platform_system_core/fastboot/device/flashing.cpp
Konstantin Vyshetsky 57b23d25eb fastbootd: reset file descriptor on unaligned writes
Writes on file descriptors opened with O_DIRECT will fail if the buffer
is not page aligned. This CL will reset the file descriptor without the
O_DIRECT flag for such instances.

Bug: 225108941
Signed-off-by: Konstantin Vyshetsky <vkon@google.com>
Change-Id: I841c84f5d2c0b9435b394c48b1bfcc2d51d771bb
2022-03-28 10:57:03 -07:00

281 lines
9.9 KiB
C++

/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "flashing.h"
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
#include <unistd.h>
#include <algorithm>
#include <memory>
#include <optional>
#include <set>
#include <string>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/properties.h>
#include <android-base/strings.h>
#include <ext4_utils/ext4_utils.h>
#include <fs_mgr_overlayfs.h>
#include <fstab/fstab.h>
#include <libavb/libavb.h>
#include <liblp/builder.h>
#include <liblp/liblp.h>
#include <libsnapshot/snapshot.h>
#include <sparse/sparse.h>
#include "fastboot_device.h"
#include "utility.h"
using namespace android::fs_mgr;
using namespace std::literals;
namespace {
constexpr uint32_t SPARSE_HEADER_MAGIC = 0xed26ff3a;
void WipeOverlayfsForPartition(FastbootDevice* device, const std::string& partition_name) {
// May be called, in the case of sparse data, multiple times so cache/skip.
static std::set<std::string> wiped;
if (wiped.find(partition_name) != wiped.end()) return;
wiped.insert(partition_name);
// Following appears to have a first time 2% impact on flashing speeds.
// Convert partition_name to a validated mount point and wipe.
Fstab fstab;
ReadDefaultFstab(&fstab);
std::optional<AutoMountMetadata> mount_metadata;
for (const auto& entry : fstab) {
auto partition = android::base::Basename(entry.mount_point);
if ("/" == entry.mount_point) {
partition = "system";
}
if ((partition + device->GetCurrentSlot()) == partition_name) {
mount_metadata.emplace();
android::fs_mgr::TeardownAllOverlayForMountPoint(entry.mount_point);
}
}
}
} // namespace
int FlashRawDataChunk(PartitionHandle* handle, const char* data, size_t len) {
size_t ret = 0;
const size_t max_write_size = 1048576;
void* aligned_buffer;
if (posix_memalign(&aligned_buffer, 4096, max_write_size)) {
PLOG(ERROR) << "Failed to allocate write buffer";
return -ENOMEM;
}
auto aligned_buffer_unique_ptr = std::unique_ptr<void, decltype(&free)>{aligned_buffer, free};
while (ret < len) {
int this_len = std::min(max_write_size, len - ret);
memcpy(aligned_buffer_unique_ptr.get(), data, this_len);
// In case of non 4KB aligned writes, reopen without O_DIRECT flag
if (this_len & 0xFFF) {
if (handle->Reset(O_WRONLY) != true) {
PLOG(ERROR) << "Failed to reset file descriptor";
return -1;
}
}
int this_ret = write(handle->fd(), aligned_buffer_unique_ptr.get(), this_len);
if (this_ret < 0) {
PLOG(ERROR) << "Failed to flash data of len " << len;
return -1;
}
data += this_ret;
ret += this_ret;
}
return 0;
}
int FlashRawData(PartitionHandle* handle, const std::vector<char>& downloaded_data) {
int ret = FlashRawDataChunk(handle, downloaded_data.data(), downloaded_data.size());
if (ret < 0) {
return -errno;
}
return ret;
}
int WriteCallback(void* priv, const void* data, size_t len) {
PartitionHandle* handle = reinterpret_cast<PartitionHandle*>(priv);
if (!data) {
return lseek64(handle->fd(), len, SEEK_CUR) >= 0 ? 0 : -errno;
}
return FlashRawDataChunk(handle, reinterpret_cast<const char*>(data), len);
}
int FlashSparseData(PartitionHandle* handle, std::vector<char>& downloaded_data) {
struct sparse_file* file = sparse_file_import_buf(downloaded_data.data(),
downloaded_data.size(), true, false);
if (!file) {
// Invalid sparse format
return -EINVAL;
}
return sparse_file_callback(file, false, false, WriteCallback, reinterpret_cast<void*>(handle));
}
int FlashBlockDevice(PartitionHandle* handle, std::vector<char>& downloaded_data) {
lseek64(handle->fd(), 0, SEEK_SET);
if (downloaded_data.size() >= sizeof(SPARSE_HEADER_MAGIC) &&
*reinterpret_cast<uint32_t*>(downloaded_data.data()) == SPARSE_HEADER_MAGIC) {
return FlashSparseData(handle, downloaded_data);
} else {
return FlashRawData(handle, downloaded_data);
}
}
static void CopyAVBFooter(std::vector<char>* data, const uint64_t block_device_size) {
if (data->size() < AVB_FOOTER_SIZE) {
return;
}
std::string footer;
uint64_t footer_offset = data->size() - AVB_FOOTER_SIZE;
for (int idx = 0; idx < AVB_FOOTER_MAGIC_LEN; idx++) {
footer.push_back(data->at(footer_offset + idx));
}
if (0 != footer.compare(AVB_FOOTER_MAGIC)) {
return;
}
// copy AVB footer from end of data to end of block device
uint64_t original_data_size = data->size();
data->resize(block_device_size, 0);
for (int idx = 0; idx < AVB_FOOTER_SIZE; idx++) {
data->at(block_device_size - 1 - idx) = data->at(original_data_size - 1 - idx);
}
}
int Flash(FastbootDevice* device, const std::string& partition_name) {
PartitionHandle handle;
if (!OpenPartition(device, partition_name, &handle, O_WRONLY | O_DIRECT)) {
return -ENOENT;
}
std::vector<char> data = std::move(device->download_data());
if (data.size() == 0) {
return -EINVAL;
}
uint64_t block_device_size = get_block_device_size(handle.fd());
if (data.size() > block_device_size) {
return -EOVERFLOW;
} else if (data.size() < block_device_size &&
(partition_name == "boot" || partition_name == "boot_a" ||
partition_name == "boot_b" || partition_name == "init_boot" ||
partition_name == "init_boot_a" || partition_name == "init_boot_b")) {
CopyAVBFooter(&data, block_device_size);
}
if (android::base::GetProperty("ro.system.build.type", "") != "user") {
WipeOverlayfsForPartition(device, partition_name);
}
int result = FlashBlockDevice(&handle, data);
sync();
return result;
}
static void RemoveScratchPartition() {
AutoMountMetadata mount_metadata;
android::fs_mgr::TeardownAllOverlayForMountPoint();
}
bool UpdateSuper(FastbootDevice* device, const std::string& super_name, bool wipe) {
std::vector<char> data = std::move(device->download_data());
if (data.empty()) {
return device->WriteFail("No data available");
}
std::unique_ptr<LpMetadata> new_metadata = ReadFromImageBlob(data.data(), data.size());
if (!new_metadata) {
return device->WriteFail("Data is not a valid logical partition metadata image");
}
if (!FindPhysicalPartition(super_name)) {
return device->WriteFail("Cannot find " + super_name +
", build may be missing broken or missing boot_devices");
}
std::string slot_suffix = device->GetCurrentSlot();
uint32_t slot_number = SlotNumberForSlotSuffix(slot_suffix);
std::string other_slot_suffix;
if (!slot_suffix.empty()) {
other_slot_suffix = (slot_suffix == "_a") ? "_b" : "_a";
}
// If we are unable to read the existing metadata, then the super partition
// is corrupt. In this case we reflash the whole thing using the provided
// image.
std::unique_ptr<LpMetadata> old_metadata = ReadMetadata(super_name, slot_number);
if (wipe || !old_metadata) {
if (!FlashPartitionTable(super_name, *new_metadata.get())) {
return device->WriteFail("Unable to flash new partition table");
}
RemoveScratchPartition();
sync();
return device->WriteOkay("Successfully flashed partition table");
}
std::set<std::string> partitions_to_keep;
bool virtual_ab = android::base::GetBoolProperty("ro.virtual_ab.enabled", false);
for (const auto& partition : old_metadata->partitions) {
// Preserve partitions in the other slot, but not the current slot.
std::string partition_name = GetPartitionName(partition);
if (!slot_suffix.empty()) {
auto part_suffix = GetPartitionSlotSuffix(partition_name);
if (part_suffix == slot_suffix || (part_suffix == other_slot_suffix && virtual_ab)) {
continue;
}
}
std::string group_name = GetPartitionGroupName(old_metadata->groups[partition.group_index]);
// Skip partitions in the COW group
if (group_name == android::snapshot::kCowGroupName) {
continue;
}
partitions_to_keep.emplace(partition_name);
}
// Do not preserve the scratch partition.
partitions_to_keep.erase("scratch");
if (!partitions_to_keep.empty()) {
std::unique_ptr<MetadataBuilder> builder = MetadataBuilder::New(*new_metadata.get());
if (!builder->ImportPartitions(*old_metadata.get(), partitions_to_keep)) {
return device->WriteFail(
"Old partitions are not compatible with the new super layout; wipe needed");
}
new_metadata = builder->Export();
if (!new_metadata) {
return device->WriteFail("Unable to build new partition table; wipe needed");
}
}
// Write the new table to every metadata slot.
if (!UpdateAllPartitionMetadata(device, super_name, *new_metadata.get())) {
return device->WriteFail("Unable to write new partition table");
}
RemoveScratchPartition();
sync();
return device->WriteOkay("Successfully updated partition table");
}