platform_system_core/libunwindstack/ElfInterfaceArm.cpp
Christopher Ferris f882a38864 Fix ARM program header values used for exidx.
Before, I was using p_vaddr to get the offset into the elf file where
the exidx frame starts. I changed that to use p_offset since this already
has the load bias offset in it and some elf files do not set p_vaddr
properly.

Also, use p_filesz instead of p_memsz, since again, some elf files do
not set p_memsz to the same as p_filesz.

Bug: 110704153

Test: All libbacktrace/libunwindstack unit tests pass.
Test: Randomly unwind process on a walleye.
Test: Verified that this properly dumps and unwinds the shared
Test: library that sets p_vaddr and p_memsz differently.
Change-Id: Ic7b1e5d07439f4636fa02cd884a8727a5737372b
2018-06-22 16:48:02 -07:00

190 lines
5.4 KiB
C++

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <elf.h>
#include <stdint.h>
#include <unwindstack/MachineArm.h>
#include <unwindstack/Memory.h>
#include <unwindstack/RegsArm.h>
#include "ArmExidx.h"
#include "ElfInterfaceArm.h"
namespace unwindstack {
bool ElfInterfaceArm::Init(uint64_t* load_bias) {
if (!ElfInterface32::Init(load_bias)) {
return false;
}
load_bias_ = *load_bias;
return true;
}
bool ElfInterfaceArm::FindEntry(uint32_t pc, uint64_t* entry_offset) {
if (start_offset_ == 0 || total_entries_ == 0) {
last_error_.code = ERROR_UNWIND_INFO;
return false;
}
size_t first = 0;
size_t last = total_entries_;
while (first < last) {
size_t current = (first + last) / 2;
uint32_t addr = addrs_[current];
if (addr == 0) {
if (!GetPrel31Addr(start_offset_ + current * 8, &addr)) {
return false;
}
addrs_[current] = addr;
}
if (pc == addr) {
*entry_offset = start_offset_ + current * 8;
return true;
}
if (pc < addr) {
last = current;
} else {
first = current + 1;
}
}
if (last != 0) {
*entry_offset = start_offset_ + (last - 1) * 8;
return true;
}
last_error_.code = ERROR_UNWIND_INFO;
return false;
}
bool ElfInterfaceArm::GetPrel31Addr(uint32_t offset, uint32_t* addr) {
uint32_t data;
if (!memory_->Read32(offset, &data)) {
last_error_.code = ERROR_MEMORY_INVALID;
last_error_.address = offset;
return false;
}
// Sign extend the value if necessary.
int32_t value = (static_cast<int32_t>(data) << 1) >> 1;
*addr = offset + value;
return true;
}
#if !defined(PT_ARM_EXIDX)
#define PT_ARM_EXIDX 0x70000001
#endif
bool ElfInterfaceArm::HandleType(uint64_t offset, uint32_t type) {
if (type != PT_ARM_EXIDX) {
return false;
}
Elf32_Phdr phdr;
if (!memory_->ReadFully(offset, &phdr, sizeof(phdr))) {
return true;
}
// The offset already takes into account the load bias.
start_offset_ = phdr.p_offset;
// Always use filesz instead of memsz. In most cases they are the same,
// but some shared libraries wind up setting one correctly and not the other.
total_entries_ = phdr.p_filesz / 8;
return true;
}
bool ElfInterfaceArm::Step(uint64_t pc, Regs* regs, Memory* process_memory, bool* finished) {
// Dwarf unwind information is precise about whether a pc is covered or not,
// but arm unwind information only has ranges of pc. In order to avoid
// incorrectly doing a bad unwind using arm unwind information for a
// different function, always try and unwind with the dwarf information first.
return ElfInterface32::Step(pc, regs, process_memory, finished) ||
StepExidx(pc, regs, process_memory, finished);
}
bool ElfInterfaceArm::StepExidx(uint64_t pc, Regs* regs, Memory* process_memory, bool* finished) {
// Adjust the load bias to get the real relative pc.
if (pc < load_bias_) {
last_error_.code = ERROR_UNWIND_INFO;
return false;
}
pc -= load_bias_;
RegsArm* regs_arm = reinterpret_cast<RegsArm*>(regs);
uint64_t entry_offset;
if (!FindEntry(pc, &entry_offset)) {
return false;
}
ArmExidx arm(regs_arm, memory_, process_memory);
arm.set_cfa(regs_arm->sp());
bool return_value = false;
if (arm.ExtractEntryData(entry_offset) && arm.Eval()) {
// If the pc was not set, then use the LR registers for the PC.
if (!arm.pc_set()) {
(*regs_arm)[ARM_REG_PC] = (*regs_arm)[ARM_REG_LR];
}
(*regs_arm)[ARM_REG_SP] = arm.cfa();
return_value = true;
// If the pc was set to zero, consider this the final frame.
*finished = (regs_arm->pc() == 0) ? true : false;
}
if (arm.status() == ARM_STATUS_NO_UNWIND) {
*finished = true;
return true;
}
if (!return_value) {
switch (arm.status()) {
case ARM_STATUS_NONE:
case ARM_STATUS_NO_UNWIND:
case ARM_STATUS_FINISH:
last_error_.code = ERROR_NONE;
break;
case ARM_STATUS_RESERVED:
case ARM_STATUS_SPARE:
case ARM_STATUS_TRUNCATED:
case ARM_STATUS_MALFORMED:
case ARM_STATUS_INVALID_ALIGNMENT:
case ARM_STATUS_INVALID_PERSONALITY:
last_error_.code = ERROR_UNWIND_INFO;
break;
case ARM_STATUS_READ_FAILED:
last_error_.code = ERROR_MEMORY_INVALID;
last_error_.address = arm.status_address();
break;
}
}
return return_value;
}
bool ElfInterfaceArm::GetFunctionName(uint64_t addr, std::string* name, uint64_t* offset) {
// For ARM, thumb function symbols have bit 0 set, but the address passed
// in here might not have this bit set and result in a failure to find
// the thumb function names. Adjust the address and offset to account
// for this possible case.
if (ElfInterface32::GetFunctionName(addr | 1, name, offset)) {
*offset &= ~1;
return true;
}
return false;
}
} // namespace unwindstack