platform_system_core/libpixelflinger/codeflinger/GGLAssembler.h
Ashok Bhat bfc6dc4ca8 Pixelflinger: Support for handling 64-bit addresses in GGL Assembler
GGLAssembler assumes addresses to be 32-bit and uses ARM 32-bit
instructions to load/store/manipulate addresses. To support, 64-bit
architectures, following changes has been done

1. ARMAssemblerInterface has been extended to support four new
   operations ADDR_LDR, ADDR_STR, ADDR_SUB, ADDR_ADD. Base class
   implements these virtual functions to use 32bit  equivalent
   function. This avoids existing 32-bit Assembler backend
   implementations like ARMAssembler and MIPSAssembler  from
   mapping the new functions to existing equivalent routines.
   This also allows 64-bit Architectures like AArch64 to override
   the function in their assembler backend implementations.

2. GGLAssembler code (spread over GGLAssembler.cpp, GGLAssembler.h
   and texturing.cpp) has been changed to use the new operations
   for address operations.

Change-Id: I3d7eace4691e3e47cef737d97ac67ce6ef4fb18d
Signed-off-by: Ashok Bhat <ashok.bhat@arm.com>
2013-12-12 17:30:13 +00:00

564 lines
18 KiB
C++

/* libs/pixelflinger/codeflinger/GGLAssembler.h
**
** Copyright 2006, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#ifndef ANDROID_GGLASSEMBLER_H
#define ANDROID_GGLASSEMBLER_H
#include <stdint.h>
#include <sys/types.h>
#include <private/pixelflinger/ggl_context.h>
#include "ARMAssemblerProxy.h"
namespace android {
// ----------------------------------------------------------------------------
#define CONTEXT_ADDR_LOAD(REG, FIELD) \
ADDR_LDR(AL, REG, mBuilderContext.Rctx, immed12_pre(GGL_OFFSETOF(FIELD)))
#define CONTEXT_ADDR_STORE(REG, FIELD) \
ADDR_STR(AL, REG, mBuilderContext.Rctx, immed12_pre(GGL_OFFSETOF(FIELD)))
#define CONTEXT_LOAD(REG, FIELD) \
LDR(AL, REG, mBuilderContext.Rctx, immed12_pre(GGL_OFFSETOF(FIELD)))
#define CONTEXT_STORE(REG, FIELD) \
STR(AL, REG, mBuilderContext.Rctx, immed12_pre(GGL_OFFSETOF(FIELD)))
class RegisterAllocator
{
public:
class RegisterFile;
RegisterAllocator(int arch);
RegisterFile& registerFile();
int reserveReg(int reg);
int obtainReg();
void recycleReg(int reg);
void reset();
class RegisterFile
{
public:
RegisterFile(int arch);
RegisterFile(const RegisterFile& rhs, int arch);
~RegisterFile();
void reset();
bool operator == (const RegisterFile& rhs) const;
bool operator != (const RegisterFile& rhs) const {
return !operator == (rhs);
}
int reserve(int reg);
void reserveSeveral(uint32_t regMask);
void recycle(int reg);
void recycleSeveral(uint32_t regMask);
int obtain();
inline int isUsed(int reg) const;
bool hasFreeRegs() const;
int countFreeRegs() const;
uint32_t touched() const;
inline uint32_t status() const { return mStatus; }
enum {
OUT_OF_REGISTERS = 0x1
};
private:
uint32_t mRegs;
uint32_t mTouched;
uint32_t mStatus;
int mArch;
uint32_t mRegisterOffset; // lets reg alloc use 2..17 for mips
// while arm uses 0..15
};
class Scratch
{
public:
Scratch(RegisterFile& regFile)
: mRegFile(regFile), mScratch(0) {
}
~Scratch() {
mRegFile.recycleSeveral(mScratch);
}
int obtain() {
int reg = mRegFile.obtain();
mScratch |= 1<<reg;
return reg;
}
void recycle(int reg) {
mRegFile.recycle(reg);
mScratch &= ~(1<<reg);
}
bool isUsed(int reg) {
return (mScratch & (1<<reg));
}
int countFreeRegs() {
return mRegFile.countFreeRegs();
}
private:
RegisterFile& mRegFile;
uint32_t mScratch;
};
class Spill
{
public:
Spill(RegisterFile& regFile, ARMAssemblerInterface& gen, uint32_t reglist)
: mRegFile(regFile), mGen(gen), mRegList(reglist), mCount(0)
{
if (reglist) {
int count = 0;
while (reglist) {
count++;
reglist &= ~(1 << (31 - __builtin_clz(reglist)));
}
if (count == 1) {
int reg = 31 - __builtin_clz(mRegList);
mGen.STR(mGen.AL, reg, mGen.SP, mGen.immed12_pre(-4, 1));
} else {
mGen.STM(mGen.AL, mGen.DB, mGen.SP, 1, mRegList);
}
mRegFile.recycleSeveral(mRegList);
mCount = count;
}
}
~Spill() {
if (mRegList) {
if (mCount == 1) {
int reg = 31 - __builtin_clz(mRegList);
mGen.LDR(mGen.AL, reg, mGen.SP, mGen.immed12_post(4));
} else {
mGen.LDM(mGen.AL, mGen.IA, mGen.SP, 1, mRegList);
}
mRegFile.reserveSeveral(mRegList);
}
}
private:
RegisterFile& mRegFile;
ARMAssemblerInterface& mGen;
uint32_t mRegList;
int mCount;
};
private:
RegisterFile mRegs;
};
// ----------------------------------------------------------------------------
class GGLAssembler : public ARMAssemblerProxy, public RegisterAllocator
{
public:
GGLAssembler(ARMAssemblerInterface* target);
virtual ~GGLAssembler();
uint32_t* base() const { return 0; } // XXX
uint32_t* pc() const { return 0; } // XXX
void reset(int opt_level);
virtual void prolog();
virtual void epilog(uint32_t touched);
// generate scanline code for given needs
int scanline(const needs_t& needs, context_t const* c);
int scanline_core(const needs_t& needs, context_t const* c);
enum {
CLEAR_LO = 0x0001,
CLEAR_HI = 0x0002,
CORRUPTIBLE = 0x0004,
FIRST = 0x0008
};
enum { //load/store flags
WRITE_BACK = 0x0001
};
struct reg_t {
reg_t() : reg(-1), flags(0) {
}
reg_t(int r, int f=0)
: reg(r), flags(f) {
}
void setTo(int r, int f=0) {
reg=r; flags=f;
}
int reg;
uint16_t flags;
};
struct integer_t : public reg_t {
integer_t() : reg_t(), s(0) {
}
integer_t(int r, int sz=32, int f=0)
: reg_t(r, f), s(sz) {
}
void setTo(int r, int sz=32, int f=0) {
reg_t::setTo(r, f); s=sz;
}
int8_t s;
inline int size() const { return s; }
};
struct pixel_t : public reg_t {
pixel_t() : reg_t() {
memset(&format, 0, sizeof(GGLFormat));
}
pixel_t(int r, const GGLFormat* fmt, int f=0)
: reg_t(r, f), format(*fmt) {
}
void setTo(int r, const GGLFormat* fmt, int f=0) {
reg_t::setTo(r, f); format = *fmt;
}
GGLFormat format;
inline int hi(int c) const { return format.c[c].h; }
inline int low(int c) const { return format.c[c].l; }
inline int mask(int c) const { return ((1<<size(c))-1) << low(c); }
inline int size() const { return format.size*8; }
inline int size(int c) const { return component_size(c); }
inline int component_size(int c) const { return hi(c) - low(c); }
};
struct component_t : public reg_t {
component_t() : reg_t(), h(0), l(0) {
}
component_t(int r, int f=0)
: reg_t(r, f), h(0), l(0) {
}
component_t(int r, int lo, int hi, int f=0)
: reg_t(r, f), h(hi), l(lo) {
}
explicit component_t(const integer_t& rhs)
: reg_t(rhs.reg, rhs.flags), h(rhs.s), l(0) {
}
explicit component_t(const pixel_t& rhs, int component) {
setTo( rhs.reg,
rhs.format.c[component].l,
rhs.format.c[component].h,
rhs.flags|CLEAR_LO|CLEAR_HI);
}
void setTo(int r, int lo=0, int hi=0, int f=0) {
reg_t::setTo(r, f); h=hi; l=lo;
}
int8_t h;
int8_t l;
inline int size() const { return h-l; }
};
struct pointer_t : public reg_t {
pointer_t() : reg_t(), size(0) {
}
pointer_t(int r, int s, int f=0)
: reg_t(r, f), size(s) {
}
void setTo(int r, int s, int f=0) {
reg_t::setTo(r, f); size=s;
}
int8_t size;
};
private:
struct tex_coord_t {
reg_t s;
reg_t t;
pointer_t ptr;
};
struct fragment_parts_t {
uint32_t packed : 1;
uint32_t reload : 2;
uint32_t iterated_packed : 1;
pixel_t iterated;
pointer_t cbPtr;
pointer_t covPtr;
reg_t count;
reg_t argb[4];
reg_t argb_dx[4];
reg_t z;
reg_t dither;
pixel_t texel[GGL_TEXTURE_UNIT_COUNT];
tex_coord_t coords[GGL_TEXTURE_UNIT_COUNT];
};
struct texture_unit_t {
int format_idx;
GGLFormat format;
int bits;
int swrap;
int twrap;
int env;
int pot;
int linear;
uint8_t mask;
uint8_t replaced;
};
struct texture_machine_t {
texture_unit_t tmu[GGL_TEXTURE_UNIT_COUNT];
uint8_t mask;
uint8_t replaced;
uint8_t directTexture;
uint8_t activeUnits;
};
struct component_info_t {
bool masked : 1;
bool inDest : 1;
bool needed : 1;
bool replaced : 1;
bool iterated : 1;
bool smooth : 1;
bool blend : 1;
bool fog : 1;
};
struct builder_context_t {
context_t const* c;
needs_t needs;
int Rctx;
};
template <typename T>
void modify(T& r, Scratch& regs)
{
if (!(r.flags & CORRUPTIBLE)) {
r.reg = regs.obtain();
r.flags |= CORRUPTIBLE;
}
}
// helpers
void base_offset(const pointer_t& d, const pointer_t& b, const reg_t& o);
// texture environement
void modulate( component_t& dest,
const component_t& incoming,
const pixel_t& texel, int component);
void decal( component_t& dest,
const component_t& incoming,
const pixel_t& texel, int component);
void blend( component_t& dest,
const component_t& incoming,
const pixel_t& texel, int component, int tmu);
void add( component_t& dest,
const component_t& incoming,
const pixel_t& texel, int component);
// load/store stuff
void store(const pointer_t& addr, const pixel_t& src, uint32_t flags=0);
void load(const pointer_t& addr, const pixel_t& dest, uint32_t flags=0);
void extract(integer_t& d, const pixel_t& s, int component);
void extract(component_t& d, const pixel_t& s, int component);
void extract(integer_t& d, int s, int h, int l, int bits=32);
void expand(integer_t& d, const integer_t& s, int dbits);
void expand(integer_t& d, const component_t& s, int dbits);
void expand(component_t& d, const component_t& s, int dbits);
void downshift(pixel_t& d, int component, component_t s, const reg_t& dither);
void mul_factor( component_t& d,
const integer_t& v,
const integer_t& f);
void mul_factor_add( component_t& d,
const integer_t& v,
const integer_t& f,
const component_t& a);
void component_add( component_t& d,
const integer_t& dst,
const integer_t& src);
void component_sat( const component_t& v);
void build_scanline_prolog( fragment_parts_t& parts,
const needs_t& needs);
void build_smooth_shade(const fragment_parts_t& parts);
void build_component( pixel_t& pixel,
const fragment_parts_t& parts,
int component,
Scratch& global_scratches);
void build_incoming_component(
component_t& temp,
int dst_size,
const fragment_parts_t& parts,
int component,
Scratch& scratches,
Scratch& global_scratches);
void init_iterated_color(fragment_parts_t& parts, const reg_t& x);
void build_iterated_color( component_t& fragment,
const fragment_parts_t& parts,
int component,
Scratch& regs);
void decodeLogicOpNeeds(const needs_t& needs);
void decodeTMUNeeds(const needs_t& needs, context_t const* c);
void init_textures( tex_coord_t* coords,
const reg_t& x,
const reg_t& y);
void build_textures( fragment_parts_t& parts,
Scratch& regs);
void filter8( const fragment_parts_t& parts,
pixel_t& texel, const texture_unit_t& tmu,
int U, int V, pointer_t& txPtr,
int FRAC_BITS);
void filter16( const fragment_parts_t& parts,
pixel_t& texel, const texture_unit_t& tmu,
int U, int V, pointer_t& txPtr,
int FRAC_BITS);
void filter24( const fragment_parts_t& parts,
pixel_t& texel, const texture_unit_t& tmu,
int U, int V, pointer_t& txPtr,
int FRAC_BITS);
void filter32( const fragment_parts_t& parts,
pixel_t& texel, const texture_unit_t& tmu,
int U, int V, pointer_t& txPtr,
int FRAC_BITS);
void build_texture_environment( component_t& fragment,
const fragment_parts_t& parts,
int component,
Scratch& regs);
void wrapping( int d,
int coord, int size,
int tx_wrap, int tx_linear);
void build_fog( component_t& temp,
int component,
Scratch& parent_scratches);
void build_blending( component_t& in_out,
const pixel_t& pixel,
int component,
Scratch& parent_scratches);
void build_blend_factor(
integer_t& factor, int f, int component,
const pixel_t& dst_pixel,
integer_t& fragment,
integer_t& fb,
Scratch& scratches);
void build_blendFOneMinusF( component_t& temp,
const integer_t& factor,
const integer_t& fragment,
const integer_t& fb);
void build_blendOneMinusFF( component_t& temp,
const integer_t& factor,
const integer_t& fragment,
const integer_t& fb);
void build_coverage_application(component_t& fragment,
const fragment_parts_t& parts,
Scratch& regs);
void build_alpha_test(component_t& fragment, const fragment_parts_t& parts);
enum { Z_TEST=1, Z_WRITE=2 };
void build_depth_test(const fragment_parts_t& parts, uint32_t mask);
void build_iterate_z(const fragment_parts_t& parts);
void build_iterate_f(const fragment_parts_t& parts);
void build_iterate_texture_coordinates(const fragment_parts_t& parts);
void build_logic_op(pixel_t& pixel, Scratch& regs);
void build_masking(pixel_t& pixel, Scratch& regs);
void build_and_immediate(int d, int s, uint32_t mask, int bits);
bool isAlphaSourceNeeded() const;
enum {
FACTOR_SRC=1, FACTOR_DST=2, BLEND_SRC=4, BLEND_DST=8
};
enum {
LOGIC_OP=1, LOGIC_OP_SRC=2, LOGIC_OP_DST=4
};
static int blending_codes(int fs, int fd);
builder_context_t mBuilderContext;
texture_machine_t mTextureMachine;
component_info_t mInfo[4];
int mBlending;
int mMasking;
int mAllMasked;
int mLogicOp;
int mAlphaTest;
int mAA;
int mDithering;
int mDepthTest;
int mSmooth;
int mFog;
pixel_t mDstPixel;
GGLFormat mCbFormat;
int mBlendFactorCached;
integer_t mAlphaSource;
int mBaseRegister;
int mBlendSrc;
int mBlendDst;
int mBlendSrcA;
int mBlendDstA;
int mOptLevel;
};
// ----------------------------------------------------------------------------
}; // namespace android
#endif // ANDROID_GGLASSEMBLER_H