platform_system_core/sdcard/fuse.h
Jorge Lucangeli Obes e157b253d4 Fix sdcard logging.
Use C++ logging for everything.

Bug: 30222003
Change-Id: I5c5d85102b01df6965a515b59aa275ac85f50f00
2016-07-26 16:52:48 -04:00

209 lines
5.7 KiB
C++

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef FUSE_H_
#define FUSE_H_
#include <dirent.h>
#include <fcntl.h>
#include <linux/fuse.h>
#include <pthread.h>
#include <stdbool.h>
#include <stdlib.h>
#include <sys/param.h>
#include <sys/stat.h>
#include <sys/statfs.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>
#include <map>
#include <string>
#include <android-base/logging.h>
#include <cutils/fs.h>
#include <cutils/multiuser.h>
#include <packagelistparser/packagelistparser.h>
#include <private/android_filesystem_config.h>
#define FUSE_TRACE 0
#if FUSE_TRACE
static constexpr bool kEnableDLog = true;
#else // FUSE_TRACE == 0
static constexpr bool kEnableDLog = false;
#endif
// Use same strategy as DCHECK().
#define DLOG(x) \
if (kEnableDLog) LOG(x)
/* Maximum number of bytes to write in one request. */
#define MAX_WRITE (256 * 1024)
/* Maximum number of bytes to read in one request. */
#define MAX_READ (128 * 1024)
/* Largest possible request.
* The request size is bounded by the maximum size of a FUSE_WRITE request because it has
* the largest possible data payload. */
#define MAX_REQUEST_SIZE (sizeof(struct fuse_in_header) + sizeof(struct fuse_write_in) + MAX_WRITE)
namespace {
struct CaseInsensitiveCompare {
bool operator()(const std::string& lhs, const std::string& rhs) const {
return strcasecmp(lhs.c_str(), rhs.c_str()) < 0;
}
};
}
using AppIdMap = std::map<std::string, appid_t, CaseInsensitiveCompare>;
/* Permission mode for a specific node. Controls how file permissions
* are derived for children nodes. */
typedef enum {
/* Nothing special; this node should just inherit from its parent. */
PERM_INHERIT,
/* This node is one level above a normal root; used for legacy layouts
* which use the first level to represent user_id. */
PERM_PRE_ROOT,
/* This node is "/" */
PERM_ROOT,
/* This node is "/Android" */
PERM_ANDROID,
/* This node is "/Android/data" */
PERM_ANDROID_DATA,
/* This node is "/Android/obb" */
PERM_ANDROID_OBB,
/* This node is "/Android/media" */
PERM_ANDROID_MEDIA,
} perm_t;
struct handle {
int fd;
};
struct dirhandle {
DIR *d;
};
struct node {
__u32 refcount;
__u64 nid;
__u64 gen;
/*
* The inode number for this FUSE node. Note that this isn't stable across
* multiple invocations of the FUSE daemon.
*/
__u32 ino;
/* State derived based on current position in hierarchy. */
perm_t perm;
userid_t userid;
uid_t uid;
bool under_android;
struct node *next; /* per-dir sibling list */
struct node *child; /* first contained file by this dir */
struct node *parent; /* containing directory */
size_t namelen;
char *name;
/* If non-null, this is the real name of the file in the underlying storage.
* This may differ from the field "name" only by case.
* strlen(actual_name) will always equal strlen(name), so it is safe to use
* namelen for both fields.
*/
char *actual_name;
/* If non-null, an exact underlying path that should be grafted into this
* position. Used to support things like OBB. */
char* graft_path;
size_t graft_pathlen;
bool deleted;
};
/* Global data for all FUSE mounts */
struct fuse_global {
pthread_mutex_t lock;
uid_t uid;
gid_t gid;
bool multi_user;
char source_path[PATH_MAX];
char obb_path[PATH_MAX];
AppIdMap* package_to_appid;
__u64 next_generation;
struct node root;
/* Used to allocate unique inode numbers for fuse nodes. We use
* a simple counter based scheme where inode numbers from deleted
* nodes aren't reused. Note that inode allocations are not stable
* across multiple invocation of the sdcard daemon, but that shouldn't
* be a huge problem in practice.
*
* Note that we restrict inodes to 32 bit unsigned integers to prevent
* truncation on 32 bit processes when unsigned long long stat.st_ino is
* assigned to an unsigned long ino_t type in an LP32 process.
*
* Also note that fuse_attr and fuse_dirent inode values are 64 bits wide
* on both LP32 and LP64, but the fuse kernel code doesn't squash 64 bit
* inode numbers into 32 bit values on 64 bit kernels (see fuse_squash_ino
* in fs/fuse/inode.c).
*
* Accesses must be guarded by |lock|.
*/
__u32 inode_ctr;
struct fuse* fuse_default;
struct fuse* fuse_read;
struct fuse* fuse_write;
};
/* Single FUSE mount */
struct fuse {
struct fuse_global* global;
char dest_path[PATH_MAX];
int fd;
gid_t gid;
mode_t mask;
};
/* Private data used by a single FUSE handler */
struct fuse_handler {
struct fuse* fuse;
int token;
/* To save memory, we never use the contents of the request buffer and the read
* buffer at the same time. This allows us to share the underlying storage. */
union {
__u8 request_buffer[MAX_REQUEST_SIZE];
__u8 read_buffer[MAX_READ + PAGE_SIZE];
};
};
void handle_fuse_requests(struct fuse_handler* handler);
void derive_permissions_recursive_locked(struct fuse* fuse, struct node *parent);
#endif /* FUSE_H_ */