platform_system_core/libmemunreachable/MemUnreachable.cpp
Colin Cross 025ed8aacd Improve memunreachable ABI before making it vendor_available
vendor_available: true means that some prebuilts will end up with
references to classes defined in memunreachable.h.  Add version
numbers and reserved fields to the classes and default initialize
everything to zero.

Bug: 132302484
Test: memunreachable_unit_test
Change-Id: Ic183fcc766acd2c4c7dc62efafcc2c75a636e407
2019-05-20 12:57:48 -07:00

562 lines
18 KiB
C++

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <inttypes.h>
#include <string.h>
#include <functional>
#include <iomanip>
#include <mutex>
#include <sstream>
#include <string>
#include <unordered_map>
#include <android-base/macros.h>
#include <backtrace.h>
#include "Allocator.h"
#include "Binder.h"
#include "HeapWalker.h"
#include "Leak.h"
#include "LeakFolding.h"
#include "LeakPipe.h"
#include "ProcessMappings.h"
#include "PtracerThread.h"
#include "ScopedDisableMalloc.h"
#include "Semaphore.h"
#include "ThreadCapture.h"
#include "bionic.h"
#include "log.h"
#include "memunreachable/memunreachable.h"
using namespace std::chrono_literals;
namespace android {
const size_t Leak::contents_length;
class MemUnreachable {
public:
MemUnreachable(pid_t pid, Allocator<void> allocator)
: pid_(pid), allocator_(allocator), heap_walker_(allocator_) {}
bool CollectAllocations(const allocator::vector<ThreadInfo>& threads,
const allocator::vector<Mapping>& mappings,
const allocator::vector<uintptr_t>& refs);
bool GetUnreachableMemory(allocator::vector<Leak>& leaks, size_t limit, size_t* num_leaks,
size_t* leak_bytes);
size_t Allocations() { return heap_walker_.Allocations(); }
size_t AllocationBytes() { return heap_walker_.AllocationBytes(); }
private:
bool ClassifyMappings(const allocator::vector<Mapping>& mappings,
allocator::vector<Mapping>& heap_mappings,
allocator::vector<Mapping>& anon_mappings,
allocator::vector<Mapping>& globals_mappings,
allocator::vector<Mapping>& stack_mappings);
DISALLOW_COPY_AND_ASSIGN(MemUnreachable);
pid_t pid_;
Allocator<void> allocator_;
HeapWalker heap_walker_;
};
static void HeapIterate(const Mapping& heap_mapping,
const std::function<void(uintptr_t, size_t)>& func) {
malloc_iterate(heap_mapping.begin, heap_mapping.end - heap_mapping.begin,
[](uintptr_t base, size_t size, void* arg) {
auto f = reinterpret_cast<const std::function<void(uintptr_t, size_t)>*>(arg);
(*f)(base, size);
},
const_cast<void*>(reinterpret_cast<const void*>(&func)));
}
bool MemUnreachable::CollectAllocations(const allocator::vector<ThreadInfo>& threads,
const allocator::vector<Mapping>& mappings,
const allocator::vector<uintptr_t>& refs) {
MEM_ALOGI("searching process %d for allocations", pid_);
for (auto it = mappings.begin(); it != mappings.end(); it++) {
heap_walker_.Mapping(it->begin, it->end);
}
allocator::vector<Mapping> heap_mappings{mappings};
allocator::vector<Mapping> anon_mappings{mappings};
allocator::vector<Mapping> globals_mappings{mappings};
allocator::vector<Mapping> stack_mappings{mappings};
if (!ClassifyMappings(mappings, heap_mappings, anon_mappings, globals_mappings, stack_mappings)) {
return false;
}
for (auto it = heap_mappings.begin(); it != heap_mappings.end(); it++) {
MEM_ALOGV("Heap mapping %" PRIxPTR "-%" PRIxPTR " %s", it->begin, it->end, it->name);
HeapIterate(*it,
[&](uintptr_t base, size_t size) { heap_walker_.Allocation(base, base + size); });
}
for (auto it = anon_mappings.begin(); it != anon_mappings.end(); it++) {
MEM_ALOGV("Anon mapping %" PRIxPTR "-%" PRIxPTR " %s", it->begin, it->end, it->name);
heap_walker_.Allocation(it->begin, it->end);
}
for (auto it = globals_mappings.begin(); it != globals_mappings.end(); it++) {
MEM_ALOGV("Globals mapping %" PRIxPTR "-%" PRIxPTR " %s", it->begin, it->end, it->name);
heap_walker_.Root(it->begin, it->end);
}
for (auto thread_it = threads.begin(); thread_it != threads.end(); thread_it++) {
for (auto it = stack_mappings.begin(); it != stack_mappings.end(); it++) {
if (thread_it->stack.first >= it->begin && thread_it->stack.first <= it->end) {
MEM_ALOGV("Stack %" PRIxPTR "-%" PRIxPTR " %s", thread_it->stack.first, it->end, it->name);
heap_walker_.Root(thread_it->stack.first, it->end);
}
}
heap_walker_.Root(thread_it->regs);
}
heap_walker_.Root(refs);
MEM_ALOGI("searching done");
return true;
}
bool MemUnreachable::GetUnreachableMemory(allocator::vector<Leak>& leaks, size_t limit,
size_t* num_leaks, size_t* leak_bytes) {
MEM_ALOGI("sweeping process %d for unreachable memory", pid_);
leaks.clear();
if (!heap_walker_.DetectLeaks()) {
return false;
}
allocator::vector<Range> leaked1{allocator_};
heap_walker_.Leaked(leaked1, 0, num_leaks, leak_bytes);
MEM_ALOGI("sweeping done");
MEM_ALOGI("folding related leaks");
LeakFolding folding(allocator_, heap_walker_);
if (!folding.FoldLeaks()) {
return false;
}
allocator::vector<LeakFolding::Leak> leaked{allocator_};
if (!folding.Leaked(leaked, num_leaks, leak_bytes)) {
return false;
}
allocator::unordered_map<Leak::Backtrace, Leak*> backtrace_map{allocator_};
// Prevent reallocations of backing memory so we can store pointers into it
// in backtrace_map.
leaks.reserve(leaked.size());
for (auto& it : leaked) {
leaks.emplace_back();
Leak* leak = &leaks.back();
ssize_t num_backtrace_frames = malloc_backtrace(
reinterpret_cast<void*>(it.range.begin), leak->backtrace.frames, leak->backtrace.max_frames);
if (num_backtrace_frames > 0) {
leak->backtrace.num_frames = num_backtrace_frames;
auto inserted = backtrace_map.emplace(leak->backtrace, leak);
if (!inserted.second) {
// Leak with same backtrace already exists, drop this one and
// increment similar counts on the existing one.
leaks.pop_back();
Leak* similar_leak = inserted.first->second;
similar_leak->similar_count++;
similar_leak->similar_size += it.range.size();
similar_leak->similar_referenced_count += it.referenced_count;
similar_leak->similar_referenced_size += it.referenced_size;
similar_leak->total_size += it.range.size();
similar_leak->total_size += it.referenced_size;
continue;
}
}
leak->begin = it.range.begin;
leak->size = it.range.size();
leak->referenced_count = it.referenced_count;
leak->referenced_size = it.referenced_size;
leak->total_size = leak->size + leak->referenced_size;
memcpy(leak->contents, reinterpret_cast<void*>(it.range.begin),
std::min(leak->size, Leak::contents_length));
}
MEM_ALOGI("folding done");
std::sort(leaks.begin(), leaks.end(),
[](const Leak& a, const Leak& b) { return a.total_size > b.total_size; });
if (leaks.size() > limit) {
leaks.resize(limit);
}
return true;
}
static bool has_prefix(const allocator::string& s, const char* prefix) {
int ret = s.compare(0, strlen(prefix), prefix);
return ret == 0;
}
static bool is_sanitizer_mapping(const allocator::string& s) {
return s == "[anon:low shadow]" || s == "[anon:high shadow]" || has_prefix(s, "[anon:hwasan");
}
bool MemUnreachable::ClassifyMappings(const allocator::vector<Mapping>& mappings,
allocator::vector<Mapping>& heap_mappings,
allocator::vector<Mapping>& anon_mappings,
allocator::vector<Mapping>& globals_mappings,
allocator::vector<Mapping>& stack_mappings) {
heap_mappings.clear();
anon_mappings.clear();
globals_mappings.clear();
stack_mappings.clear();
allocator::string current_lib{allocator_};
for (auto it = mappings.begin(); it != mappings.end(); it++) {
if (it->execute) {
current_lib = it->name;
continue;
}
if (!it->read) {
continue;
}
const allocator::string mapping_name{it->name, allocator_};
if (mapping_name == "[anon:.bss]") {
// named .bss section
globals_mappings.emplace_back(*it);
} else if (mapping_name == current_lib) {
// .rodata or .data section
globals_mappings.emplace_back(*it);
} else if (mapping_name == "[anon:libc_malloc]") {
// named malloc mapping
heap_mappings.emplace_back(*it);
} else if (has_prefix(mapping_name, "[anon:dalvik-")) {
// named dalvik heap mapping
globals_mappings.emplace_back(*it);
} else if (has_prefix(mapping_name, "[stack")) {
// named stack mapping
stack_mappings.emplace_back(*it);
} else if (mapping_name.size() == 0) {
globals_mappings.emplace_back(*it);
} else if (has_prefix(mapping_name, "[anon:") &&
mapping_name != "[anon:leak_detector_malloc]" &&
!is_sanitizer_mapping(mapping_name)) {
// TODO(ccross): it would be nice to treat named anonymous mappings as
// possible leaks, but naming something in a .bss or .data section makes
// it impossible to distinguish them from mmaped and then named mappings.
globals_mappings.emplace_back(*it);
}
}
return true;
}
template <typename T>
static inline const char* plural(T val) {
return (val == 1) ? "" : "s";
}
bool GetUnreachableMemory(UnreachableMemoryInfo& info, size_t limit) {
if (info.version > 0) {
MEM_ALOGE("unsupported UnreachableMemoryInfo.version %zu in GetUnreachableMemory",
info.version);
return false;
}
int parent_pid = getpid();
int parent_tid = gettid();
Heap heap;
Semaphore continue_parent_sem;
LeakPipe pipe;
PtracerThread thread{[&]() -> int {
/////////////////////////////////////////////
// Collection thread
/////////////////////////////////////////////
MEM_ALOGI("collecting thread info for process %d...", parent_pid);
ThreadCapture thread_capture(parent_pid, heap);
allocator::vector<ThreadInfo> thread_info(heap);
allocator::vector<Mapping> mappings(heap);
allocator::vector<uintptr_t> refs(heap);
// ptrace all the threads
if (!thread_capture.CaptureThreads()) {
continue_parent_sem.Post();
return 1;
}
// collect register contents and stacks
if (!thread_capture.CapturedThreadInfo(thread_info)) {
continue_parent_sem.Post();
return 1;
}
// snapshot /proc/pid/maps
if (!ProcessMappings(parent_pid, mappings)) {
continue_parent_sem.Post();
return 1;
}
if (!BinderReferences(refs)) {
continue_parent_sem.Post();
return 1;
}
// malloc must be enabled to call fork, at_fork handlers take the same
// locks as ScopedDisableMalloc. All threads are paused in ptrace, so
// memory state is still consistent. Unfreeze the original thread so it
// can drop the malloc locks, it will block until the collection thread
// exits.
thread_capture.ReleaseThread(parent_tid);
continue_parent_sem.Post();
// fork a process to do the heap walking
int ret = fork();
if (ret < 0) {
return 1;
} else if (ret == 0) {
/////////////////////////////////////////////
// Heap walker process
/////////////////////////////////////////////
// Examine memory state in the child using the data collected above and
// the CoW snapshot of the process memory contents.
if (!pipe.OpenSender()) {
_exit(1);
}
MemUnreachable unreachable{parent_pid, heap};
if (!unreachable.CollectAllocations(thread_info, mappings, refs)) {
_exit(2);
}
size_t num_allocations = unreachable.Allocations();
size_t allocation_bytes = unreachable.AllocationBytes();
allocator::vector<Leak> leaks{heap};
size_t num_leaks = 0;
size_t leak_bytes = 0;
bool ok = unreachable.GetUnreachableMemory(leaks, limit, &num_leaks, &leak_bytes);
ok = ok && pipe.Sender().Send(num_allocations);
ok = ok && pipe.Sender().Send(allocation_bytes);
ok = ok && pipe.Sender().Send(num_leaks);
ok = ok && pipe.Sender().Send(leak_bytes);
ok = ok && pipe.Sender().SendVector(leaks);
if (!ok) {
_exit(3);
}
_exit(0);
} else {
// Nothing left to do in the collection thread, return immediately,
// releasing all the captured threads.
MEM_ALOGI("collection thread done");
return 0;
}
}};
/////////////////////////////////////////////
// Original thread
/////////////////////////////////////////////
{
// Disable malloc to get a consistent view of memory
ScopedDisableMalloc disable_malloc;
// Start the collection thread
thread.Start();
// Wait for the collection thread to signal that it is ready to fork the
// heap walker process.
continue_parent_sem.Wait(30s);
// Re-enable malloc so the collection thread can fork.
}
// Wait for the collection thread to exit
int ret = thread.Join();
if (ret != 0) {
return false;
}
// Get a pipe from the heap walker process. Transferring a new pipe fd
// ensures no other forked processes can have it open, so when the heap
// walker process dies the remote side of the pipe will close.
if (!pipe.OpenReceiver()) {
return false;
}
bool ok = true;
ok = ok && pipe.Receiver().Receive(&info.num_allocations);
ok = ok && pipe.Receiver().Receive(&info.allocation_bytes);
ok = ok && pipe.Receiver().Receive(&info.num_leaks);
ok = ok && pipe.Receiver().Receive(&info.leak_bytes);
ok = ok && pipe.Receiver().ReceiveVector(info.leaks);
if (!ok) {
return false;
}
MEM_ALOGI("unreachable memory detection done");
MEM_ALOGE("%zu bytes in %zu allocation%s unreachable out of %zu bytes in %zu allocation%s",
info.leak_bytes, info.num_leaks, plural(info.num_leaks), info.allocation_bytes,
info.num_allocations, plural(info.num_allocations));
return true;
}
std::string Leak::ToString(bool log_contents) const {
std::ostringstream oss;
oss << " " << std::dec << size;
oss << " bytes unreachable at ";
oss << std::hex << begin;
oss << std::endl;
if (referenced_count > 0) {
oss << std::dec;
oss << " referencing " << referenced_size << " unreachable bytes";
oss << " in " << referenced_count << " allocation" << plural(referenced_count);
oss << std::endl;
}
if (similar_count > 0) {
oss << std::dec;
oss << " and " << similar_size << " similar unreachable bytes";
oss << " in " << similar_count << " allocation" << plural(similar_count);
oss << std::endl;
if (similar_referenced_count > 0) {
oss << " referencing " << similar_referenced_size << " unreachable bytes";
oss << " in " << similar_referenced_count << " allocation" << plural(similar_referenced_count);
oss << std::endl;
}
}
if (log_contents) {
const int bytes_per_line = 16;
const size_t bytes = std::min(size, contents_length);
if (bytes == size) {
oss << " contents:" << std::endl;
} else {
oss << " first " << bytes << " bytes of contents:" << std::endl;
}
for (size_t i = 0; i < bytes; i += bytes_per_line) {
oss << " " << std::hex << begin + i << ": ";
size_t j;
oss << std::setfill('0');
for (j = i; j < bytes && j < i + bytes_per_line; j++) {
oss << std::setw(2) << static_cast<int>(contents[j]) << " ";
}
oss << std::setfill(' ');
for (; j < i + bytes_per_line; j++) {
oss << " ";
}
for (j = i; j < bytes && j < i + bytes_per_line; j++) {
char c = contents[j];
if (c < ' ' || c >= 0x7f) {
c = '.';
}
oss << c;
}
oss << std::endl;
}
}
if (backtrace.num_frames > 0) {
oss << backtrace_string(backtrace.frames, backtrace.num_frames);
}
return oss.str();
}
std::string UnreachableMemoryInfo::ToString(bool log_contents) const {
std::ostringstream oss;
oss << " " << leak_bytes << " bytes in ";
oss << num_leaks << " unreachable allocation" << plural(num_leaks);
oss << std::endl;
oss << " ABI: '" ABI_STRING "'" << std::endl;
oss << std::endl;
for (auto it = leaks.begin(); it != leaks.end(); it++) {
oss << it->ToString(log_contents);
oss << std::endl;
}
return oss.str();
}
UnreachableMemoryInfo::~UnreachableMemoryInfo() {
// Clear the memory that holds the leaks, otherwise the next attempt to
// detect leaks may find the old data (for example in the jemalloc tcache)
// and consider all the leaks to be referenced.
memset(leaks.data(), 0, leaks.capacity() * sizeof(Leak));
std::vector<Leak> tmp;
leaks.swap(tmp);
// Disable and re-enable malloc to flush the jemalloc tcache to make sure
// there are no copies of the leaked pointer addresses there.
malloc_disable();
malloc_enable();
}
std::string GetUnreachableMemoryString(bool log_contents, size_t limit) {
UnreachableMemoryInfo info;
if (!GetUnreachableMemory(info, limit)) {
return "Failed to get unreachable memory\n"
"If you are trying to get unreachable memory from a system app\n"
"(like com.android.systemui), disable selinux first using\n"
"setenforce 0\n";
}
return info.ToString(log_contents);
}
} // namespace android
bool LogUnreachableMemory(bool log_contents, size_t limit) {
android::UnreachableMemoryInfo info;
if (!android::GetUnreachableMemory(info, limit)) {
return false;
}
for (auto it = info.leaks.begin(); it != info.leaks.end(); it++) {
MEM_ALOGE("%s", it->ToString(log_contents).c_str());
}
return true;
}
bool NoLeaks() {
android::UnreachableMemoryInfo info;
if (!android::GetUnreachableMemory(info, 0)) {
return false;
}
return info.num_leaks == 0;
}