
{
|
|
const needs_t& needs = mBuilderContext.needs;
|
|
if ((mDepthTest != GGL_ALWAYS) || GGL_READ_NEEDS(P_MASK_Z, needs.p)) {
|
|
Scratch scratches(registerFile());
|
|
int dzdx = scratches.obtain();
|
|
CONTEXT_LOAD(dzdx, generated_vars.dzdx); // stall
|
|
ADD(AL, 0, parts.z.reg, parts.z.reg, dzdx);
|
|
}
|
|
}
|
|
|
|
void GGLAssembler::build_iterate_f(const fragment_parts_t& /*parts*/)
|
|
{
|
|
const needs_t& needs = mBuilderContext.needs;
|
|
if (GGL_READ_NEEDS(P_FOG, needs.p)) {
|
|
Scratch scratches(registerFile());
|
|
int dfdx = scratches.obtain();
|
|
int f = scratches.obtain();
|
|
CONTEXT_LOAD(f, generated_vars.f);
|
|
CONTEXT_LOAD(dfdx, generated_vars.dfdx); // stall
|
|
ADD(AL, 0, f, f, dfdx);
|
|
CONTEXT_STORE(f, generated_vars.f);
|
|
}
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
void GGLAssembler::build_logic_op(pixel_t& pixel, Scratch& regs)
|
|
{
|
|
const needs_t& needs = mBuilderContext.needs;
|
|
const int opcode = GGL_READ_NEEDS(LOGIC_OP, needs.n) | GGL_CLEAR;
|
|
if (opcode == GGL_COPY)
|
|
return;
|
|
|
|
comment("logic operation");
|
|
|
|
pixel_t s(pixel);
|
|
if (!(pixel.flags & CORRUPTIBLE)) {
|
|
pixel.reg = regs.obtain();
|
|
pixel.flags |= CORRUPTIBLE;
|
|
}
|
|
|
|
pixel_t d(mDstPixel);
|
|
switch(opcode) {
|
|
case GGL_CLEAR: MOV(AL, 0, pixel.reg, imm(0)); break;
|
|
case GGL_AND: AND(AL, 0, pixel.reg, s.reg, d.reg); break;
|
|
case GGL_AND_REVERSE: BIC(AL, 0, pixel.reg, s.reg, d.reg); break;
|
|
case GGL_COPY: break;
|
|
case GGL_AND_INVERTED: BIC(AL, 0, pixel.reg, d.reg, s.reg); break;
|
|
case GGL_NOOP: MOV(AL, 0, pixel.reg, d.reg); break;
|
|
case GGL_XOR: EOR(AL, 0, pixel.reg, s.reg, d.reg); break;
|
|
case GGL_OR: ORR(AL, 0, pixel.reg, s.reg, d.reg); break;
|
|
case GGL_NOR: ORR(AL, 0, pixel.reg, s.reg, d.reg);
|
|
MVN(AL, 0, pixel.reg, pixel.reg); break;
|
|
case GGL_EQUIV: EOR(AL, 0, pixel.reg, s.reg, d.reg);
|
|
MVN(AL, 0, pixel.reg, pixel.reg); break;
|
|
case GGL_INVERT: MVN(AL, 0, pixel.reg, d.reg); break;
|
|
case GGL_OR_REVERSE: // s | ~d == ~(~s & d)
|
|
BIC(AL, 0, pixel.reg, d.reg, s.reg);
|
|
MVN(AL, 0, pixel.reg, pixel.reg); break;
|
|
case GGL_COPY_INVERTED: MVN(AL, 0, pixel.reg, s.reg); break;
|
|
case GGL_OR_INVERTED: // ~s | d == ~(s & ~d)
|
|
BIC(AL, 0, pixel.reg, s.reg, d.reg);
|
|
MVN(AL, 0, pixel.reg, pixel.reg); break;
|
|
case GGL_NAND: AND(AL, 0, pixel.reg, s.reg, d.reg);
|
|
MVN(AL, 0, pixel.reg, pixel.reg); break;
|
|
case GGL_SET: MVN(AL, 0, pixel.reg, imm(0)); break;
|
|
};
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
static uint32_t find_bottom(uint32_t val)
|
|
{
|
|
uint32_t i = 0;
|
|
while (!(val & (3<<i)))
|
|
i+= 2;
|
|
return i;
|
|
}
|
|
|
|
static void normalize(uint32_t& val, uint32_t& rot)
|
|
{
|
|
rot = 0;
|
|
while (!(val&3) || (val & 0xFC000000)) {
|
|
uint32_t newval;
|
|
newval = val >> 2;
|
|
newval |= (val&3) << 30;
|
|
val = newval;
|
|
rot += 2;
|
|
if (rot == 32) {
|
|
rot = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void GGLAssembler::build_and_immediate(int d, int s, uint32_t mask, int bits)
|
|
{
|
|
uint32_t rot;
|
|
uint32_t size = ((bits>=32) ? 0 : (1LU << bits)) - 1;
|
|
mask &= size;
|
|
|
|
if (mask == size) {
|
|
if (d != s)
|
|
MOV( AL, 0, d, s);
|
|
return;
|
|
}
|
|
|
|
if ((getCodegenArch() == CODEGEN_ARCH_MIPS) ||
|
|
(getCodegenArch() == CODEGEN_ARCH_MIPS64)) {
|
|
// MIPS can do 16-bit imm in 1 instr, 32-bit in 3 instr
|
|
// the below ' while (mask)' code is buggy on mips
|
|
// since mips returns true on isValidImmediate()
|
|
// then we get multiple AND instr (positive logic)
|
|
AND( AL, 0, d, s, imm(mask) );
|
|
return;
|
|
}
|
|
else if (getCodegenArch() == CODEGEN_ARCH_ARM64) {
|
|
AND( AL, 0, d, s, imm(mask) );
|
|
return;
|
|
}
|
|
|
|
int negative_logic = !isValidImmediate(mask);
|
|
if (negative_logic) {
|
|
mask = ~mask & size;
|
|
}
|
|
normalize(mask, rot);
|
|
|
|
if (mask) {
|
|
while (mask) {
|
|
uint32_t bitpos = find_bottom(mask);
|
|
int shift = rot + bitpos;
|
|
uint32_t m = mask & (0xff << bitpos);
|
|
mask &= ~m;
|
|
m >>= bitpos;
|
|
int32_t newMask = (m<<shift) | (m>>(32-shift));
|
|
if (!negative_logic) {
|
|
AND( AL, 0, d, s, imm(newMask) );
|
|
} else {
|
|
BIC( AL, 0, d, s, imm(newMask) );
|
|
}
|
|
s = d;
|
|
}
|
|
} else {
|
|
MOV( AL, 0, d, imm(0));
|
|
}
|
|
}
|
|
|
|
void GGLAssembler::build_masking(pixel_t& pixel, Scratch& regs)
|
|
{
|
|
if (!mMasking || mAllMasked) {
|
|
return;
|
|
}
|
|
|
|
comment("color mask");
|
|
|
|
pixel_t fb(mDstPixel);
|
|
pixel_t s(pixel);
|
|
if (!(pixel.flags & CORRUPTIBLE)) {
|
|
pixel.reg = regs.obtain();
|
|
pixel.flags |= CORRUPTIBLE;
|
|
}
|
|
|
|
int mask = 0;
|
|
for (int i=0 ; i<4 ; i++) {
|
|
const int component_mask = 1<<i;
|
|
const int h = fb.format.c[i].h;
|
|
const int l = fb.format.c[i].l;
|
|
if (h && (!(mMasking & component_mask))) {
|
|
mask |= ((1<<(h-l))-1) << l;
|
|
}
|
|
}
|
|
|
|
// There is no need to clear the masked components of the source
|
|
// (unless we applied a logic op), because they're already zeroed
|
|
// by construction (masked components are not computed)
|
|
|
|
if (mLogicOp) {
|
|
const needs_t& needs = mBuilderContext.needs;
|
|
const int opcode = GGL_READ_NEEDS(LOGIC_OP, needs.n) | GGL_CLEAR;
|
|
if (opcode != GGL_CLEAR) {
|
|
// clear masked component of source
|
|
build_and_immediate(pixel.reg, s.reg, mask, fb.size());
|
|
s = pixel;
|
|
}
|
|
}
|
|
|
|
// clear non masked components of destination
|
|
build_and_immediate(fb.reg, fb.reg, ~mask, fb.size());
|
|
|
|
// or back the channels that were masked
|
|
if (s.reg == fb.reg) {
|
|
// this is in fact a MOV
|
|
if (s.reg == pixel.reg) {
|
|
// ugh. this in in fact a nop
|
|
} else {
|
|
MOV(AL, 0, pixel.reg, fb.reg);
|
|
}
|
|
} else {
|
|
ORR(AL, 0, pixel.reg, s.reg, fb.reg);
|
|
}
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
void GGLAssembler::base_offset(
|
|
const pointer_t& d, const pointer_t& b, const reg_t& o)
|
|
{
|
|
switch (b.size) {
|
|
case 32:
|
|
ADDR_ADD(AL, 0, d.reg, b.reg, reg_imm(o.reg, LSL, 2));
|
|
break;
|
|
case 24:
|
|
if (d.reg == b.reg) {
|
|
ADDR_ADD(AL, 0, d.reg, b.reg, reg_imm(o.reg, LSL, 1));
|
|
ADDR_ADD(AL, 0, d.reg, d.reg, o.reg);
|
|
} else {
|
|
ADDR_ADD(AL, 0, d.reg, o.reg, reg_imm(o.reg, LSL, 1));
|
|
ADDR_ADD(AL, 0, d.reg, d.reg, b.reg);
|
|
}
|
|
break;
|
|
case 16:
|
|
ADDR_ADD(AL, 0, d.reg, b.reg, reg_imm(o.reg, LSL, 1));
|
|
break;
|
|
case 8:
|
|
ADDR_ADD(AL, 0, d.reg, b.reg, o.reg);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// cheezy register allocator...
|
|
// ----------------------------------------------------------------------------
|
|
|
|
// Modified to support MIPS processors, in a very simple way. We retain the
|
|
// (Arm) limit of 16 total registers, but shift the mapping of those registers
|
|
// from 0-15, to 2-17. Register 0 on Mips cannot be used as GP registers, and
|
|
// register 1 has a traditional use as a temp).
|
|
|
|
RegisterAllocator::RegisterAllocator(int arch) : mRegs(arch)
|
|
{
|
|
}
|
|
|
|
void RegisterAllocator::reset()
|
|
{
|
|
mRegs.reset();
|
|
}
|
|
|
|
int RegisterAllocator::reserveReg(int reg)
|
|
{
|
|
return mRegs.reserve(reg);
|
|
}
|
|
|
|
int RegisterAllocator::obtainReg()
|
|
{
|
|
return mRegs.obtain();
|
|
}
|
|
|
|
void RegisterAllocator::recycleReg(int reg)
|
|
{
|
|
mRegs.recycle(reg);
|
|
}
|
|
|
|
RegisterAllocator::RegisterFile& RegisterAllocator::registerFile()
|
|
{
|
|
return mRegs;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
RegisterAllocator::RegisterFile::RegisterFile(int codegen_arch)
|
|
: mRegs(0), mTouched(0), mStatus(0), mArch(codegen_arch), mRegisterOffset(0)
|
|
{
|
|
if ((mArch == ARMAssemblerInterface::CODEGEN_ARCH_MIPS) ||
|
|
(mArch == ARMAssemblerInterface::CODEGEN_ARCH_MIPS64)) {
|
|
mRegisterOffset = 2; // ARM has regs 0..15, MIPS offset to 2..17
|
|
}
|
|
reserve(ARMAssemblerInterface::SP);
|
|
reserve(ARMAssemblerInterface::PC);
|
|
}
|
|
|
|
RegisterAllocator::RegisterFile::RegisterFile(const RegisterFile& rhs, int codegen_arch)
|
|
: mRegs(rhs.mRegs), mTouched(rhs.mTouched), mArch(codegen_arch), mRegisterOffset(0)
|
|
{
|
|
if ((mArch == ARMAssemblerInterface::CODEGEN_ARCH_MIPS) ||
|
|
(mArch == ARMAssemblerInterface::CODEGEN_ARCH_MIPS64)) {
|
|
mRegisterOffset = 2; // ARM has regs 0..15, MIPS offset to 2..17
|
|
}
|
|
}
|
|
|
|
RegisterAllocator::RegisterFile::~RegisterFile()
|
|
{
|
|
}
|
|
|
|
bool RegisterAllocator::RegisterFile::operator == (const RegisterFile& rhs) const
|
|
{
|
|
return (mRegs == rhs.mRegs);
|
|
}
|
|
|
|
void RegisterAllocator::RegisterFile::reset()
|
|
{
|
|
mRegs = mTouched = mStatus = 0;
|
|
reserve(ARMAssemblerInterface::SP);
|
|
reserve(ARMAssemblerInterface::PC);
|
|
}
|
|
|
|
// RegisterFile::reserve() take a register parameter in the
|
|
// range 0-15 (Arm compatible), but on a Mips processor, will
|
|
// return the actual allocated register in the range 2-17.
|
|
int RegisterAllocator::RegisterFile::reserve(int reg)
|
|
{
|
|
reg += mRegisterOffset;
|
|
LOG_ALWAYS_FATAL_IF(isUsed(reg),
|
|
"reserving register %d, but already in use",
|
|
reg);
|
|
mRegs |= (1<<reg);
|
|
mTouched |= mRegs;
|
|
return reg;
|
|
}
|
|
|
|
// This interface uses regMask in range 2-17 on MIPS, no translation.
|
|
void RegisterAllocator::RegisterFile::reserveSeveral(uint32_t regMask)
|
|
{
|
|
mRegs |= regMask;
|
|
mTouched |= regMask;
|
|
}
|
|
|
|
int RegisterAllocator::RegisterFile::isUsed(int reg) const
|
|
{
|
|
LOG_ALWAYS_FATAL_IF(reg>=16+(int)mRegisterOffset, "invalid register %d", reg);
|
|
return mRegs & (1<<reg);
|
|
}
|
|
|
|
int RegisterAllocator::RegisterFile::obtain()
|
|
{
|
|
const char priorityList[14] = { 0, 1, 2, 3,
|
|
12, 14, 4, 5,
|
|
6, 7, 8, 9,
|
|
10, 11 };
|
|
const int nbreg = sizeof(priorityList);
|
|
int i, r, reg;
|
|
for (i=0 ; i<nbreg ; i++) {
|
|
r = priorityList[i];
|
|
if (!isUsed(r + mRegisterOffset)) {
|
|
break;
|
|
}
|
|
}
|
|
// this is not an error anymore because, we'll try again with
|
|
// a lower optimization level.
|
|
//ALOGE_IF(i >= nbreg, "pixelflinger ran out of registers\n");
|
|
if (i >= nbreg) {
|
|
mStatus |= OUT_OF_REGISTERS;
|
|
// we return SP so we can more easily debug things
|
|
// the code will never be run anyway.
|
|
return ARMAssemblerInterface::SP;
|
|
}
|
|
reg = reserve(r); // Param in Arm range 0-15, returns range 2-17 on Mips.
|
|
return reg;
|
|
}
|
|
|
|
bool RegisterAllocator::RegisterFile::hasFreeRegs() const
|
|
{
|
|
uint32_t regs = mRegs >> mRegisterOffset; // MIPS fix.
|
|
return ((regs & 0xFFFF) == 0xFFFF) ? false : true;
|
|
}
|
|
|
|
int RegisterAllocator::RegisterFile::countFreeRegs() const
|
|
{
|
|
uint32_t regs = mRegs >> mRegisterOffset; // MIPS fix.
|
|
int f = ~regs & 0xFFFF;
|
|
// now count number of 1
|
|
f = (f & 0x5555) + ((f>>1) & 0x5555);
|
|
f = (f & 0x3333) + ((f>>2) & 0x3333);
|
|
f = (f & 0x0F0F) + ((f>>4) & 0x0F0F);
|
|
f = (f & 0x00FF) + ((f>>8) & 0x00FF);
|
|
return f;
|
|
}
|
|
|
|
void RegisterAllocator::RegisterFile::recycle(int reg)
|
|
{
|
|
// commented out, since common failure of running out of regs
|
|
// triggers this assertion. Since the code is not execectued
|
|
// in that case, it does not matter. No reason to FATAL err.
|
|
// LOG_FATAL_IF(!isUsed(reg),
|
|
// "recycling unallocated register %d",
|
|
// reg);
|
|
mRegs &= ~(1<<reg);
|
|
}
|
|
|
|
void RegisterAllocator::RegisterFile::recycleSeveral(uint32_t regMask)
|
|
{
|
|
// commented out, since common failure of running out of regs
|
|
// triggers this assertion. Since the code is not execectued
|
|
// in that case, it does not matter. No reason to FATAL err.
|
|
// LOG_FATAL_IF((mRegs & regMask)!=regMask,
|
|
// "recycling unallocated registers "
|
|
// "(recycle=%08x, allocated=%08x, unallocated=%08x)",
|
|
// regMask, mRegs, mRegs®Mask);
|
|
mRegs &= ~regMask;
|
|
}
|
|
|
|
uint32_t RegisterAllocator::RegisterFile::touched() const
|
|
{
|
|
return mTouched;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
}; // namespace android
|
|
|