59caa7a045
When calculating the space used for pruning, if a log chunk is compressed, that size is used otherwise the uncompressed size is used. This is intended to reach a steady state where 1/4 of the log buffer is the uncompressed log chunk that is being written to and the other 3/4 of the log buffer is compressed logs. If we wait until there are no readers referencing the log chunk before compressing it, we end up with 2 uncompressed logs (the one that was just filled, that readers are still referencing, and the new one that was allocated to fit the most recent log), which take up 1/2 of the log buffer's allotted size and will thus cause prune to delete more compressed logs than it should. Instead, we should always compress the log chunks in FinishWriting() such that the compressed size will always be used for log chunks other than the one that is not actively written to. Decompressed logs due to readers are ephemeral by their nature and thus don't add to the log buffer size for pruning. Test: observe that log buffers can be filled in the presence of a reader. Change-Id: Ie21ccff032e41c4a0e51710cc435c5ab316563cb
330 lines
11 KiB
C++
330 lines
11 KiB
C++
/*
|
|
* Copyright (C) 2020 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "SerializedLogBuffer.h"
|
|
|
|
#include <sys/prctl.h>
|
|
|
|
#include <limits>
|
|
|
|
#include <android-base/logging.h>
|
|
#include <android-base/scopeguard.h>
|
|
|
|
#include "LogStatistics.h"
|
|
#include "SerializedFlushToState.h"
|
|
|
|
SerializedLogBuffer::SerializedLogBuffer(LogReaderList* reader_list, LogTags* tags,
|
|
LogStatistics* stats)
|
|
: reader_list_(reader_list), tags_(tags), stats_(stats) {
|
|
Init();
|
|
}
|
|
|
|
void SerializedLogBuffer::Init() {
|
|
log_id_for_each(i) {
|
|
if (SetSize(i, __android_logger_get_buffer_size(i))) {
|
|
SetSize(i, LOG_BUFFER_MIN_SIZE);
|
|
}
|
|
}
|
|
|
|
// Release any sleeping reader threads to dump their current content.
|
|
auto reader_threads_lock = std::lock_guard{reader_list_->reader_threads_lock()};
|
|
for (const auto& reader_thread : reader_list_->reader_threads()) {
|
|
reader_thread->triggerReader_Locked();
|
|
}
|
|
}
|
|
|
|
bool SerializedLogBuffer::ShouldLog(log_id_t log_id, const char* msg, uint16_t len) {
|
|
if (log_id == LOG_ID_SECURITY) {
|
|
return true;
|
|
}
|
|
|
|
int prio = ANDROID_LOG_INFO;
|
|
const char* tag = nullptr;
|
|
size_t tag_len = 0;
|
|
if (IsBinary(log_id)) {
|
|
int32_t tag_int = MsgToTag(msg, len);
|
|
tag = tags_->tagToName(tag_int);
|
|
if (tag) {
|
|
tag_len = strlen(tag);
|
|
}
|
|
} else {
|
|
prio = *msg;
|
|
tag = msg + 1;
|
|
tag_len = strnlen(tag, len - 1);
|
|
}
|
|
return __android_log_is_loggable_len(prio, tag, tag_len, ANDROID_LOG_VERBOSE);
|
|
}
|
|
|
|
int SerializedLogBuffer::Log(log_id_t log_id, log_time realtime, uid_t uid, pid_t pid, pid_t tid,
|
|
const char* msg, uint16_t len) {
|
|
if (log_id >= LOG_ID_MAX || len == 0) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!ShouldLog(log_id, msg, len)) {
|
|
stats_->AddTotal(log_id, len);
|
|
return -EACCES;
|
|
}
|
|
|
|
auto sequence = sequence_.fetch_add(1, std::memory_order_relaxed);
|
|
|
|
auto lock = std::lock_guard{lock_};
|
|
|
|
if (logs_[log_id].empty()) {
|
|
logs_[log_id].push_back(SerializedLogChunk(max_size_[log_id] / 4));
|
|
}
|
|
|
|
auto total_len = sizeof(SerializedLogEntry) + len;
|
|
if (!logs_[log_id].back().CanLog(total_len)) {
|
|
logs_[log_id].back().FinishWriting();
|
|
logs_[log_id].push_back(SerializedLogChunk(max_size_[log_id] / 4));
|
|
}
|
|
|
|
auto entry = logs_[log_id].back().Log(sequence, realtime, uid, pid, tid, msg, len);
|
|
stats_->Add(entry->ToLogStatisticsElement(log_id));
|
|
|
|
MaybePrune(log_id);
|
|
|
|
reader_list_->NotifyNewLog(1 << log_id);
|
|
return len;
|
|
}
|
|
|
|
void SerializedLogBuffer::MaybePrune(log_id_t log_id) {
|
|
size_t total_size = GetSizeUsed(log_id);
|
|
size_t after_size = total_size;
|
|
if (total_size > max_size_[log_id]) {
|
|
Prune(log_id, total_size - max_size_[log_id], 0);
|
|
after_size = GetSizeUsed(log_id);
|
|
LOG(INFO) << "Pruned Logs from log_id: " << log_id << ", previous size: " << total_size
|
|
<< " after size: " << after_size;
|
|
}
|
|
|
|
stats_->set_overhead(log_id, after_size);
|
|
}
|
|
|
|
void SerializedLogBuffer::RemoveChunkFromStats(log_id_t log_id, SerializedLogChunk& chunk) {
|
|
chunk.IncReaderRefCount();
|
|
int read_offset = 0;
|
|
while (read_offset < chunk.write_offset()) {
|
|
auto* entry = chunk.log_entry(read_offset);
|
|
stats_->Subtract(entry->ToLogStatisticsElement(log_id));
|
|
read_offset += entry->total_len();
|
|
}
|
|
chunk.DecReaderRefCount();
|
|
}
|
|
|
|
void SerializedLogBuffer::NotifyReadersOfPrune(
|
|
log_id_t log_id, const std::list<SerializedLogChunk>::iterator& chunk) {
|
|
for (const auto& reader_thread : reader_list_->reader_threads()) {
|
|
auto& state = reinterpret_cast<SerializedFlushToState&>(reader_thread->flush_to_state());
|
|
state.Prune(log_id, chunk);
|
|
}
|
|
}
|
|
|
|
bool SerializedLogBuffer::Prune(log_id_t log_id, size_t bytes_to_free, uid_t uid) {
|
|
// Don't prune logs that are newer than the point at which any reader threads are reading from.
|
|
LogReaderThread* oldest = nullptr;
|
|
auto reader_threads_lock = std::lock_guard{reader_list_->reader_threads_lock()};
|
|
for (const auto& reader_thread : reader_list_->reader_threads()) {
|
|
if (!reader_thread->IsWatching(log_id)) {
|
|
continue;
|
|
}
|
|
if (!oldest || oldest->start() > reader_thread->start() ||
|
|
(oldest->start() == reader_thread->start() &&
|
|
reader_thread->deadline().time_since_epoch().count() != 0)) {
|
|
oldest = reader_thread.get();
|
|
}
|
|
}
|
|
|
|
auto& log_buffer = logs_[log_id];
|
|
auto it = log_buffer.begin();
|
|
while (it != log_buffer.end()) {
|
|
if (oldest != nullptr && it->highest_sequence_number() >= oldest->start()) {
|
|
break;
|
|
}
|
|
|
|
// Increment ahead of time since we're going to erase this iterator from the list.
|
|
auto it_to_prune = it++;
|
|
|
|
// The sequence number check ensures that all readers have read all logs in this chunk, but
|
|
// they may still hold a reference to the chunk to track their last read log_position.
|
|
// Notify them to delete the reference.
|
|
NotifyReadersOfPrune(log_id, it_to_prune);
|
|
|
|
if (uid != 0) {
|
|
// Reorder the log buffer to remove logs from the given UID. If there are no logs left
|
|
// in the buffer after the removal, delete it.
|
|
if (it_to_prune->ClearUidLogs(uid, log_id, stats_)) {
|
|
log_buffer.erase(it_to_prune);
|
|
}
|
|
} else {
|
|
size_t buffer_size = it_to_prune->PruneSize();
|
|
RemoveChunkFromStats(log_id, *it_to_prune);
|
|
log_buffer.erase(it_to_prune);
|
|
if (buffer_size >= bytes_to_free) {
|
|
return true;
|
|
}
|
|
bytes_to_free -= buffer_size;
|
|
}
|
|
}
|
|
|
|
// If we've deleted all buffers without bytes_to_free hitting 0, then we're called by Clear()
|
|
// and should return true.
|
|
if (it == log_buffer.end()) {
|
|
return true;
|
|
}
|
|
|
|
// Otherwise we are stuck due to a reader, so mitigate it.
|
|
CHECK(oldest != nullptr);
|
|
KickReader(oldest, log_id, bytes_to_free);
|
|
return false;
|
|
}
|
|
|
|
// If the selected reader is blocking our pruning progress, decide on
|
|
// what kind of mitigation is necessary to unblock the situation.
|
|
void SerializedLogBuffer::KickReader(LogReaderThread* reader, log_id_t id, size_t bytes_to_free) {
|
|
if (bytes_to_free >= max_size_[id]) { // +100%
|
|
// A misbehaving or slow reader is dropped if we hit too much memory pressure.
|
|
LOG(WARNING) << "Kicking blocked reader, " << reader->name()
|
|
<< ", from LogBuffer::kickMe()";
|
|
reader->release_Locked();
|
|
} else if (reader->deadline().time_since_epoch().count() != 0) {
|
|
// Allow a blocked WRAP deadline reader to trigger and start reporting the log data.
|
|
reader->triggerReader_Locked();
|
|
} else {
|
|
// Tell slow reader to skip entries to catch up.
|
|
unsigned long prune_rows = bytes_to_free / 300;
|
|
LOG(WARNING) << "Skipping " << prune_rows << " entries from slow reader, " << reader->name()
|
|
<< ", from LogBuffer::kickMe()";
|
|
reader->triggerSkip_Locked(id, prune_rows);
|
|
}
|
|
}
|
|
|
|
std::unique_ptr<FlushToState> SerializedLogBuffer::CreateFlushToState(uint64_t start,
|
|
LogMask log_mask) {
|
|
return std::make_unique<SerializedFlushToState>(start, log_mask);
|
|
}
|
|
|
|
bool SerializedLogBuffer::FlushTo(
|
|
LogWriter* writer, FlushToState& abstract_state,
|
|
const std::function<FilterResult(log_id_t log_id, pid_t pid, uint64_t sequence,
|
|
log_time realtime)>& filter) {
|
|
auto lock = std::unique_lock{lock_};
|
|
|
|
auto& state = reinterpret_cast<SerializedFlushToState&>(abstract_state);
|
|
state.InitializeLogs(logs_);
|
|
|
|
while (state.HasUnreadLogs()) {
|
|
MinHeapElement top = state.PopNextUnreadLog();
|
|
auto* entry = top.entry;
|
|
auto log_id = top.log_id;
|
|
|
|
if (entry->sequence() < state.start()) {
|
|
continue;
|
|
}
|
|
state.set_start(entry->sequence());
|
|
|
|
if (!writer->privileged() && entry->uid() != writer->uid()) {
|
|
continue;
|
|
}
|
|
|
|
if (filter) {
|
|
auto ret = filter(log_id, entry->pid(), entry->sequence(), entry->realtime());
|
|
if (ret == FilterResult::kSkip) {
|
|
continue;
|
|
}
|
|
if (ret == FilterResult::kStop) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
lock.unlock();
|
|
// We never prune logs equal to or newer than any LogReaderThreads' `start` value, so the
|
|
// `entry` pointer is safe here without the lock
|
|
if (!entry->Flush(writer, log_id)) {
|
|
return false;
|
|
}
|
|
lock.lock();
|
|
}
|
|
|
|
state.set_start(state.start() + 1);
|
|
return true;
|
|
}
|
|
|
|
bool SerializedLogBuffer::Clear(log_id_t id, uid_t uid) {
|
|
// Try three times to clear, then disconnect the readers and try one final time.
|
|
for (int retry = 0; retry < 3; ++retry) {
|
|
{
|
|
auto lock = std::lock_guard{lock_};
|
|
bool prune_success = Prune(id, ULONG_MAX, uid);
|
|
if (prune_success) {
|
|
return true;
|
|
}
|
|
}
|
|
sleep(1);
|
|
}
|
|
// Check if it is still busy after the sleep, we try to prune one entry, not another clear run,
|
|
// so we are looking for the quick side effect of the return value to tell us if we have a
|
|
// _blocked_ reader.
|
|
bool busy = false;
|
|
{
|
|
auto lock = std::lock_guard{lock_};
|
|
busy = !Prune(id, 1, uid);
|
|
}
|
|
// It is still busy, disconnect all readers.
|
|
if (busy) {
|
|
auto reader_threads_lock = std::lock_guard{reader_list_->reader_threads_lock()};
|
|
for (const auto& reader_thread : reader_list_->reader_threads()) {
|
|
if (reader_thread->IsWatching(id)) {
|
|
LOG(WARNING) << "Kicking blocked reader, " << reader_thread->name()
|
|
<< ", from LogBuffer::clear()";
|
|
reader_thread->release_Locked();
|
|
}
|
|
}
|
|
}
|
|
auto lock = std::lock_guard{lock_};
|
|
return Prune(id, ULONG_MAX, uid);
|
|
}
|
|
|
|
unsigned long SerializedLogBuffer::GetSizeUsed(log_id_t id) {
|
|
size_t total_size = 0;
|
|
for (const auto& chunk : logs_[id]) {
|
|
total_size += chunk.PruneSize();
|
|
}
|
|
return total_size;
|
|
}
|
|
|
|
unsigned long SerializedLogBuffer::GetSize(log_id_t id) {
|
|
auto lock = std::lock_guard{lock_};
|
|
return max_size_[id];
|
|
}
|
|
|
|
// New SerializedLogChunk objects will be allocated according to the new size, but older one are
|
|
// unchanged. MaybePrune() is called on the log buffer to reduce it to an appropriate size if the
|
|
// new size is lower.
|
|
int SerializedLogBuffer::SetSize(log_id_t id, unsigned long size) {
|
|
// Reasonable limits ...
|
|
if (!__android_logger_valid_buffer_size(size)) {
|
|
return -1;
|
|
}
|
|
|
|
auto lock = std::lock_guard{lock_};
|
|
max_size_[id] = size;
|
|
|
|
MaybePrune(id);
|
|
|
|
return 0;
|
|
}
|