Merge changes Ibc7851ba,Ie743cff7

* changes:
  Cache the KeystoreKeyBackend with a lazy static.
  Implement Keystore 2.0 access control
This commit is contained in:
Treehugger Robot 2020-08-14 18:02:21 +00:00 committed by Gerrit Code Review
commit ce8c6af02a
4 changed files with 927 additions and 0 deletions

View file

@ -21,6 +21,7 @@ rust_library {
"libanyhow",
"libkeystore_aidl_generated",
"libkeystore2_selinux",
"liblazy_static",
"liblibsqlite3_sys",
"liblog_rust",
"librand",
@ -40,6 +41,7 @@ rust_test {
"libanyhow",
"libkeystore_aidl_generated",
"libkeystore2_selinux",
"liblazy_static",
"liblibsqlite3_sys",
"liblog_rust",
"librusqlite",

View file

@ -25,6 +25,7 @@
use std::ffi::{CStr, CString};
use std::fmt;
use std::io;
use std::marker::{Send, Sync};
pub use std::ops::Deref;
use std::os::raw::c_char;
use std::ptr;
@ -141,6 +142,10 @@ pub struct KeystoreKeyBackend {
handle: *mut selinux::selabel_handle,
}
// KeystoreKeyBackend is Sync because selabel_lookup is thread safe.
unsafe impl Sync for KeystoreKeyBackend {}
unsafe impl Send for KeystoreKeyBackend {}
impl KeystoreKeyBackend {
const BACKEND_TYPE: i32 = SELABEL_CTX_ANDROID_KEYSTORE2_KEY as i32;
@ -164,6 +169,9 @@ impl Drop for KeystoreKeyBackend {
}
}
// Because KeystoreKeyBackend is Sync and Send, member function must never call
// non thread safe libselinux functions. As of this writing no non thread safe
// functions exist that could be called on a label backend handle.
impl Backend for KeystoreKeyBackend {
fn lookup(&self, key: &str) -> Result<Context> {
let mut con: *mut c_char = ptr::null_mut();

View file

@ -16,3 +16,4 @@
pub mod database;
pub mod error;
pub mod permission;

916
keystore2/src/permission.rs Normal file
View file

@ -0,0 +1,916 @@
// Copyright 2020, The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! This crate provides access control primitives for Keystore 2.0.
//! It provides high level functions for checking permissions in the keystore2 and keystore2_key
//! SELinux classes based on the keystore2_selinux backend.
//! It also provides KeystorePerm and KeyPerm as convenience wrappers for the SELinux permission
//! defined by keystore2 and keystore2_key respectively.
use keystore_aidl_generated as aidl;
use std::cmp::PartialEq;
use std::convert::From;
use crate::error::Error as KsError;
use keystore2_selinux as selinux;
use anyhow::Context as AnyhowContext;
use selinux::Backend;
use lazy_static::lazy_static;
// Replace getcon with a mock in the test situation
#[cfg(not(test))]
use selinux::getcon;
#[cfg(test)]
use tests::test_getcon as getcon;
lazy_static! {
// Panicking here is allowed because keystore cannot function without this backend
// and it would happen early and indicate a gross misconfiguration of the device.
static ref KEYSTORE2_KEY_LABEL_BACKEND: selinux::KeystoreKeyBackend =
selinux::KeystoreKeyBackend::new().unwrap();
}
fn lookup_keystore2_key_context(namespace: i64) -> anyhow::Result<selinux::Context> {
KEYSTORE2_KEY_LABEL_BACKEND.lookup(&namespace.to_string())
}
/// The below example wraps the enum MyPermission in the tuple struct `MyPerm` and implements
/// * `From<i32> for `MyPerm`, where each unknown numeric value is mapped to the given default,
/// here `None`
/// * `Into<MyPermission> for `MyPerm`
/// * `MyPerm::foo()` and `MyPerm::bar()` which construct MyPerm instances representing
/// `MyPermission::Foo` and `MyPermission::Bar` respectively.
/// * `MyPerm.to_selinux(&self)`, which returns the selinux string representation of the
/// represented permission.
/// * Tests in the given test namespace for each permision that check that the numeric
/// representations of MyPermission and MyPerm match. (TODO replace with static assert if
/// they become available.)
///
/// ## Special behavior
/// If the keyword `use` appears as an selinux name `use_` is used as identifier for the
/// constructor function (e.g. `MePerm::use_()`) but the string returned by `to_selinux` will
/// still be `"use"`.
///
/// ## Example
/// ```
/// #[i32]
/// enum MyPermission {
/// None = 0,
/// Foo = 1,
/// Bar = 2,
/// }
///
/// implement_permission!(
/// /// MyPerm documentation.
/// #[derive(Clone, Copy, Debug, PartialEq)]
/// MyPermission as MyPerm with default (None = 0, none)
/// and test namespace my_perm_tests {
/// Foo = 1, selinux name: foo;
/// Bar = 2, selinux name: bar;
/// }
/// );
/// ```
macro_rules! implement_permission {
// This rule provides the public interface of the macro. And starts the preprocessing
// recursion (see below).
($(#[$m:meta])* $t:ty as $name:ident with default ($($def:tt)*)
and test namespace $tn:ident { $($element:tt)* })
=> {
implement_permission!(@replace_use $($m)*, $t, $name, $tn, ($($def)*), [] , $($element)*);
};
// The following three rules recurse through the elements of the form
// `<enum variant> = <integer_literal>, selinux name: <selinux_name>;`
// preprocessing the input.
// The first rule terminates the recursion and passes the processed arguments to the final
// rule that spills out the implementation.
(@replace_use $($m:meta)*, $t:ty, $name:ident, $tn:ident, ($($def:tt)*), [$($out:tt)*], ) => {
implement_permission!(@end $($m)*, $t, $name, $tn, ($($def)*) { $($out)* } );
};
// The second rule is triggered if the selinux name of an element is literally `use`.
// It produces the tuple `<enum variant> = <integer_literal>, use_, use;`
// and appends it to the out list.
(@replace_use $($m:meta)*, $t:ty, $name:ident, $tn:ident, ($($def:tt)*), [$($out:tt)*],
$e_name:ident = $e_val:expr, selinux name: use; $($element:tt)*)
=> {
implement_permission!(@replace_use $($m)*, $t, $name, $tn, ($($def)*),
[$($out)* $e_name = $e_val, use_, use;], $($element)*);
};
// The third rule is the default rule which replaces every input tuple with
// `<enum variant> = <integer_literal>, <selinux_name>, <selinux_name>;`
// and appends the result to the out list.
(@replace_use $($m:meta)*, $t:ty, $name:ident, $tn:ident, ($($def:tt)*), [$($out:tt)*],
$e_name:ident = $e_val:expr, selinux name: $e_str:ident; $($element:tt)*)
=> {
implement_permission!(@replace_use $($m)*, $t, $name, $tn, ($($def)*),
[$($out)* $e_name = $e_val, $e_str, $e_str;], $($element)*);
};
(@end $($m:meta)*, $t:ty, $name:ident, $tn:ident,
($def_name:ident = $def:expr, $def_selinux_name:ident) {
$($element_name:ident = $element_val:expr, $element_identifier:ident,
$selinux_name:ident;)*
})
=>
{
$(#[$m])*
pub struct $name($t);
impl From<i32> for $name {
fn from (p: i32) -> Self {
match p {
$def => Self(<$t>::$def_name),
$($element_val => Self(<$t>::$element_name),)*
_ => Self(<$t>::$def_name),
}
}
}
impl Into<$t> for $name {
fn into(self) -> $t {
self.0
}
}
impl $name {
/// Returns a string representation of the permission as required by
/// `selinux::check_access`.
pub fn to_selinux(&self) -> &'static str {
match self {
Self(<$t>::$def_name) => stringify!($def_selinux_name),
$(Self(<$t>::$element_name) => stringify!($selinux_name),)*
}
}
/// Creates an instance representing a permission with the same name.
pub const fn $def_selinux_name() -> Self { Self(<$t>::$def_name) }
$(
/// Creates an instance representing a permission with the same name.
pub const fn $element_identifier() -> Self { Self(<$t>::$element_name) }
)*
}
#[cfg(test)]
mod $tn {
use super::*;
#[test]
fn $def_selinux_name() {
assert_eq!($name::$def_selinux_name(), (<$t>::$def_name as i32).into());
}
$(
#[test]
fn $element_identifier() {
assert_eq!($name::$element_identifier(), (<$t>::$element_name as i32).into());
}
)*
}
};
}
implement_permission!(
/// KeyPerm provides a convenient abstraction from the SELinux class `keystore2_key`.
/// At the same time it maps `KeyPermissions` from the Keystore 2.0 AIDL Grant interface to
/// the SELinux permissions. With the implement_permission macro, we conveniently
/// provide mappings between the wire type bit field values, the rust enum and the SELinux
/// string representation.
///
/// ## Example
///
/// In this access check `KeyPerm::get_info().to_selinux()` would return the SELinux representation
/// "info".
/// ```
/// selinux::check_access(source_context, target_context, "keystore2_key",
/// KeyPerm::get_info().to_selinux());
/// ```
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
aidl::KeyPermission as KeyPerm with default (None = 0, none)
and test namespace key_perm_tests {
Delete = 1, selinux name: delete;
GenUniqueId = 2, selinux name: gen_unique_id;
GetInfo = 4, selinux name: get_info;
Grant = 8, selinux name: grant;
List = 0x10, selinux name: list;
ManageBlob = 0x20, selinux name: manage_blob;
Rebind = 0x40, selinux name: rebind;
ReqForcedOp = 0x80, selinux name: req_forced_op;
Update = 0x100, selinux name: update;
Use = 0x200, selinux name: use;
UseDevId = 0x400, selinux name: use_dev_id;
}
);
/// KeystorePermission defines values for the SELinux `keystore2` security class.
/// Countrary to `KeyPermission`, this enum is not generated by AIDL and need not be
/// wrapped by newtype pattern. But we conveniently use the implement_permission macro
/// to provide the same feature that we did for `KeyPermission` to this set of permissions.
#[repr(i32)]
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub enum KeystorePermission {
/// `None` is not a permission that can ever be granted. It is not known to the SEPolicy.
None = 0,
/// Checked when a new auth token is installed.
AddAuth = 1,
/// Checked when an app is uninstalled or wiped.
ClearNs = 2,
/// Checked when the locked state of Keystore 2.0 is queried.
GetState = 4,
/// Checked when Keystore 2.0 gets locked.
Lock = 8,
/// Checked when Keystore 2.0 shall be reset.
Reset = 0x10,
/// Checked when Keystore 2.0 shall be unlocked.
Unlock = 0x20,
}
implement_permission!(
/// KeystorePerm provides a convenient abstraction from the SELinux class `keystore2`.
/// Using the implement_permission macro we get the same features as `KeyPerm`.
#[derive(Clone, Copy, Debug, PartialEq)]
KeystorePermission as KeystorePerm with default (None = 0, none)
and test namespace keystore_perm_tests {
AddAuth = 1, selinux name: add_auth;
ClearNs = 2, selinux name: clear_ns;
GetState = 4, selinux name: get_state;
Lock = 8, selinux name: lock;
Reset = 0x10, selinux name: reset;
Unlock = 0x20, selinux name: unlock;
}
);
/// Represents a set of `KeyPerm` permissions.
/// `IntoIterator` is implemented for this struct allowing the iteration through all the
/// permissions in the set.
/// It also implements a function `includes(self, other)` that checks if the permissions
/// in `other` are included in `self`.
///
/// KeyPermSet can be created with the macro `key_perm_set![]`.
///
/// ## Example
/// ```
/// let perms1 = key_perm_set![KeyPerm::use_(), KeyPerm::manage_blob(), KeyPerm::grant()];
/// let perms2 = key_perm_set![KeyPerm::use_(), KeyPerm::manage_blob()];
///
/// assert!(perms1.includes(perms2))
/// assert!(!perms2.includes(perms1))
///
/// let i = perms1.into_iter();
/// // iteration in ascending order of the permission's numeric representation.
/// assert_eq(Some(KeyPerm::manage_blob()), i.next());
/// assert_eq(Some(KeyPerm::grant()), i.next());
/// assert_eq(Some(KeyPerm::use_()), i.next());
/// assert_eq(None, i.next());
/// ```
#[derive(Copy, Clone)]
pub struct KeyPermSet(i32);
mod perm {
use super::*;
pub struct IntoIter {
vec: KeyPermSet,
pos: u8,
}
impl IntoIter {
pub fn new(v: KeyPermSet) -> Self {
Self { vec: v, pos: 0 }
}
}
impl std::iter::Iterator for IntoIter {
type Item = KeyPerm;
fn next(&mut self) -> Option<Self::Item> {
loop {
if self.pos == 32 {
return None;
}
let p = self.vec.0 & (1 << self.pos);
self.pos += 1;
if p != 0 {
return Some(KeyPerm::from(p));
}
}
}
}
}
impl From<KeyPerm> for KeyPermSet {
fn from(p: KeyPerm) -> Self {
Self(p.0 as i32)
}
}
impl KeyPermSet {
/// Returns true iff this permission set has all of the permissions that are in `other`.
fn includes<T: Into<KeyPermSet>>(&self, other: T) -> bool {
let o: KeyPermSet = other.into();
(self.0 & o.0) == o.0
}
}
/// This macro can be used to create a `KeyPermSet` from a list of `KeyPerm` values.
///
/// ## Example
/// ```
/// let v = key_perm_set![Perm::delete(), Perm::manage_blob()];
/// ```
#[macro_export]
macro_rules! key_perm_set {
() => { KeyPermSet(0) };
($head:expr $(, $tail:expr)* $(,)?) => {
KeyPermSet($head.0 as i32 $(| $tail.0 as i32)*)
};
}
impl IntoIterator for KeyPermSet {
type Item = KeyPerm;
type IntoIter = perm::IntoIter;
fn into_iter(self) -> Self::IntoIter {
Self::IntoIter::new(self)
}
}
/// Uses `selinux::check_access` to check if the given caller context `caller_cxt` may access
/// the given permision `perm` of the `keystore2` security class.
pub fn check_keystore_permission(
caller_ctx: &selinux::Context,
perm: KeystorePerm,
) -> anyhow::Result<()> {
let target_context = getcon().context("check_keystore_permission: getcon failed.")?;
selinux::check_access(caller_ctx, &target_context, "keystore2", perm.to_selinux())
}
/// Uses `selinux::check_access` to check if the given caller context `caller_cxt` has
/// all the permissions indicated in `access_vec` for the target domain indicated by the key
/// descriptor `key` in the security class `keystore2_key`.
///
/// Also checks if the caller has the grant permission for the given target domain.
///
/// Attempts to grant the grant permission are always denied.
///
/// The only viable target domains are
/// * `Domain::App` in which case u:r:keystore:s0 is used as target context and
/// * `Domain::SELinux` in which case the `key.namespace_` parameter is looked up in
/// SELinux keystore key backend, and the result is used
/// as target context.
pub fn check_grant_permission(
caller_ctx: &selinux::Context,
access_vec: KeyPermSet,
key: &aidl::KeyDescriptor,
) -> anyhow::Result<()> {
use aidl::Domain;
let target_context = match key.domain {
Domain::App => getcon().context("check_grant_permission: getcon failed.")?,
Domain::SELinux => lookup_keystore2_key_context(key.namespace_)
.context("check_grant_permission: Domain::SELinux: Failed to lookup namespace.")?,
_ => return Err(KsError::sys()).context(format!("Cannot grant {:?}.", key.domain)),
};
selinux::check_access(caller_ctx, &target_context, "keystore2_key", "grant")
.context("Grant permission is required when granting.")?;
if access_vec.includes(KeyPerm::grant()) {
return Err(selinux::Error::perm()).context("Grant permission cannot be granted.");
}
for p in access_vec.into_iter() {
selinux::check_access(caller_ctx, &target_context, "keystore2_key", p.to_selinux())
.context(concat!(
"check_grant_permission: check_access failed. ",
"The caller may have tried to grant a permission that they don't possess."
))?
}
Ok(())
}
/// Uses `selinux::check_access` to check if the given caller context `caller_cxt`
/// has the permissions indicated by `perm` for the target domain indicated by the key
/// descriptor `key` in the security class `keystore2_key`.
///
/// The behavior differs slightly depending on the selected target domain:
/// * `Domain::App` u:r:keystore:s0 is used as target context.
/// * `Domain::SELinux` `key.namespace_` parameter is looked up in the SELinux keystore key
/// backend, and the result is used as target context.
/// * `Domain::Blob` Same as SELinux but the "manage_blob" permission is always checked additionally
/// to the one supplied in `perm`.
/// * `Domain::Grant` Does not use selinux::check_access. Instead the `access_vector`
/// parameter is queried for permission, which must be supplied in this case.
///
/// ## Return values.
/// * Ok(()) If the requested permissions were granted.
/// * Err(selinux::Error::perm()) If the requested permissions were denied.
/// * Err(KsError::sys()) This error is produced if `Domain::Grant` is selected but no `access_vec`
/// was supplied. It is also produced if `Domain::KeyId` was selected, and
/// on various unexpected backend failures.
pub fn check_key_permission(
caller_ctx: &selinux::Context,
perm: KeyPerm,
key: &aidl::KeyDescriptor,
access_vector: &Option<KeyPermSet>,
) -> anyhow::Result<()> {
use aidl::Domain;
let target_context = match key.domain {
// apps get the default keystore context
Domain::App => getcon().context("check_key_permission: getcon failed.")?,
Domain::SELinux => lookup_keystore2_key_context(key.namespace_)
.context("check_key_permission: Domain::SELinux: Failed to lookup namespace.")?,
Domain::Grant => {
match access_vector {
Some(pv) => {
if pv.includes(perm) {
return Ok(());
} else {
return Err(selinux::Error::perm())
.context(format!("\"{}\" not granted", perm.to_selinux()));
}
}
None => {
// If DOMAIN_GRANT was selected an access vector must be supplied.
return Err(KsError::sys()).context(
"Cannot check permission for Domain::Grant without access vector.",
);
}
}
}
Domain::KeyId => {
// We should never be called with `Domain::KeyId. The database
// lookup should have converted this into one of `Domain::App`
// or `Domain::SELinux`.
return Err(KsError::sys()).context("Cannot check permission for Domain::KeyId.");
}
Domain::Blob => {
let tctx = lookup_keystore2_key_context(key.namespace_)
.context("Domain::Blob: Failed to lookup namespace.")?;
// If DOMAIN_KEY_BLOB was specified, we check for the "manage_blob"
// permission in addition to the requested permission.
selinux::check_access(
caller_ctx,
&tctx,
"keystore2_key",
KeyPerm::manage_blob().to_selinux(),
)?;
tctx
}
};
selinux::check_access(caller_ctx, &target_context, "keystore2_key", perm.to_selinux())
}
#[cfg(test)]
mod tests {
use super::*;
use anyhow::anyhow;
use anyhow::Result;
use keystore2_selinux::*;
use keystore_aidl_generated as aidl;
const ALL_PERMS: KeyPermSet = key_perm_set![
KeyPerm::manage_blob(),
KeyPerm::delete(),
KeyPerm::use_dev_id(),
KeyPerm::req_forced_op(),
KeyPerm::gen_unique_id(),
KeyPerm::grant(),
KeyPerm::get_info(),
KeyPerm::list(),
KeyPerm::rebind(),
KeyPerm::update(),
KeyPerm::use_(),
];
const NOT_GRANT_PERMS: KeyPermSet = key_perm_set![
KeyPerm::manage_blob(),
KeyPerm::delete(),
KeyPerm::use_dev_id(),
KeyPerm::req_forced_op(),
KeyPerm::gen_unique_id(),
// No KeyPerm::grant()
KeyPerm::get_info(),
KeyPerm::list(),
KeyPerm::rebind(),
KeyPerm::update(),
KeyPerm::use_(),
];
const UNPRIV_PERMS: KeyPermSet = key_perm_set![
KeyPerm::delete(),
KeyPerm::get_info(),
KeyPerm::list(),
KeyPerm::rebind(),
KeyPerm::update(),
KeyPerm::use_(),
];
/// The su_key namespace as defined in su.te and keystore_key_contexts of the
/// SePolicy (system/sepolicy).
const SU_KEY_NAMESPACE: i32 = 0;
/// The shell_key namespace as defined in shell.te and keystore_key_contexts of the
/// SePolicy (system/sepolicy).
const SHELL_KEY_NAMESPACE: i32 = 1;
pub fn test_getcon() -> Result<Context> {
Context::new("u:object_r:keystore:s0")
}
// This macro evaluates the given expression and checks that
// a) evaluated to Result::Err() and that
// b) the wrapped error is selinux::Error::perm() (permission denied).
// We use a macro here because a function would mask which invocation caused the failure.
//
// TODO b/164121720 Replace this macro with a function when `track_caller` is available.
macro_rules! assert_perm_failed {
($test_function:expr) => {
let result = $test_function;
assert!(result.is_err(), "Permission check should have failed.");
assert_eq!(
Some(&selinux::Error::perm()),
result.err().unwrap().root_cause().downcast_ref::<selinux::Error>()
);
};
}
fn check_context() -> Result<(selinux::Context, i32, bool)> {
// Calling the non mocked selinux::getcon here intended.
let context = selinux::getcon()?;
match context.to_str().unwrap() {
"u:r:su:s0" => Ok((context, SU_KEY_NAMESPACE, true)),
"u:r:shell:s0" => Ok((context, SHELL_KEY_NAMESPACE, false)),
c => Err(anyhow!(format!(
"This test must be run as \"su\" or \"shell\". Current context: \"{}\"",
c
))),
}
}
#[test]
fn check_keystore_permission_test() -> Result<()> {
let system_server_ctx = Context::new("u:r:system_server:s0")?;
assert!(check_keystore_permission(&system_server_ctx, KeystorePerm::add_auth()).is_ok());
assert!(check_keystore_permission(&system_server_ctx, KeystorePerm::clear_ns()).is_ok());
assert!(check_keystore_permission(&system_server_ctx, KeystorePerm::get_state()).is_ok());
assert!(check_keystore_permission(&system_server_ctx, KeystorePerm::lock()).is_ok());
assert!(check_keystore_permission(&system_server_ctx, KeystorePerm::reset()).is_ok());
assert!(check_keystore_permission(&system_server_ctx, KeystorePerm::unlock()).is_ok());
let shell_ctx = Context::new("u:r:shell:s0")?;
assert_perm_failed!(check_keystore_permission(&shell_ctx, KeystorePerm::add_auth()));
assert_perm_failed!(check_keystore_permission(&shell_ctx, KeystorePerm::clear_ns()));
assert_perm_failed!(check_keystore_permission(&shell_ctx, KeystorePerm::get_state()));
assert_perm_failed!(check_keystore_permission(&shell_ctx, KeystorePerm::lock()));
assert_perm_failed!(check_keystore_permission(&shell_ctx, KeystorePerm::reset()));
assert_perm_failed!(check_keystore_permission(&shell_ctx, KeystorePerm::unlock()));
Ok(())
}
#[test]
fn check_grant_permission_app() -> Result<()> {
let system_server_ctx = Context::new("u:r:system_server:s0")?;
let shell_ctx = Context::new("u:r:shell:s0")?;
use aidl::Domain;
let key =
aidl::KeyDescriptor { domain: Domain::App, namespace_: 0, alias: None, blob: None };
assert!(check_grant_permission(&system_server_ctx, NOT_GRANT_PERMS, &key).is_ok());
// attempts to grant the grant permission must always fail even when privileged.
assert_perm_failed!(check_grant_permission(
&system_server_ctx,
KeyPerm::grant().into(),
&key
));
// unprivileged grant attempts always fail. shell does not have the grant permission.
assert_perm_failed!(check_grant_permission(&shell_ctx, UNPRIV_PERMS, &key));
Ok(())
}
#[test]
fn check_grant_permission_selinux() -> Result<()> {
use aidl::Domain;
let (sctx, namespace, is_su) = check_context()?;
let key = aidl::KeyDescriptor {
domain: Domain::SELinux,
namespace_: namespace as i64,
alias: None,
blob: None,
};
if is_su {
assert!(check_grant_permission(&sctx, NOT_GRANT_PERMS, &key).is_ok());
// attempts to grant the grant permission must always fail even when privileged.
assert_perm_failed!(check_grant_permission(&sctx, KeyPerm::grant().into(), &key));
} else {
// unprivileged grant attempts always fail. shell does not have the grant permission.
assert_perm_failed!(check_grant_permission(&sctx, UNPRIV_PERMS, &key));
}
Ok(())
}
#[test]
fn check_key_permission_domain_grant() -> Result<()> {
use aidl::Domain;
let key =
aidl::KeyDescriptor { domain: Domain::Grant, namespace_: 0, alias: None, blob: None };
assert_perm_failed!(check_key_permission(
&selinux::Context::new("ignored").unwrap(),
KeyPerm::grant(),
&key,
&Some(UNPRIV_PERMS)
));
check_key_permission(
&selinux::Context::new("ignored").unwrap(),
KeyPerm::use_(),
&key,
&Some(ALL_PERMS),
)
}
#[test]
fn check_key_permission_domain_app() -> Result<()> {
let system_server_ctx = Context::new("u:r:system_server:s0")?;
let shell_ctx = Context::new("u:r:shell:s0")?;
let gmscore_app = Context::new("u:r:gmscore_app:s0")?;
use aidl::Domain;
let key =
aidl::KeyDescriptor { domain: Domain::App, namespace_: 0, alias: None, blob: None };
assert!(check_key_permission(&system_server_ctx, KeyPerm::use_(), &key, &None).is_ok());
assert!(check_key_permission(&system_server_ctx, KeyPerm::delete(), &key, &None).is_ok());
assert!(check_key_permission(&system_server_ctx, KeyPerm::get_info(), &key, &None).is_ok());
assert!(check_key_permission(&system_server_ctx, KeyPerm::rebind(), &key, &None).is_ok());
assert!(check_key_permission(&system_server_ctx, KeyPerm::list(), &key, &None).is_ok());
assert!(check_key_permission(&system_server_ctx, KeyPerm::update(), &key, &None).is_ok());
assert!(check_key_permission(&system_server_ctx, KeyPerm::grant(), &key, &None).is_ok());
assert!(
check_key_permission(&system_server_ctx, KeyPerm::use_dev_id(), &key, &None).is_ok()
);
assert!(check_key_permission(&gmscore_app, KeyPerm::gen_unique_id(), &key, &None).is_ok());
assert!(check_key_permission(&shell_ctx, KeyPerm::use_(), &key, &None).is_ok());
assert!(check_key_permission(&shell_ctx, KeyPerm::delete(), &key, &None).is_ok());
assert!(check_key_permission(&shell_ctx, KeyPerm::get_info(), &key, &None).is_ok());
assert!(check_key_permission(&shell_ctx, KeyPerm::rebind(), &key, &None).is_ok());
assert!(check_key_permission(&shell_ctx, KeyPerm::list(), &key, &None).is_ok());
assert!(check_key_permission(&shell_ctx, KeyPerm::update(), &key, &None).is_ok());
assert_perm_failed!(check_key_permission(&shell_ctx, KeyPerm::grant(), &key, &None));
assert_perm_failed!(check_key_permission(
&shell_ctx,
KeyPerm::req_forced_op(),
&key,
&None
));
assert_perm_failed!(check_key_permission(&shell_ctx, KeyPerm::manage_blob(), &key, &None));
assert_perm_failed!(check_key_permission(&shell_ctx, KeyPerm::use_dev_id(), &key, &None));
assert_perm_failed!(check_key_permission(
&shell_ctx,
KeyPerm::gen_unique_id(),
&key,
&None
));
Ok(())
}
#[test]
fn check_key_permission_domain_selinux() -> Result<()> {
use aidl::Domain;
let (sctx, namespace, is_su) = check_context()?;
let key = aidl::KeyDescriptor {
domain: Domain::SELinux,
namespace_: namespace as i64,
alias: None,
blob: None,
};
if is_su {
assert!(check_key_permission(&sctx, KeyPerm::use_(), &key, &None).is_ok());
assert!(check_key_permission(&sctx, KeyPerm::delete(), &key, &None).is_ok());
assert!(check_key_permission(&sctx, KeyPerm::get_info(), &key, &None).is_ok());
assert!(check_key_permission(&sctx, KeyPerm::rebind(), &key, &None).is_ok());
assert!(check_key_permission(&sctx, KeyPerm::list(), &key, &None).is_ok());
assert!(check_key_permission(&sctx, KeyPerm::update(), &key, &None).is_ok());
assert!(check_key_permission(&sctx, KeyPerm::grant(), &key, &None).is_ok());
assert!(check_key_permission(&sctx, KeyPerm::manage_blob(), &key, &None).is_ok());
assert!(check_key_permission(&sctx, KeyPerm::use_dev_id(), &key, &None).is_ok());
assert!(check_key_permission(&sctx, KeyPerm::gen_unique_id(), &key, &None).is_ok());
assert!(check_key_permission(&sctx, KeyPerm::req_forced_op(), &key, &None).is_ok());
} else {
assert!(check_key_permission(&sctx, KeyPerm::use_(), &key, &None).is_ok());
assert!(check_key_permission(&sctx, KeyPerm::delete(), &key, &None).is_ok());
assert!(check_key_permission(&sctx, KeyPerm::get_info(), &key, &None).is_ok());
assert!(check_key_permission(&sctx, KeyPerm::rebind(), &key, &None).is_ok());
assert!(check_key_permission(&sctx, KeyPerm::list(), &key, &None).is_ok());
assert!(check_key_permission(&sctx, KeyPerm::update(), &key, &None).is_ok());
assert_perm_failed!(check_key_permission(&sctx, KeyPerm::grant(), &key, &None));
assert_perm_failed!(check_key_permission(&sctx, KeyPerm::req_forced_op(), &key, &None));
assert_perm_failed!(check_key_permission(&sctx, KeyPerm::manage_blob(), &key, &None));
assert_perm_failed!(check_key_permission(&sctx, KeyPerm::use_dev_id(), &key, &None));
assert_perm_failed!(check_key_permission(&sctx, KeyPerm::gen_unique_id(), &key, &None));
}
Ok(())
}
#[test]
fn check_key_permission_domain_blob() -> Result<()> {
use aidl::Domain;
let (sctx, namespace, is_su) = check_context()?;
let key = aidl::KeyDescriptor {
domain: Domain::Blob,
namespace_: namespace as i64,
alias: None,
blob: None,
};
if is_su {
check_key_permission(&sctx, KeyPerm::use_(), &key, &None)
} else {
assert_perm_failed!(check_key_permission(&sctx, KeyPerm::use_(), &key, &None));
Ok(())
}
}
#[test]
fn check_key_permission_domain_key_id() -> Result<()> {
use aidl::Domain;
let key =
aidl::KeyDescriptor { domain: Domain::KeyId, namespace_: 0, alias: None, blob: None };
assert_eq!(
Some(&KsError::sys()),
check_key_permission(
&selinux::Context::new("ignored").unwrap(),
KeyPerm::use_(),
&key,
&None
)
.err()
.unwrap()
.root_cause()
.downcast_ref::<KsError>()
);
Ok(())
}
#[test]
fn key_perm_set_all_test() {
let v = key_perm_set![
KeyPerm::manage_blob(),
KeyPerm::delete(),
KeyPerm::use_dev_id(),
KeyPerm::req_forced_op(),
KeyPerm::gen_unique_id(),
KeyPerm::grant(),
KeyPerm::get_info(),
KeyPerm::list(),
KeyPerm::rebind(),
KeyPerm::update(),
KeyPerm::use_() // Test if the macro accepts missing comma at the end of the list.
];
let mut i = v.into_iter();
assert_eq!(i.next().unwrap().to_selinux(), "delete");
assert_eq!(i.next().unwrap().to_selinux(), "gen_unique_id");
assert_eq!(i.next().unwrap().to_selinux(), "get_info");
assert_eq!(i.next().unwrap().to_selinux(), "grant");
assert_eq!(i.next().unwrap().to_selinux(), "list");
assert_eq!(i.next().unwrap().to_selinux(), "manage_blob");
assert_eq!(i.next().unwrap().to_selinux(), "rebind");
assert_eq!(i.next().unwrap().to_selinux(), "req_forced_op");
assert_eq!(i.next().unwrap().to_selinux(), "update");
assert_eq!(i.next().unwrap().to_selinux(), "use");
assert_eq!(i.next().unwrap().to_selinux(), "use_dev_id");
assert_eq!(None, i.next());
}
#[test]
fn key_perm_set_sparse_test() {
let v = key_perm_set![
KeyPerm::manage_blob(),
KeyPerm::req_forced_op(),
KeyPerm::gen_unique_id(),
KeyPerm::list(),
KeyPerm::update(),
KeyPerm::use_(), // Test if macro accepts the comma at the end of the list.
];
let mut i = v.into_iter();
assert_eq!(i.next().unwrap().to_selinux(), "gen_unique_id");
assert_eq!(i.next().unwrap().to_selinux(), "list");
assert_eq!(i.next().unwrap().to_selinux(), "manage_blob");
assert_eq!(i.next().unwrap().to_selinux(), "req_forced_op");
assert_eq!(i.next().unwrap().to_selinux(), "update");
assert_eq!(i.next().unwrap().to_selinux(), "use");
assert_eq!(None, i.next());
}
#[test]
fn key_perm_set_empty_test() {
let v = key_perm_set![];
let mut i = v.into_iter();
assert_eq!(None, i.next());
}
#[test]
fn key_perm_set_include_subset_test() {
let v1 = key_perm_set![
KeyPerm::manage_blob(),
KeyPerm::delete(),
KeyPerm::use_dev_id(),
KeyPerm::req_forced_op(),
KeyPerm::gen_unique_id(),
KeyPerm::grant(),
KeyPerm::get_info(),
KeyPerm::list(),
KeyPerm::rebind(),
KeyPerm::update(),
KeyPerm::use_(),
];
let v2 = key_perm_set![
KeyPerm::manage_blob(),
KeyPerm::delete(),
KeyPerm::list(),
KeyPerm::rebind(),
KeyPerm::update(),
KeyPerm::use_(),
];
assert!(v1.includes(v2));
assert!(!v2.includes(v1));
}
#[test]
fn key_perm_set_include_equal_test() {
let v1 = key_perm_set![
KeyPerm::manage_blob(),
KeyPerm::delete(),
KeyPerm::list(),
KeyPerm::rebind(),
KeyPerm::update(),
KeyPerm::use_(),
];
let v2 = key_perm_set![
KeyPerm::manage_blob(),
KeyPerm::delete(),
KeyPerm::list(),
KeyPerm::rebind(),
KeyPerm::update(),
KeyPerm::use_(),
];
assert!(v1.includes(v2));
assert!(v2.includes(v1));
}
#[test]
fn key_perm_set_include_overlap_test() {
let v1 = key_perm_set![
KeyPerm::manage_blob(),
KeyPerm::delete(),
KeyPerm::grant(), // only in v1
KeyPerm::list(),
KeyPerm::rebind(),
KeyPerm::update(),
KeyPerm::use_(),
];
let v2 = key_perm_set![
KeyPerm::manage_blob(),
KeyPerm::delete(),
KeyPerm::req_forced_op(), // only in v2
KeyPerm::list(),
KeyPerm::rebind(),
KeyPerm::update(),
KeyPerm::use_(),
];
assert!(!v1.includes(v2));
assert!(!v2.includes(v1));
}
#[test]
fn key_perm_set_include_no_overlap_test() {
let v1 = key_perm_set![KeyPerm::manage_blob(), KeyPerm::delete(), KeyPerm::grant(),];
let v2 = key_perm_set![
KeyPerm::req_forced_op(),
KeyPerm::list(),
KeyPerm::rebind(),
KeyPerm::update(),
KeyPerm::use_(),
];
assert!(!v1.includes(v2));
assert!(!v2.includes(v1));
}
}