b6bee33182
if ro.logd.timestamp or persist.logd.timestamp are set to the value monotonic then liblog writer, liblog printing and logd all switch to recording/printing monotonic time rather than realtime. If reinit detects a change for presist.logd.timestamp, correct the older entry timestamps in place. ToDo: A corner case condition where new log entries in monotonic time occur before logd reinit detects persist.logd.timestamp, there will be a few out-of-order entries, but with accurate timestamps. This problem does not happen for ro.logd.timestamp as it is set before logd starts. NB: This offers a nano second time accuracy on all log entries that may be more suitable for merging with other system activities, such as systrace, that also use monotonic time. This feature is for debugging. Bug: 23668800 Change-Id: Iee6dab7140061b1a6627254921411f61b01aa5c2
837 lines
26 KiB
C++
837 lines
26 KiB
C++
/*
|
|
* Copyright (C) 2012-2014 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <ctype.h>
|
|
#include <errno.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <sys/user.h>
|
|
#include <time.h>
|
|
#include <unistd.h>
|
|
|
|
#include <unordered_map>
|
|
|
|
#include <cutils/properties.h>
|
|
#include <log/logger.h>
|
|
|
|
#include "LogBuffer.h"
|
|
#include "LogKlog.h"
|
|
#include "LogReader.h"
|
|
|
|
// Default
|
|
#define LOG_BUFFER_SIZE (256 * 1024) // Tuned on a per-platform basis here?
|
|
#define log_buffer_size(id) mMaxSize[id]
|
|
#define LOG_BUFFER_MIN_SIZE (64 * 1024UL)
|
|
#define LOG_BUFFER_MAX_SIZE (256 * 1024 * 1024UL)
|
|
|
|
static bool valid_size(unsigned long value) {
|
|
if ((value < LOG_BUFFER_MIN_SIZE) || (LOG_BUFFER_MAX_SIZE < value)) {
|
|
return false;
|
|
}
|
|
|
|
long pages = sysconf(_SC_PHYS_PAGES);
|
|
if (pages < 1) {
|
|
return true;
|
|
}
|
|
|
|
long pagesize = sysconf(_SC_PAGESIZE);
|
|
if (pagesize <= 1) {
|
|
pagesize = PAGE_SIZE;
|
|
}
|
|
|
|
// maximum memory impact a somewhat arbitrary ~3%
|
|
pages = (pages + 31) / 32;
|
|
unsigned long maximum = pages * pagesize;
|
|
|
|
if ((maximum < LOG_BUFFER_MIN_SIZE) || (LOG_BUFFER_MAX_SIZE < maximum)) {
|
|
return true;
|
|
}
|
|
|
|
return value <= maximum;
|
|
}
|
|
|
|
static unsigned long property_get_size(const char *key) {
|
|
char property[PROPERTY_VALUE_MAX];
|
|
property_get(key, property, "");
|
|
|
|
char *cp;
|
|
unsigned long value = strtoul(property, &cp, 10);
|
|
|
|
switch(*cp) {
|
|
case 'm':
|
|
case 'M':
|
|
value *= 1024;
|
|
/* FALLTHRU */
|
|
case 'k':
|
|
case 'K':
|
|
value *= 1024;
|
|
/* FALLTHRU */
|
|
case '\0':
|
|
break;
|
|
|
|
default:
|
|
value = 0;
|
|
}
|
|
|
|
if (!valid_size(value)) {
|
|
value = 0;
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
void LogBuffer::init() {
|
|
static const char global_tuneable[] = "persist.logd.size"; // Settings App
|
|
static const char global_default[] = "ro.logd.size"; // BoardConfig.mk
|
|
|
|
unsigned long default_size = property_get_size(global_tuneable);
|
|
if (!default_size) {
|
|
default_size = property_get_size(global_default);
|
|
}
|
|
|
|
log_id_for_each(i) {
|
|
char key[PROP_NAME_MAX];
|
|
|
|
snprintf(key, sizeof(key), "%s.%s",
|
|
global_tuneable, android_log_id_to_name(i));
|
|
unsigned long property_size = property_get_size(key);
|
|
|
|
if (!property_size) {
|
|
snprintf(key, sizeof(key), "%s.%s",
|
|
global_default, android_log_id_to_name(i));
|
|
property_size = property_get_size(key);
|
|
}
|
|
|
|
if (!property_size) {
|
|
property_size = default_size;
|
|
}
|
|
|
|
if (!property_size) {
|
|
property_size = LOG_BUFFER_SIZE;
|
|
}
|
|
|
|
if (setSize(i, property_size)) {
|
|
setSize(i, LOG_BUFFER_MIN_SIZE);
|
|
}
|
|
}
|
|
bool lastMonotonic = monotonic;
|
|
monotonic = android_log_timestamp() == 'm';
|
|
if (lastMonotonic == monotonic) {
|
|
return;
|
|
}
|
|
|
|
//
|
|
// Fixup all timestamps, may not be 100% accurate, but better than
|
|
// throwing what we have away when we get 'surprised' by a change.
|
|
// In-place element fixup so no need to check reader-lock. Entries
|
|
// should already be in timestamp order, but we could end up with a
|
|
// few out-of-order entries if new monotonics come in before we
|
|
// are notified of the reinit change in status. A Typical example would
|
|
// be:
|
|
// --------- beginning of system
|
|
// 10.494082 184 201 D Cryptfs : Just triggered post_fs_data
|
|
// --------- beginning of kernel
|
|
// 0.000000 0 0 I : Initializing cgroup subsys cpuacct
|
|
// as the act of mounting /data would trigger persist.logd.timestamp to
|
|
// be corrected. 1/30 corner case YMMV.
|
|
//
|
|
pthread_mutex_lock(&mLogElementsLock);
|
|
LogBufferElementCollection::iterator it = mLogElements.begin();
|
|
while((it != mLogElements.end())) {
|
|
LogBufferElement *e = *it;
|
|
if (monotonic) {
|
|
if (!android::isMonotonic(e->mRealTime)) {
|
|
LogKlog::convertRealToMonotonic(e->mRealTime);
|
|
}
|
|
} else {
|
|
if (android::isMonotonic(e->mRealTime)) {
|
|
LogKlog::convertMonotonicToReal(e->mRealTime);
|
|
}
|
|
}
|
|
++it;
|
|
}
|
|
pthread_mutex_unlock(&mLogElementsLock);
|
|
}
|
|
|
|
LogBuffer::LogBuffer(LastLogTimes *times):
|
|
monotonic(android_log_timestamp() == 'm'),
|
|
mTimes(*times) {
|
|
pthread_mutex_init(&mLogElementsLock, NULL);
|
|
|
|
init();
|
|
}
|
|
|
|
int LogBuffer::log(log_id_t log_id, log_time realtime,
|
|
uid_t uid, pid_t pid, pid_t tid,
|
|
const char *msg, unsigned short len) {
|
|
if ((log_id >= LOG_ID_MAX) || (log_id < 0)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
LogBufferElement *elem = new LogBufferElement(log_id, realtime,
|
|
uid, pid, tid, msg, len);
|
|
int prio = ANDROID_LOG_INFO;
|
|
const char *tag = NULL;
|
|
if (log_id == LOG_ID_EVENTS) {
|
|
tag = android::tagToName(elem->getTag());
|
|
} else {
|
|
prio = *msg;
|
|
tag = msg + 1;
|
|
}
|
|
if (!__android_log_is_loggable(prio, tag, ANDROID_LOG_VERBOSE)) {
|
|
// Log traffic received to total
|
|
pthread_mutex_lock(&mLogElementsLock);
|
|
stats.add(elem);
|
|
stats.subtract(elem);
|
|
pthread_mutex_unlock(&mLogElementsLock);
|
|
delete elem;
|
|
return -EACCES;
|
|
}
|
|
|
|
pthread_mutex_lock(&mLogElementsLock);
|
|
|
|
// Insert elements in time sorted order if possible
|
|
// NB: if end is region locked, place element at end of list
|
|
LogBufferElementCollection::iterator it = mLogElements.end();
|
|
LogBufferElementCollection::iterator last = it;
|
|
while (last != mLogElements.begin()) {
|
|
--it;
|
|
if ((*it)->getRealTime() <= realtime) {
|
|
break;
|
|
}
|
|
last = it;
|
|
}
|
|
|
|
if (last == mLogElements.end()) {
|
|
mLogElements.push_back(elem);
|
|
} else {
|
|
uint64_t end = 1;
|
|
bool end_set = false;
|
|
bool end_always = false;
|
|
|
|
LogTimeEntry::lock();
|
|
|
|
LastLogTimes::iterator t = mTimes.begin();
|
|
while(t != mTimes.end()) {
|
|
LogTimeEntry *entry = (*t);
|
|
if (entry->owned_Locked()) {
|
|
if (!entry->mNonBlock) {
|
|
end_always = true;
|
|
break;
|
|
}
|
|
if (!end_set || (end <= entry->mEnd)) {
|
|
end = entry->mEnd;
|
|
end_set = true;
|
|
}
|
|
}
|
|
t++;
|
|
}
|
|
|
|
if (end_always
|
|
|| (end_set && (end >= (*last)->getSequence()))) {
|
|
mLogElements.push_back(elem);
|
|
} else {
|
|
mLogElements.insert(last,elem);
|
|
}
|
|
|
|
LogTimeEntry::unlock();
|
|
}
|
|
|
|
stats.add(elem);
|
|
maybePrune(log_id);
|
|
pthread_mutex_unlock(&mLogElementsLock);
|
|
|
|
return len;
|
|
}
|
|
|
|
// Prune at most 10% of the log entries or maxPrune, whichever is less.
|
|
//
|
|
// mLogElementsLock must be held when this function is called.
|
|
void LogBuffer::maybePrune(log_id_t id) {
|
|
size_t sizes = stats.sizes(id);
|
|
unsigned long maxSize = log_buffer_size(id);
|
|
if (sizes > maxSize) {
|
|
size_t sizeOver = sizes - ((maxSize * 9) / 10);
|
|
size_t elements = stats.realElements(id);
|
|
size_t minElements = elements / 100;
|
|
if (minElements < minPrune) {
|
|
minElements = minPrune;
|
|
}
|
|
unsigned long pruneRows = elements * sizeOver / sizes;
|
|
if (pruneRows < minElements) {
|
|
pruneRows = minElements;
|
|
}
|
|
if (pruneRows > maxPrune) {
|
|
pruneRows = maxPrune;
|
|
}
|
|
prune(id, pruneRows);
|
|
}
|
|
}
|
|
|
|
LogBufferElementCollection::iterator LogBuffer::erase(
|
|
LogBufferElementCollection::iterator it, bool coalesce) {
|
|
LogBufferElement *e = *it;
|
|
log_id_t id = e->getLogId();
|
|
|
|
LogBufferIteratorMap::iterator f = mLastWorstUid[id].find(e->getUid());
|
|
if ((f != mLastWorstUid[id].end()) && (it == f->second)) {
|
|
mLastWorstUid[id].erase(f);
|
|
}
|
|
it = mLogElements.erase(it);
|
|
if (coalesce) {
|
|
stats.erase(e);
|
|
} else {
|
|
stats.subtract(e);
|
|
}
|
|
delete e;
|
|
|
|
return it;
|
|
}
|
|
|
|
// Define a temporary mechanism to report the last LogBufferElement pointer
|
|
// for the specified uid, pid and tid. Used below to help merge-sort when
|
|
// pruning for worst UID.
|
|
class LogBufferElementKey {
|
|
const union {
|
|
struct {
|
|
uint16_t uid;
|
|
uint16_t pid;
|
|
uint16_t tid;
|
|
uint16_t padding;
|
|
} __packed;
|
|
uint64_t value;
|
|
} __packed;
|
|
|
|
public:
|
|
LogBufferElementKey(uid_t u, pid_t p, pid_t t):uid(u),pid(p),tid(t),padding(0) { }
|
|
LogBufferElementKey(uint64_t k):value(k) { }
|
|
|
|
uint64_t getKey() { return value; }
|
|
};
|
|
|
|
class LogBufferElementLast {
|
|
|
|
typedef std::unordered_map<uint64_t, LogBufferElement *> LogBufferElementMap;
|
|
LogBufferElementMap map;
|
|
|
|
public:
|
|
|
|
bool coalesce(LogBufferElement *e, unsigned short dropped) {
|
|
LogBufferElementKey key(e->getUid(), e->getPid(), e->getTid());
|
|
LogBufferElementMap::iterator it = map.find(key.getKey());
|
|
if (it != map.end()) {
|
|
LogBufferElement *l = it->second;
|
|
unsigned short d = l->getDropped();
|
|
if ((dropped + d) > USHRT_MAX) {
|
|
map.erase(it);
|
|
} else {
|
|
l->setDropped(dropped + d);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void add(LogBufferElement *e) {
|
|
LogBufferElementKey key(e->getUid(), e->getPid(), e->getTid());
|
|
map[key.getKey()] = e;
|
|
}
|
|
|
|
inline void clear() {
|
|
map.clear();
|
|
}
|
|
|
|
void clear(LogBufferElement *e) {
|
|
uint64_t current = e->getRealTime().nsec()
|
|
- (EXPIRE_RATELIMIT * NS_PER_SEC);
|
|
for(LogBufferElementMap::iterator it = map.begin(); it != map.end();) {
|
|
LogBufferElement *l = it->second;
|
|
if ((l->getDropped() >= EXPIRE_THRESHOLD)
|
|
&& (current > l->getRealTime().nsec())) {
|
|
it = map.erase(it);
|
|
} else {
|
|
++it;
|
|
}
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
// prune "pruneRows" of type "id" from the buffer.
|
|
//
|
|
// This garbage collection task is used to expire log entries. It is called to
|
|
// remove all logs (clear), all UID logs (unprivileged clear), or every
|
|
// 256 or 10% of the total logs (whichever is less) to prune the logs.
|
|
//
|
|
// First there is a prep phase where we discover the reader region lock that
|
|
// acts as a backstop to any pruning activity to stop there and go no further.
|
|
//
|
|
// There are three major pruning loops that follow. All expire from the oldest
|
|
// entries. Since there are multiple log buffers, the Android logging facility
|
|
// will appear to drop entries 'in the middle' when looking at multiple log
|
|
// sources and buffers. This effect is slightly more prominent when we prune
|
|
// the worst offender by logging source. Thus the logs slowly loose content
|
|
// and value as you move back in time. This is preferred since chatty sources
|
|
// invariably move the logs value down faster as less chatty sources would be
|
|
// expired in the noise.
|
|
//
|
|
// The first loop performs blacklisting and worst offender pruning. Falling
|
|
// through when there are no notable worst offenders and have not hit the
|
|
// region lock preventing further worst offender pruning. This loop also looks
|
|
// after managing the chatty log entries and merging to help provide
|
|
// statistical basis for blame. The chatty entries are not a notification of
|
|
// how much logs you may have, but instead represent how much logs you would
|
|
// have had in a virtual log buffer that is extended to cover all the in-memory
|
|
// logs without loss. They last much longer than the represented pruned logs
|
|
// since they get multiplied by the gains in the non-chatty log sources.
|
|
//
|
|
// The second loop get complicated because an algorithm of watermarks and
|
|
// history is maintained to reduce the order and keep processing time
|
|
// down to a minimum at scale. These algorithms can be costly in the face
|
|
// of larger log buffers, or severly limited processing time granted to a
|
|
// background task at lowest priority.
|
|
//
|
|
// This second loop does straight-up expiration from the end of the logs
|
|
// (again, remember for the specified log buffer id) but does some whitelist
|
|
// preservation. Thus whitelist is a Hail Mary low priority, blacklists and
|
|
// spam filtration all take priority. This second loop also checks if a region
|
|
// lock is causing us to buffer too much in the logs to help the reader(s),
|
|
// and will tell the slowest reader thread to skip log entries, and if
|
|
// persistent and hits a further threshold, kill the reader thread.
|
|
//
|
|
// The third thread is optional, and only gets hit if there was a whitelist
|
|
// and more needs to be pruned against the backstop of the region lock.
|
|
//
|
|
// mLogElementsLock must be held when this function is called.
|
|
//
|
|
bool LogBuffer::prune(log_id_t id, unsigned long pruneRows, uid_t caller_uid) {
|
|
LogTimeEntry *oldest = NULL;
|
|
bool busy = false;
|
|
bool clearAll = pruneRows == ULONG_MAX;
|
|
|
|
LogTimeEntry::lock();
|
|
|
|
// Region locked?
|
|
LastLogTimes::iterator t = mTimes.begin();
|
|
while(t != mTimes.end()) {
|
|
LogTimeEntry *entry = (*t);
|
|
if (entry->owned_Locked() && entry->isWatching(id)
|
|
&& (!oldest || (oldest->mStart > entry->mStart))) {
|
|
oldest = entry;
|
|
}
|
|
t++;
|
|
}
|
|
|
|
LogBufferElementCollection::iterator it;
|
|
|
|
if (caller_uid != AID_ROOT) {
|
|
// Only here if clearAll condition (pruneRows == ULONG_MAX)
|
|
for(it = mLogElements.begin(); it != mLogElements.end();) {
|
|
LogBufferElement *e = *it;
|
|
|
|
if ((e->getLogId() != id) || (e->getUid() != caller_uid)) {
|
|
++it;
|
|
continue;
|
|
}
|
|
|
|
if (oldest && (oldest->mStart <= e->getSequence())) {
|
|
oldest->triggerSkip_Locked(id, pruneRows);
|
|
busy = true;
|
|
break;
|
|
}
|
|
|
|
it = erase(it);
|
|
pruneRows--;
|
|
}
|
|
LogTimeEntry::unlock();
|
|
return busy;
|
|
}
|
|
|
|
// prune by worst offender by uid
|
|
bool hasBlacklist = mPrune.naughty();
|
|
while (!clearAll && (pruneRows > 0)) {
|
|
// recalculate the worst offender on every batched pass
|
|
uid_t worst = (uid_t) -1;
|
|
size_t worst_sizes = 0;
|
|
size_t second_worst_sizes = 0;
|
|
|
|
if (worstUidEnabledForLogid(id) && mPrune.worstUidEnabled()) {
|
|
std::unique_ptr<const UidEntry *[]> sorted = stats.sort(2, id);
|
|
|
|
if (sorted.get()) {
|
|
if (sorted[0] && sorted[1]) {
|
|
worst_sizes = sorted[0]->getSizes();
|
|
// Calculate threshold as 12.5% of available storage
|
|
size_t threshold = log_buffer_size(id) / 8;
|
|
if (worst_sizes > threshold) {
|
|
worst = sorted[0]->getKey();
|
|
second_worst_sizes = sorted[1]->getSizes();
|
|
if (second_worst_sizes < threshold) {
|
|
second_worst_sizes = threshold;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// skip if we have neither worst nor naughty filters
|
|
if ((worst == (uid_t) -1) && !hasBlacklist) {
|
|
break;
|
|
}
|
|
|
|
bool kick = false;
|
|
bool leading = true;
|
|
it = mLogElements.begin();
|
|
// Perform at least one mandatory garbage collection cycle in following
|
|
// - clear leading chatty tags
|
|
// - coalesce chatty tags
|
|
// - check age-out of preserved logs
|
|
bool gc = pruneRows <= 1;
|
|
if (!gc && (worst != (uid_t) -1)) {
|
|
LogBufferIteratorMap::iterator f = mLastWorstUid[id].find(worst);
|
|
if ((f != mLastWorstUid[id].end())
|
|
&& (f->second != mLogElements.end())) {
|
|
leading = false;
|
|
it = f->second;
|
|
}
|
|
}
|
|
static const timespec too_old = {
|
|
EXPIRE_HOUR_THRESHOLD * 60 * 60, 0
|
|
};
|
|
LogBufferElementCollection::iterator lastt;
|
|
lastt = mLogElements.end();
|
|
--lastt;
|
|
LogBufferElementLast last;
|
|
while (it != mLogElements.end()) {
|
|
LogBufferElement *e = *it;
|
|
|
|
if (oldest && (oldest->mStart <= e->getSequence())) {
|
|
busy = true;
|
|
break;
|
|
}
|
|
|
|
if (e->getLogId() != id) {
|
|
++it;
|
|
continue;
|
|
}
|
|
|
|
unsigned short dropped = e->getDropped();
|
|
|
|
// remove any leading drops
|
|
if (leading && dropped) {
|
|
it = erase(it);
|
|
continue;
|
|
}
|
|
|
|
if (dropped && last.coalesce(e, dropped)) {
|
|
it = erase(it, true);
|
|
continue;
|
|
}
|
|
|
|
if (hasBlacklist && mPrune.naughty(e)) {
|
|
last.clear(e);
|
|
it = erase(it);
|
|
if (dropped) {
|
|
continue;
|
|
}
|
|
|
|
pruneRows--;
|
|
if (pruneRows == 0) {
|
|
break;
|
|
}
|
|
|
|
if (e->getUid() == worst) {
|
|
kick = true;
|
|
if (worst_sizes < second_worst_sizes) {
|
|
break;
|
|
}
|
|
worst_sizes -= e->getMsgLen();
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if ((e->getRealTime() < ((*lastt)->getRealTime() - too_old))
|
|
|| (e->getRealTime() > (*lastt)->getRealTime())) {
|
|
break;
|
|
}
|
|
|
|
if (dropped) {
|
|
last.add(e);
|
|
if ((!gc && (e->getUid() == worst))
|
|
|| (mLastWorstUid[id].find(e->getUid())
|
|
== mLastWorstUid[id].end())) {
|
|
mLastWorstUid[id][e->getUid()] = it;
|
|
}
|
|
++it;
|
|
continue;
|
|
}
|
|
|
|
if (e->getUid() != worst) {
|
|
leading = false;
|
|
last.clear(e);
|
|
++it;
|
|
continue;
|
|
}
|
|
|
|
pruneRows--;
|
|
if (pruneRows == 0) {
|
|
break;
|
|
}
|
|
|
|
kick = true;
|
|
|
|
unsigned short len = e->getMsgLen();
|
|
|
|
// do not create any leading drops
|
|
if (leading) {
|
|
it = erase(it);
|
|
} else {
|
|
stats.drop(e);
|
|
e->setDropped(1);
|
|
if (last.coalesce(e, 1)) {
|
|
it = erase(it, true);
|
|
} else {
|
|
last.add(e);
|
|
if (!gc || (mLastWorstUid[id].find(worst)
|
|
== mLastWorstUid[id].end())) {
|
|
mLastWorstUid[id][worst] = it;
|
|
}
|
|
++it;
|
|
}
|
|
}
|
|
if (worst_sizes < second_worst_sizes) {
|
|
break;
|
|
}
|
|
worst_sizes -= len;
|
|
}
|
|
last.clear();
|
|
|
|
if (!kick || !mPrune.worstUidEnabled()) {
|
|
break; // the following loop will ask bad clients to skip/drop
|
|
}
|
|
}
|
|
|
|
bool whitelist = false;
|
|
bool hasWhitelist = mPrune.nice() && !clearAll;
|
|
it = mLogElements.begin();
|
|
while((pruneRows > 0) && (it != mLogElements.end())) {
|
|
LogBufferElement *e = *it;
|
|
|
|
if (e->getLogId() != id) {
|
|
it++;
|
|
continue;
|
|
}
|
|
|
|
if (oldest && (oldest->mStart <= e->getSequence())) {
|
|
busy = true;
|
|
|
|
if (whitelist) {
|
|
break;
|
|
}
|
|
|
|
if (stats.sizes(id) > (2 * log_buffer_size(id))) {
|
|
// kick a misbehaving log reader client off the island
|
|
oldest->release_Locked();
|
|
} else {
|
|
oldest->triggerSkip_Locked(id, pruneRows);
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (hasWhitelist && !e->getDropped() && mPrune.nice(e)) { // WhiteListed
|
|
whitelist = true;
|
|
it++;
|
|
continue;
|
|
}
|
|
|
|
it = erase(it);
|
|
pruneRows--;
|
|
}
|
|
|
|
// Do not save the whitelist if we are reader range limited
|
|
if (whitelist && (pruneRows > 0)) {
|
|
it = mLogElements.begin();
|
|
while((it != mLogElements.end()) && (pruneRows > 0)) {
|
|
LogBufferElement *e = *it;
|
|
|
|
if (e->getLogId() != id) {
|
|
++it;
|
|
continue;
|
|
}
|
|
|
|
if (oldest && (oldest->mStart <= e->getSequence())) {
|
|
busy = true;
|
|
if (stats.sizes(id) > (2 * log_buffer_size(id))) {
|
|
// kick a misbehaving log reader client off the island
|
|
oldest->release_Locked();
|
|
} else {
|
|
oldest->triggerSkip_Locked(id, pruneRows);
|
|
}
|
|
break;
|
|
}
|
|
|
|
it = erase(it);
|
|
pruneRows--;
|
|
}
|
|
}
|
|
|
|
LogTimeEntry::unlock();
|
|
|
|
return (pruneRows > 0) && busy;
|
|
}
|
|
|
|
// clear all rows of type "id" from the buffer.
|
|
bool LogBuffer::clear(log_id_t id, uid_t uid) {
|
|
bool busy = true;
|
|
// If it takes more than 4 tries (seconds) to clear, then kill reader(s)
|
|
for (int retry = 4;;) {
|
|
if (retry == 1) { // last pass
|
|
// Check if it is still busy after the sleep, we say prune
|
|
// one entry, not another clear run, so we are looking for
|
|
// the quick side effect of the return value to tell us if
|
|
// we have a _blocked_ reader.
|
|
pthread_mutex_lock(&mLogElementsLock);
|
|
busy = prune(id, 1, uid);
|
|
pthread_mutex_unlock(&mLogElementsLock);
|
|
// It is still busy, blocked reader(s), lets kill them all!
|
|
// otherwise, lets be a good citizen and preserve the slow
|
|
// readers and let the clear run (below) deal with determining
|
|
// if we are still blocked and return an error code to caller.
|
|
if (busy) {
|
|
LogTimeEntry::lock();
|
|
LastLogTimes::iterator times = mTimes.begin();
|
|
while (times != mTimes.end()) {
|
|
LogTimeEntry *entry = (*times);
|
|
// Killer punch
|
|
if (entry->owned_Locked() && entry->isWatching(id)) {
|
|
entry->release_Locked();
|
|
}
|
|
times++;
|
|
}
|
|
LogTimeEntry::unlock();
|
|
}
|
|
}
|
|
pthread_mutex_lock(&mLogElementsLock);
|
|
busy = prune(id, ULONG_MAX, uid);
|
|
pthread_mutex_unlock(&mLogElementsLock);
|
|
if (!busy || !--retry) {
|
|
break;
|
|
}
|
|
sleep (1); // Let reader(s) catch up after notification
|
|
}
|
|
return busy;
|
|
}
|
|
|
|
// get the used space associated with "id".
|
|
unsigned long LogBuffer::getSizeUsed(log_id_t id) {
|
|
pthread_mutex_lock(&mLogElementsLock);
|
|
size_t retval = stats.sizes(id);
|
|
pthread_mutex_unlock(&mLogElementsLock);
|
|
return retval;
|
|
}
|
|
|
|
// set the total space allocated to "id"
|
|
int LogBuffer::setSize(log_id_t id, unsigned long size) {
|
|
// Reasonable limits ...
|
|
if (!valid_size(size)) {
|
|
return -1;
|
|
}
|
|
pthread_mutex_lock(&mLogElementsLock);
|
|
log_buffer_size(id) = size;
|
|
pthread_mutex_unlock(&mLogElementsLock);
|
|
return 0;
|
|
}
|
|
|
|
// get the total space allocated to "id"
|
|
unsigned long LogBuffer::getSize(log_id_t id) {
|
|
pthread_mutex_lock(&mLogElementsLock);
|
|
size_t retval = log_buffer_size(id);
|
|
pthread_mutex_unlock(&mLogElementsLock);
|
|
return retval;
|
|
}
|
|
|
|
uint64_t LogBuffer::flushTo(
|
|
SocketClient *reader, const uint64_t start, bool privileged,
|
|
int (*filter)(const LogBufferElement *element, void *arg), void *arg) {
|
|
LogBufferElementCollection::iterator it;
|
|
uint64_t max = start;
|
|
uid_t uid = reader->getUid();
|
|
|
|
pthread_mutex_lock(&mLogElementsLock);
|
|
|
|
if (start <= 1) {
|
|
// client wants to start from the beginning
|
|
it = mLogElements.begin();
|
|
} else {
|
|
// Client wants to start from some specified time. Chances are
|
|
// we are better off starting from the end of the time sorted list.
|
|
for (it = mLogElements.end(); it != mLogElements.begin(); /* do nothing */) {
|
|
--it;
|
|
LogBufferElement *element = *it;
|
|
if (element->getSequence() <= start) {
|
|
it++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (; it != mLogElements.end(); ++it) {
|
|
LogBufferElement *element = *it;
|
|
|
|
if (!privileged && (element->getUid() != uid)) {
|
|
continue;
|
|
}
|
|
|
|
if (element->getSequence() <= start) {
|
|
continue;
|
|
}
|
|
|
|
// NB: calling out to another object with mLogElementsLock held (safe)
|
|
if (filter) {
|
|
int ret = (*filter)(element, arg);
|
|
if (ret == false) {
|
|
continue;
|
|
}
|
|
if (ret != true) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
pthread_mutex_unlock(&mLogElementsLock);
|
|
|
|
// range locking in LastLogTimes looks after us
|
|
max = element->flushTo(reader, this);
|
|
|
|
if (max == element->FLUSH_ERROR) {
|
|
return max;
|
|
}
|
|
|
|
pthread_mutex_lock(&mLogElementsLock);
|
|
}
|
|
pthread_mutex_unlock(&mLogElementsLock);
|
|
|
|
return max;
|
|
}
|
|
|
|
std::string LogBuffer::formatStatistics(uid_t uid, unsigned int logMask) {
|
|
pthread_mutex_lock(&mLogElementsLock);
|
|
|
|
std::string ret = stats.format(uid, logMask);
|
|
|
|
pthread_mutex_unlock(&mLogElementsLock);
|
|
|
|
return ret;
|
|
}
|