platform_system_core/init/init.cpp
yusukes 4a4ec14e42 Do not block SIGTERM in init's child processes
Previously, unless the process unblocks the signal by itself,
the signal was never delivered to the process. This caused at
least one CTS test failure.

Bug: 72453675
Test: 'kill -TERM app_pid' terminates the app process

Change-Id: I3977cac75e2673b52c5cf91d34d7a9c258c1a0e4
2018-02-02 15:28:03 -08:00

768 lines
26 KiB
C++

/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "init.h"
#include <dirent.h>
#include <fcntl.h>
#include <paths.h>
#include <pthread.h>
#include <seccomp_policy.h>
#include <signal.h>
#include <stdlib.h>
#include <string.h>
#include <sys/epoll.h>
#include <sys/mount.h>
#include <sys/signalfd.h>
#include <sys/sysmacros.h>
#include <sys/types.h>
#include <unistd.h>
#include <android-base/chrono_utils.h>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/properties.h>
#include <android-base/strings.h>
#include <cutils/android_reboot.h>
#include <keyutils.h>
#include <libavb/libavb.h>
#include <private/android_filesystem_config.h>
#include <selinux/android.h>
#include <memory>
#include <optional>
#include "import_parser.h"
#include "init_first_stage.h"
#include "keychords.h"
#include "log.h"
#include "property_service.h"
#include "reboot.h"
#include "security.h"
#include "selinux.h"
#include "sigchld_handler.h"
#include "ueventd.h"
#include "util.h"
#include "watchdogd.h"
using namespace std::string_literals;
using android::base::boot_clock;
using android::base::GetProperty;
using android::base::Timer;
namespace android {
namespace init {
static int property_triggers_enabled = 0;
static char qemu[32];
std::string default_console = "/dev/console";
static int epoll_fd = -1;
static int sigterm_signal_fd = -1;
static std::unique_ptr<Timer> waiting_for_prop(nullptr);
static std::string wait_prop_name;
static std::string wait_prop_value;
static bool shutting_down;
static std::string shutdown_command;
static bool do_shutdown = false;
std::vector<std::string> late_import_paths;
static std::vector<Subcontext>* subcontexts;
void DumpState() {
ServiceList::GetInstance().DumpState();
ActionManager::GetInstance().DumpState();
}
Parser CreateParser(ActionManager& action_manager, ServiceList& service_list) {
Parser parser;
parser.AddSectionParser("service", std::make_unique<ServiceParser>(&service_list, subcontexts));
parser.AddSectionParser("on", std::make_unique<ActionParser>(&action_manager, subcontexts));
parser.AddSectionParser("import", std::make_unique<ImportParser>(&parser));
return parser;
}
static void LoadBootScripts(ActionManager& action_manager, ServiceList& service_list) {
Parser parser = CreateParser(action_manager, service_list);
std::string bootscript = GetProperty("ro.boot.init_rc", "");
if (bootscript.empty()) {
parser.ParseConfig("/init.rc");
if (!parser.ParseConfig("/system/etc/init")) {
late_import_paths.emplace_back("/system/etc/init");
}
if (!parser.ParseConfig("/product/etc/init")) {
late_import_paths.emplace_back("/product/etc/init");
}
if (!parser.ParseConfig("/odm/etc/init")) {
late_import_paths.emplace_back("/odm/etc/init");
}
if (!parser.ParseConfig("/vendor/etc/init")) {
late_import_paths.emplace_back("/vendor/etc/init");
}
} else {
parser.ParseConfig(bootscript);
}
}
void register_epoll_handler(int fd, void (*fn)()) {
epoll_event ev;
ev.events = EPOLLIN;
ev.data.ptr = reinterpret_cast<void*>(fn);
if (epoll_ctl(epoll_fd, EPOLL_CTL_ADD, fd, &ev) == -1) {
PLOG(ERROR) << "epoll_ctl failed";
}
}
bool start_waiting_for_property(const char *name, const char *value)
{
if (waiting_for_prop) {
return false;
}
if (GetProperty(name, "") != value) {
// Current property value is not equal to expected value
wait_prop_name = name;
wait_prop_value = value;
waiting_for_prop.reset(new Timer());
} else {
LOG(INFO) << "start_waiting_for_property(\""
<< name << "\", \"" << value << "\"): already set";
}
return true;
}
void ResetWaitForProp() {
wait_prop_name.clear();
wait_prop_value.clear();
waiting_for_prop.reset();
}
void property_changed(const std::string& name, const std::string& value) {
// If the property is sys.powerctl, we bypass the event queue and immediately handle it.
// This is to ensure that init will always and immediately shutdown/reboot, regardless of
// if there are other pending events to process or if init is waiting on an exec service or
// waiting on a property.
// In non-thermal-shutdown case, 'shutdown' trigger will be fired to let device specific
// commands to be executed.
if (name == "sys.powerctl") {
// Despite the above comment, we can't call HandlePowerctlMessage() in this function,
// because it modifies the contents of the action queue, which can cause the action queue
// to get into a bad state if this function is called from a command being executed by the
// action queue. Instead we set this flag and ensure that shutdown happens before the next
// command is run in the main init loop.
// TODO: once property service is removed from init, this will never happen from a builtin,
// but rather from a callback from the property service socket, in which case this hack can
// go away.
shutdown_command = value;
do_shutdown = true;
}
if (property_triggers_enabled) ActionManager::GetInstance().QueuePropertyChange(name, value);
if (waiting_for_prop) {
if (wait_prop_name == name && wait_prop_value == value) {
LOG(INFO) << "Wait for property took " << *waiting_for_prop;
ResetWaitForProp();
}
}
}
static std::optional<boot_clock::time_point> RestartProcesses() {
std::optional<boot_clock::time_point> next_process_restart_time;
for (const auto& s : ServiceList::GetInstance()) {
if (!(s->flags() & SVC_RESTARTING)) continue;
auto restart_time = s->time_started() + 5s;
if (boot_clock::now() > restart_time) {
if (auto result = s->Start(); !result) {
LOG(ERROR) << "Could not restart process '" << s->name() << "': " << result.error();
}
} else {
if (!next_process_restart_time || restart_time < *next_process_restart_time) {
next_process_restart_time = restart_time;
}
}
}
return next_process_restart_time;
}
static Result<Success> DoControlStart(Service* service) {
return service->Start();
}
static Result<Success> DoControlStop(Service* service) {
service->Stop();
return Success();
}
static Result<Success> DoControlRestart(Service* service) {
service->Restart();
return Success();
}
enum class ControlTarget {
SERVICE, // function gets called for the named service
INTERFACE, // action gets called for every service that holds this interface
};
struct ControlMessageFunction {
ControlTarget target;
std::function<Result<Success>(Service*)> action;
};
static const std::map<std::string, ControlMessageFunction>& get_control_message_map() {
// clang-format off
static const std::map<std::string, ControlMessageFunction> control_message_functions = {
{"start", {ControlTarget::SERVICE, DoControlStart}},
{"stop", {ControlTarget::SERVICE, DoControlStop}},
{"restart", {ControlTarget::SERVICE, DoControlRestart}},
{"interface_start", {ControlTarget::INTERFACE, DoControlStart}},
{"interface_stop", {ControlTarget::INTERFACE, DoControlStop}},
{"interface_restart", {ControlTarget::INTERFACE, DoControlRestart}},
};
// clang-format on
return control_message_functions;
}
void handle_control_message(const std::string& msg, const std::string& name) {
const auto& map = get_control_message_map();
const auto it = map.find(msg);
if (it == map.end()) {
LOG(ERROR) << "Unknown control msg '" << msg << "'";
return;
}
const ControlMessageFunction& function = it->second;
if (function.target == ControlTarget::SERVICE) {
Service* svc = ServiceList::GetInstance().FindService(name);
if (svc == nullptr) {
LOG(ERROR) << "No such service '" << name << "' for ctl." << msg;
return;
}
if (auto result = function.action(svc); !result) {
LOG(ERROR) << "Could not ctl." << msg << " for service " << name << ": "
<< result.error();
}
return;
}
if (function.target == ControlTarget::INTERFACE) {
for (const auto& svc : ServiceList::GetInstance()) {
if (svc->interfaces().count(name) == 0) {
continue;
}
if (auto result = function.action(svc.get()); !result) {
LOG(ERROR) << "Could not handle ctl." << msg << " for service " << svc->name()
<< " with interface " << name << ": " << result.error();
}
return;
}
LOG(ERROR) << "Could not find service hosting interface " << name;
return;
}
LOG(ERROR) << "Invalid function target from static map key '" << msg
<< "': " << static_cast<std::underlying_type<ControlTarget>::type>(function.target);
}
static Result<Success> wait_for_coldboot_done_action(const BuiltinArguments& args) {
Timer t;
LOG(VERBOSE) << "Waiting for " COLDBOOT_DONE "...";
// Historically we had a 1s timeout here because we weren't otherwise
// tracking boot time, and many OEMs made their sepolicy regular
// expressions too expensive (http://b/19899875).
// Now we're tracking boot time, just log the time taken to a system
// property. We still panic if it takes more than a minute though,
// because any build that slow isn't likely to boot at all, and we'd
// rather any test lab devices fail back to the bootloader.
if (wait_for_file(COLDBOOT_DONE, 60s) < 0) {
LOG(FATAL) << "Timed out waiting for " COLDBOOT_DONE;
}
property_set("ro.boottime.init.cold_boot_wait", std::to_string(t.duration().count()));
return Success();
}
static Result<Success> keychord_init_action(const BuiltinArguments& args) {
keychord_init();
return Success();
}
static Result<Success> console_init_action(const BuiltinArguments& args) {
std::string console = GetProperty("ro.boot.console", "");
if (!console.empty()) {
default_console = "/dev/" + console;
}
return Success();
}
static void import_kernel_nv(const std::string& key, const std::string& value, bool for_emulator) {
if (key.empty()) return;
if (for_emulator) {
// In the emulator, export any kernel option with the "ro.kernel." prefix.
property_set("ro.kernel." + key, value);
return;
}
if (key == "qemu") {
strlcpy(qemu, value.c_str(), sizeof(qemu));
} else if (android::base::StartsWith(key, "androidboot.")) {
property_set("ro.boot." + key.substr(12), value);
}
}
static void export_oem_lock_status() {
if (!android::base::GetBoolProperty("ro.oem_unlock_supported", false)) {
return;
}
std::string value = GetProperty("ro.boot.verifiedbootstate", "");
if (!value.empty()) {
property_set("ro.boot.flash.locked", value == "orange" ? "0" : "1");
}
}
static void export_kernel_boot_props() {
struct {
const char *src_prop;
const char *dst_prop;
const char *default_value;
} prop_map[] = {
{ "ro.boot.serialno", "ro.serialno", "", },
{ "ro.boot.mode", "ro.bootmode", "unknown", },
{ "ro.boot.baseband", "ro.baseband", "unknown", },
{ "ro.boot.bootloader", "ro.bootloader", "unknown", },
{ "ro.boot.hardware", "ro.hardware", "unknown", },
{ "ro.boot.revision", "ro.revision", "0", },
};
for (size_t i = 0; i < arraysize(prop_map); i++) {
std::string value = GetProperty(prop_map[i].src_prop, "");
property_set(prop_map[i].dst_prop, (!value.empty()) ? value : prop_map[i].default_value);
}
}
static void process_kernel_dt() {
if (!is_android_dt_value_expected("compatible", "android,firmware")) {
return;
}
std::unique_ptr<DIR, int (*)(DIR*)> dir(opendir(get_android_dt_dir().c_str()), closedir);
if (!dir) return;
std::string dt_file;
struct dirent *dp;
while ((dp = readdir(dir.get())) != NULL) {
if (dp->d_type != DT_REG || !strcmp(dp->d_name, "compatible") || !strcmp(dp->d_name, "name")) {
continue;
}
std::string file_name = get_android_dt_dir() + dp->d_name;
android::base::ReadFileToString(file_name, &dt_file);
std::replace(dt_file.begin(), dt_file.end(), ',', '.');
property_set("ro.boot."s + dp->d_name, dt_file);
}
}
static void process_kernel_cmdline() {
// The first pass does the common stuff, and finds if we are in qemu.
// The second pass is only necessary for qemu to export all kernel params
// as properties.
import_kernel_cmdline(false, import_kernel_nv);
if (qemu[0]) import_kernel_cmdline(true, import_kernel_nv);
}
static Result<Success> property_enable_triggers_action(const BuiltinArguments& args) {
/* Enable property triggers. */
property_triggers_enabled = 1;
return Success();
}
static Result<Success> queue_property_triggers_action(const BuiltinArguments& args) {
ActionManager::GetInstance().QueueBuiltinAction(property_enable_triggers_action, "enable_property_trigger");
ActionManager::GetInstance().QueueAllPropertyActions();
return Success();
}
static void global_seccomp() {
import_kernel_cmdline(false, [](const std::string& key, const std::string& value, bool in_qemu) {
if (key == "androidboot.seccomp" && value == "global" && !set_global_seccomp_filter()) {
LOG(FATAL) << "Failed to globally enable seccomp!";
}
});
}
// Set the UDC controller for the ConfigFS USB Gadgets.
// Read the UDC controller in use from "/sys/class/udc".
// In case of multiple UDC controllers select the first one.
static void set_usb_controller() {
std::unique_ptr<DIR, decltype(&closedir)>dir(opendir("/sys/class/udc"), closedir);
if (!dir) return;
dirent* dp;
while ((dp = readdir(dir.get())) != nullptr) {
if (dp->d_name[0] == '.') continue;
property_set("sys.usb.controller", dp->d_name);
break;
}
}
static void InstallRebootSignalHandlers() {
// Instead of panic'ing the kernel as is the default behavior when init crashes,
// we prefer to reboot to bootloader on development builds, as this will prevent
// boot looping bad configurations and allow both developers and test farms to easily
// recover.
struct sigaction action;
memset(&action, 0, sizeof(action));
sigfillset(&action.sa_mask);
action.sa_handler = [](int signal) {
// These signal handlers are also caught for processes forked from init, however we do not
// want them to trigger reboot, so we directly call _exit() for children processes here.
if (getpid() != 1) {
_exit(signal);
}
// Calling DoReboot() or LOG(FATAL) is not a good option as this is a signal handler.
// RebootSystem uses syscall() which isn't actually async-signal-safe, but our only option
// and probably good enough given this is already an error case and only enabled for
// development builds.
RebootSystem(ANDROID_RB_RESTART2, "bootloader");
};
action.sa_flags = SA_RESTART;
sigaction(SIGABRT, &action, nullptr);
sigaction(SIGBUS, &action, nullptr);
sigaction(SIGFPE, &action, nullptr);
sigaction(SIGILL, &action, nullptr);
sigaction(SIGSEGV, &action, nullptr);
#if defined(SIGSTKFLT)
sigaction(SIGSTKFLT, &action, nullptr);
#endif
sigaction(SIGSYS, &action, nullptr);
sigaction(SIGTRAP, &action, nullptr);
}
static void HandleSigtermSignal() {
signalfd_siginfo siginfo;
ssize_t bytes_read = TEMP_FAILURE_RETRY(read(sigterm_signal_fd, &siginfo, sizeof(siginfo)));
if (bytes_read != sizeof(siginfo)) {
PLOG(ERROR) << "Failed to read siginfo from sigterm_signal_fd";
return;
}
if (siginfo.ssi_pid != 0) {
// Drop any userspace SIGTERM requests.
LOG(DEBUG) << "Ignoring SIGTERM from pid " << siginfo.ssi_pid;
return;
}
HandlePowerctlMessage("shutdown,container");
}
static void UnblockSigterm() {
sigset_t mask;
sigemptyset(&mask);
sigaddset(&mask, SIGTERM);
if (sigprocmask(SIG_UNBLOCK, &mask, nullptr) == -1) {
PLOG(FATAL) << "failed to unblock SIGTERM for PID " << getpid();
}
}
static void InstallSigtermHandler() {
sigset_t mask;
sigemptyset(&mask);
sigaddset(&mask, SIGTERM);
if (sigprocmask(SIG_BLOCK, &mask, nullptr) == -1) {
PLOG(FATAL) << "failed to block SIGTERM";
}
// Register a handler to unblock SIGTERM in the child processes.
const int result = pthread_atfork(nullptr, nullptr, &UnblockSigterm);
if (result != 0) {
LOG(FATAL) << "Failed to register a fork handler: " << strerror(result);
}
sigterm_signal_fd = signalfd(-1, &mask, SFD_CLOEXEC);
if (sigterm_signal_fd == -1) {
PLOG(FATAL) << "failed to create signalfd for SIGTERM";
}
register_epoll_handler(sigterm_signal_fd, HandleSigtermSignal);
}
int main(int argc, char** argv) {
if (!strcmp(basename(argv[0]), "ueventd")) {
return ueventd_main(argc, argv);
}
if (!strcmp(basename(argv[0]), "watchdogd")) {
return watchdogd_main(argc, argv);
}
if (argc > 1 && !strcmp(argv[1], "subcontext")) {
InitKernelLogging(argv);
const BuiltinFunctionMap function_map;
return SubcontextMain(argc, argv, &function_map);
}
if (REBOOT_BOOTLOADER_ON_PANIC) {
InstallRebootSignalHandlers();
}
bool is_first_stage = (getenv("INIT_SECOND_STAGE") == nullptr);
if (is_first_stage) {
boot_clock::time_point start_time = boot_clock::now();
// Clear the umask.
umask(0);
clearenv();
setenv("PATH", _PATH_DEFPATH, 1);
// Get the basic filesystem setup we need put together in the initramdisk
// on / and then we'll let the rc file figure out the rest.
mount("tmpfs", "/dev", "tmpfs", MS_NOSUID, "mode=0755");
mkdir("/dev/pts", 0755);
mkdir("/dev/socket", 0755);
mount("devpts", "/dev/pts", "devpts", 0, NULL);
#define MAKE_STR(x) __STRING(x)
mount("proc", "/proc", "proc", 0, "hidepid=2,gid=" MAKE_STR(AID_READPROC));
// Don't expose the raw commandline to unprivileged processes.
chmod("/proc/cmdline", 0440);
gid_t groups[] = { AID_READPROC };
setgroups(arraysize(groups), groups);
mount("sysfs", "/sys", "sysfs", 0, NULL);
mount("selinuxfs", "/sys/fs/selinux", "selinuxfs", 0, NULL);
mknod("/dev/kmsg", S_IFCHR | 0600, makedev(1, 11));
if constexpr (WORLD_WRITABLE_KMSG) {
mknod("/dev/kmsg_debug", S_IFCHR | 0622, makedev(1, 11));
}
mknod("/dev/random", S_IFCHR | 0666, makedev(1, 8));
mknod("/dev/urandom", S_IFCHR | 0666, makedev(1, 9));
// Now that tmpfs is mounted on /dev and we have /dev/kmsg, we can actually
// talk to the outside world...
InitKernelLogging(argv);
LOG(INFO) << "init first stage started!";
if (!DoFirstStageMount()) {
LOG(FATAL) << "Failed to mount required partitions early ...";
}
SetInitAvbVersionInRecovery();
// Enable seccomp if global boot option was passed (otherwise it is enabled in zygote).
global_seccomp();
// Set up SELinux, loading the SELinux policy.
SelinuxSetupKernelLogging();
SelinuxInitialize();
// We're in the kernel domain, so re-exec init to transition to the init domain now
// that the SELinux policy has been loaded.
if (selinux_android_restorecon("/init", 0) == -1) {
PLOG(FATAL) << "restorecon failed of /init failed";
}
setenv("INIT_SECOND_STAGE", "true", 1);
static constexpr uint32_t kNanosecondsPerMillisecond = 1e6;
uint64_t start_ms = start_time.time_since_epoch().count() / kNanosecondsPerMillisecond;
setenv("INIT_STARTED_AT", std::to_string(start_ms).c_str(), 1);
char* path = argv[0];
char* args[] = { path, nullptr };
execv(path, args);
// execv() only returns if an error happened, in which case we
// panic and never fall through this conditional.
PLOG(FATAL) << "execv(\"" << path << "\") failed";
}
// At this point we're in the second stage of init.
InitKernelLogging(argv);
LOG(INFO) << "init second stage started!";
// Set up a session keyring that all processes will have access to. It
// will hold things like FBE encryption keys. No process should override
// its session keyring.
keyctl_get_keyring_ID(KEY_SPEC_SESSION_KEYRING, 1);
// Indicate that booting is in progress to background fw loaders, etc.
close(open("/dev/.booting", O_WRONLY | O_CREAT | O_CLOEXEC, 0000));
property_init();
// If arguments are passed both on the command line and in DT,
// properties set in DT always have priority over the command-line ones.
process_kernel_dt();
process_kernel_cmdline();
// Propagate the kernel variables to internal variables
// used by init as well as the current required properties.
export_kernel_boot_props();
// Make the time that init started available for bootstat to log.
property_set("ro.boottime.init", getenv("INIT_STARTED_AT"));
property_set("ro.boottime.init.selinux", getenv("INIT_SELINUX_TOOK"));
// Set libavb version for Framework-only OTA match in Treble build.
const char* avb_version = getenv("INIT_AVB_VERSION");
if (avb_version) property_set("ro.boot.avb_version", avb_version);
// Clean up our environment.
unsetenv("INIT_SECOND_STAGE");
unsetenv("INIT_STARTED_AT");
unsetenv("INIT_SELINUX_TOOK");
unsetenv("INIT_AVB_VERSION");
// Now set up SELinux for second stage.
SelinuxSetupKernelLogging();
SelabelInitialize();
SelinuxRestoreContext();
epoll_fd = epoll_create1(EPOLL_CLOEXEC);
if (epoll_fd == -1) {
PLOG(FATAL) << "epoll_create1 failed";
}
sigchld_handler_init();
if (!IsRebootCapable()) {
// If init does not have the CAP_SYS_BOOT capability, it is running in a container.
// In that case, receiving SIGTERM will cause the system to shut down.
InstallSigtermHandler();
}
property_load_boot_defaults();
export_oem_lock_status();
start_property_service();
set_usb_controller();
const BuiltinFunctionMap function_map;
Action::set_function_map(&function_map);
subcontexts = InitializeSubcontexts();
ActionManager& am = ActionManager::GetInstance();
ServiceList& sm = ServiceList::GetInstance();
LoadBootScripts(am, sm);
// Turning this on and letting the INFO logging be discarded adds 0.2s to
// Nexus 9 boot time, so it's disabled by default.
if (false) DumpState();
am.QueueEventTrigger("early-init");
// Queue an action that waits for coldboot done so we know ueventd has set up all of /dev...
am.QueueBuiltinAction(wait_for_coldboot_done_action, "wait_for_coldboot_done");
// ... so that we can start queuing up actions that require stuff from /dev.
am.QueueBuiltinAction(MixHwrngIntoLinuxRngAction, "MixHwrngIntoLinuxRng");
am.QueueBuiltinAction(SetMmapRndBitsAction, "SetMmapRndBits");
am.QueueBuiltinAction(SetKptrRestrictAction, "SetKptrRestrict");
am.QueueBuiltinAction(keychord_init_action, "keychord_init");
am.QueueBuiltinAction(console_init_action, "console_init");
// Trigger all the boot actions to get us started.
am.QueueEventTrigger("init");
// Repeat mix_hwrng_into_linux_rng in case /dev/hw_random or /dev/random
// wasn't ready immediately after wait_for_coldboot_done
am.QueueBuiltinAction(MixHwrngIntoLinuxRngAction, "MixHwrngIntoLinuxRng");
// Don't mount filesystems or start core system services in charger mode.
std::string bootmode = GetProperty("ro.bootmode", "");
if (bootmode == "charger") {
am.QueueEventTrigger("charger");
} else {
am.QueueEventTrigger("late-init");
}
// Run all property triggers based on current state of the properties.
am.QueueBuiltinAction(queue_property_triggers_action, "queue_property_triggers");
while (true) {
// By default, sleep until something happens.
int epoll_timeout_ms = -1;
if (do_shutdown && !shutting_down) {
do_shutdown = false;
if (HandlePowerctlMessage(shutdown_command)) {
shutting_down = true;
}
}
if (!(waiting_for_prop || Service::is_exec_service_running())) {
am.ExecuteOneCommand();
}
if (!(waiting_for_prop || Service::is_exec_service_running())) {
if (!shutting_down) {
auto next_process_restart_time = RestartProcesses();
// If there's a process that needs restarting, wake up in time for that.
if (next_process_restart_time) {
epoll_timeout_ms = std::chrono::ceil<std::chrono::milliseconds>(
*next_process_restart_time - boot_clock::now())
.count();
if (epoll_timeout_ms < 0) epoll_timeout_ms = 0;
}
}
// If there's more work to do, wake up again immediately.
if (am.HasMoreCommands()) epoll_timeout_ms = 0;
}
epoll_event ev;
int nr = TEMP_FAILURE_RETRY(epoll_wait(epoll_fd, &ev, 1, epoll_timeout_ms));
if (nr == -1) {
PLOG(ERROR) << "epoll_wait failed";
} else if (nr == 1) {
((void (*)()) ev.data.ptr)();
}
}
return 0;
}
} // namespace init
} // namespace android