platform_system_security/keystore/legacy_keymaster_device_wrapper.cpp
Shawn Willden 613b2d5663 Update to support keymaster's configurable version.
Test: Keystore CTS tests
Bug: b/173577355
Change-Id: Iccb0b197bd939ad867ae3b02fcc69630809f1f21
2020-11-23 22:25:57 -07:00

547 lines
20 KiB
C++

/*
**
** Copyright 2016, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#define LOG_TAG "android.hardware.keymaster@3.0-impl"
#include "legacy_keymaster_device_wrapper.h"
#include <log/log.h>
#include <hardware/keymaster2.h>
#include <hardware/keymaster_defs.h>
#include <keymaster/keymaster_configuration.h>
#include <keymaster/soft_keymaster_device.h>
namespace android {
namespace keystore {
using ::keymaster::SoftKeymasterDevice;
LegacyKeymasterDeviceWrapper::LegacyKeymasterDeviceWrapper(keymaster2_device_t* dev)
: keymaster_device_(dev) {}
LegacyKeymasterDeviceWrapper::~LegacyKeymasterDeviceWrapper() {
if (keymaster_device_) keymaster_device_->common.close(&keymaster_device_->common);
}
static inline keymaster_tag_type_t typeFromTag(const keymaster_tag_t tag) {
return keymaster_tag_get_type(tag);
}
/**
* legacy_enum_conversion converts enums from hidl to keymaster and back. Currently, this is just a
* cast to make the compiler happy. One of two thigs should happen though:
* TODO The keymaster enums should become aliases for the hidl generated enums so that we have a
* single point of truth. Then this cast function can go away.
*/
inline static keymaster_tag_t legacy_enum_conversion(const Tag value) {
return keymaster_tag_t(value);
}
inline static Tag legacy_enum_conversion(const keymaster_tag_t value) {
return Tag(value);
}
inline static keymaster_purpose_t legacy_enum_conversion(const KeyPurpose value) {
return keymaster_purpose_t(value);
}
inline static keymaster_key_format_t legacy_enum_conversion(const KeyFormat value) {
return keymaster_key_format_t(value);
}
inline static ErrorCode legacy_enum_conversion(const keymaster_error_t value) {
return ErrorCode(value);
}
class KmParamSet : public keymaster_key_param_set_t {
public:
explicit KmParamSet(const hidl_vec<KeyParameter>& keyParams) {
params = new keymaster_key_param_t[keyParams.size()];
length = keyParams.size();
for (size_t i = 0; i < keyParams.size(); ++i) {
auto tag = legacy_enum_conversion(keyParams[i].tag);
switch (typeFromTag(tag)) {
case KM_ENUM:
case KM_ENUM_REP:
params[i] = keymaster_param_enum(tag, keyParams[i].f.integer);
break;
case KM_UINT:
case KM_UINT_REP:
params[i] = keymaster_param_int(tag, keyParams[i].f.integer);
break;
case KM_ULONG:
case KM_ULONG_REP:
params[i] = keymaster_param_long(tag, keyParams[i].f.longInteger);
break;
case KM_DATE:
params[i] = keymaster_param_date(tag, keyParams[i].f.dateTime);
break;
case KM_BOOL:
if (keyParams[i].f.boolValue)
params[i] = keymaster_param_bool(tag);
else
params[i].tag = KM_TAG_INVALID;
break;
case KM_BIGNUM:
case KM_BYTES:
params[i] =
keymaster_param_blob(tag, &keyParams[i].blob[0], keyParams[i].blob.size());
break;
case KM_INVALID:
default:
params[i].tag = KM_TAG_INVALID;
/* just skip */
break;
}
}
}
KmParamSet(KmParamSet&& other) noexcept
: keymaster_key_param_set_t{other.params, other.length} {
other.length = 0;
other.params = nullptr;
}
KmParamSet(const KmParamSet&) = delete;
~KmParamSet() { delete[] params; }
};
inline static KmParamSet hidlParams2KmParamSet(const hidl_vec<KeyParameter>& params) {
return KmParamSet(params);
}
inline static keymaster_blob_t hidlVec2KmBlob(const hidl_vec<uint8_t>& blob) {
/* hidl unmarshals funny pointers if the the blob is empty */
if (blob.size()) return {&blob[0], blob.size()};
return {};
}
inline static keymaster_key_blob_t hidlVec2KmKeyBlob(const hidl_vec<uint8_t>& blob) {
/* hidl unmarshals funny pointers if the the blob is empty */
if (blob.size()) return {&blob[0], blob.size()};
return {};
}
inline static hidl_vec<uint8_t> kmBlob2hidlVec(const keymaster_key_blob_t& blob) {
if (blob.key_material == nullptr || blob.key_material_size == 0) {
return {};
} else {
return hidl_vec<uint8_t>(blob.key_material, blob.key_material + blob.key_material_size);
}
}
inline static hidl_vec<uint8_t> kmBlob2hidlVec(const keymaster_blob_t& blob) {
if (blob.data == nullptr || blob.data_length == 0) {
return {};
} else {
return hidl_vec<uint8_t>(blob.data, blob.data + blob.data_length);
}
}
inline static hidl_vec<hidl_vec<uint8_t>>
kmCertChain2Hidl(const keymaster_cert_chain_t* cert_chain) {
hidl_vec<hidl_vec<uint8_t>> result;
if (!cert_chain || cert_chain->entry_count == 0 || !cert_chain->entries) return result;
result.resize(cert_chain->entry_count);
for (size_t i = 0; i < cert_chain->entry_count; ++i) {
auto& entry = cert_chain->entries[i];
result[i] = kmBlob2hidlVec(entry);
}
return result;
}
static inline hidl_vec<KeyParameter> kmParamSet2Hidl(const keymaster_key_param_set_t& set) {
hidl_vec<KeyParameter> result;
if (set.length == 0 || set.params == nullptr) return result;
result.resize(set.length);
keymaster_key_param_t* params = set.params;
for (size_t i = 0; i < set.length; ++i) {
auto tag = params[i].tag;
result[i].tag = legacy_enum_conversion(tag);
switch (typeFromTag(tag)) {
case KM_ENUM:
case KM_ENUM_REP:
result[i].f.integer = params[i].enumerated;
break;
case KM_UINT:
case KM_UINT_REP:
result[i].f.integer = params[i].integer;
break;
case KM_ULONG:
case KM_ULONG_REP:
result[i].f.longInteger = params[i].long_integer;
break;
case KM_DATE:
result[i].f.dateTime = params[i].date_time;
break;
case KM_BOOL:
result[i].f.boolValue = params[i].boolean;
break;
case KM_BIGNUM:
case KM_BYTES:
result[i].blob = kmBlob2hidlVec(params[i].blob);
break;
case KM_INVALID:
default:
params[i].tag = KM_TAG_INVALID;
/* just skip */
break;
}
}
return result;
}
// Methods from ::android::hardware::keymaster::V3_0::IKeymasterDevice follow.
Return<void> LegacyKeymasterDeviceWrapper::getHardwareFeatures(getHardwareFeatures_cb _hidl_cb) {
_hidl_cb(false, false, false, false, false, "Fallback Device", "Google Android Security");
return Void();
}
Return<ErrorCode> LegacyKeymasterDeviceWrapper::addRngEntropy(const hidl_vec<uint8_t>& data) {
return legacy_enum_conversion(
keymaster_device_->add_rng_entropy(keymaster_device_, &data[0], data.size()));
}
Return<void> LegacyKeymasterDeviceWrapper::generateKey(const hidl_vec<KeyParameter>& keyParams,
generateKey_cb _hidl_cb) {
// result variables for the wire
KeyCharacteristics resultCharacteristics;
hidl_vec<uint8_t> resultKeyBlob;
// result variables the backend understands
keymaster_key_blob_t key_blob{nullptr, 0};
keymaster_key_characteristics_t key_characteristics{{nullptr, 0}, {nullptr, 0}};
// convert the parameter set to something our backend understands
auto kmParams = hidlParams2KmParamSet(keyParams);
auto rc = keymaster_device_->generate_key(keymaster_device_, &kmParams, &key_blob,
&key_characteristics);
if (rc == KM_ERROR_OK) {
// on success convert the result to wire format
resultKeyBlob = kmBlob2hidlVec(key_blob);
resultCharacteristics.softwareEnforced = kmParamSet2Hidl(key_characteristics.sw_enforced);
resultCharacteristics.teeEnforced = kmParamSet2Hidl(key_characteristics.hw_enforced);
}
// send results off to the client
_hidl_cb(legacy_enum_conversion(rc), resultKeyBlob, resultCharacteristics);
// free buffers that we are responsible for
if (key_blob.key_material) free(const_cast<uint8_t*>(key_blob.key_material));
keymaster_free_characteristics(&key_characteristics);
return Void();
}
Return<void> LegacyKeymasterDeviceWrapper::getKeyCharacteristics(
const hidl_vec<uint8_t>& keyBlob, const hidl_vec<uint8_t>& clientId,
const hidl_vec<uint8_t>& appData, getKeyCharacteristics_cb _hidl_cb) {
// result variables for the wire
KeyCharacteristics resultCharacteristics;
// result variables the backend understands
keymaster_key_characteristics_t key_characteristics{{nullptr, 0}, {nullptr, 0}};
auto kmKeyBlob = hidlVec2KmKeyBlob(keyBlob);
auto kmClientId = hidlVec2KmBlob(clientId);
auto kmAppData = hidlVec2KmBlob(appData);
auto rc = keymaster_device_->get_key_characteristics(
keymaster_device_, keyBlob.size() ? &kmKeyBlob : nullptr,
clientId.size() ? &kmClientId : nullptr, appData.size() ? &kmAppData : nullptr,
&key_characteristics);
if (rc == KM_ERROR_OK) {
resultCharacteristics.softwareEnforced = kmParamSet2Hidl(key_characteristics.sw_enforced);
resultCharacteristics.teeEnforced = kmParamSet2Hidl(key_characteristics.hw_enforced);
}
_hidl_cb(legacy_enum_conversion(rc), resultCharacteristics);
keymaster_free_characteristics(&key_characteristics);
return Void();
}
Return<void> LegacyKeymasterDeviceWrapper::importKey(const hidl_vec<KeyParameter>& params,
KeyFormat keyFormat,
const hidl_vec<uint8_t>& keyData,
importKey_cb _hidl_cb) {
// result variables for the wire
KeyCharacteristics resultCharacteristics;
hidl_vec<uint8_t> resultKeyBlob;
// result variables the backend understands
keymaster_key_blob_t key_blob{nullptr, 0};
keymaster_key_characteristics_t key_characteristics{{nullptr, 0}, {nullptr, 0}};
auto kmParams = hidlParams2KmParamSet(params);
auto kmKeyData = hidlVec2KmBlob(keyData);
auto rc = keymaster_device_->import_key(keymaster_device_, &kmParams,
legacy_enum_conversion(keyFormat), &kmKeyData,
&key_blob, &key_characteristics);
if (rc == KM_ERROR_OK) {
// on success convert the result to wire format
resultKeyBlob = kmBlob2hidlVec(key_blob);
resultCharacteristics.softwareEnforced = kmParamSet2Hidl(key_characteristics.sw_enforced);
resultCharacteristics.teeEnforced = kmParamSet2Hidl(key_characteristics.hw_enforced);
}
_hidl_cb(legacy_enum_conversion(rc), resultKeyBlob, resultCharacteristics);
// free buffers that we are responsible for
if (key_blob.key_material) free(const_cast<uint8_t*>(key_blob.key_material));
keymaster_free_characteristics(&key_characteristics);
return Void();
}
Return<void> LegacyKeymasterDeviceWrapper::exportKey(KeyFormat exportFormat,
const hidl_vec<uint8_t>& keyBlob,
const hidl_vec<uint8_t>& clientId,
const hidl_vec<uint8_t>& appData,
exportKey_cb _hidl_cb) {
// result variables for the wire
hidl_vec<uint8_t> resultKeyBlob;
// result variables the backend understands
keymaster_blob_t out_blob = {};
auto kmKeyBlob = hidlVec2KmKeyBlob(keyBlob);
auto kmClientId = hidlVec2KmBlob(clientId);
auto kmAppData = hidlVec2KmBlob(appData);
auto rc = keymaster_device_->export_key(keymaster_device_, legacy_enum_conversion(exportFormat),
keyBlob.size() ? &kmKeyBlob : nullptr,
clientId.size() ? &kmClientId : nullptr,
appData.size() ? &kmAppData : nullptr, &out_blob);
if (rc == KM_ERROR_OK) {
// on success convert the result to wire format
// (Can we assume that key_blob is {nullptr, 0} or a valid buffer description?)
resultKeyBlob = kmBlob2hidlVec(out_blob);
}
_hidl_cb(legacy_enum_conversion(rc), resultKeyBlob);
// free buffers that we are responsible for
if (out_blob.data) free(const_cast<uint8_t*>(out_blob.data));
return Void();
}
Return<void> LegacyKeymasterDeviceWrapper::attestKey(const hidl_vec<uint8_t>& keyToAttest,
const hidl_vec<KeyParameter>& attestParams,
attestKey_cb _hidl_cb) {
hidl_vec<hidl_vec<uint8_t>> resultCertChain;
for (size_t i = 0; i < attestParams.size(); ++i) {
switch (attestParams[i].tag) {
case Tag::ATTESTATION_ID_BRAND:
case Tag::ATTESTATION_ID_DEVICE:
case Tag::ATTESTATION_ID_PRODUCT:
case Tag::ATTESTATION_ID_SERIAL:
case Tag::ATTESTATION_ID_IMEI:
case Tag::ATTESTATION_ID_MEID:
case Tag::ATTESTATION_ID_MANUFACTURER:
case Tag::ATTESTATION_ID_MODEL:
// Device id attestation may only be supported if the device is able to permanently
// destroy its knowledge of the ids. This device is unable to do this, so it must
// never perform any device id attestation.
_hidl_cb(ErrorCode::CANNOT_ATTEST_IDS, resultCertChain);
return Void();
default:
break;
}
}
keymaster_cert_chain_t cert_chain = {};
auto kmKeyToAttest = hidlVec2KmKeyBlob(keyToAttest);
auto kmAttestParams = hidlParams2KmParamSet(attestParams);
auto rc = keymaster_device_->attest_key(keymaster_device_, &kmKeyToAttest, &kmAttestParams,
&cert_chain);
if (rc == KM_ERROR_OK) {
resultCertChain = kmCertChain2Hidl(&cert_chain);
}
_hidl_cb(legacy_enum_conversion(rc), resultCertChain);
keymaster_free_cert_chain(&cert_chain);
return Void();
}
Return<void> LegacyKeymasterDeviceWrapper::upgradeKey(const hidl_vec<uint8_t>& keyBlobToUpgrade,
const hidl_vec<KeyParameter>& upgradeParams,
upgradeKey_cb _hidl_cb) {
// result variables for the wire
hidl_vec<uint8_t> resultKeyBlob;
// result variables the backend understands
keymaster_key_blob_t key_blob = {};
auto kmKeyBlobToUpgrade = hidlVec2KmKeyBlob(keyBlobToUpgrade);
auto kmUpgradeParams = hidlParams2KmParamSet(upgradeParams);
auto rc = keymaster_device_->upgrade_key(keymaster_device_, &kmKeyBlobToUpgrade,
&kmUpgradeParams, &key_blob);
if (rc == KM_ERROR_OK) {
// on success convert the result to wire format
resultKeyBlob = kmBlob2hidlVec(key_blob);
}
_hidl_cb(legacy_enum_conversion(rc), resultKeyBlob);
if (key_blob.key_material) free(const_cast<uint8_t*>(key_blob.key_material));
return Void();
}
Return<ErrorCode> LegacyKeymasterDeviceWrapper::deleteKey(const hidl_vec<uint8_t>& keyBlob) {
auto kmKeyBlob = hidlVec2KmKeyBlob(keyBlob);
return legacy_enum_conversion(keymaster_device_->delete_key(keymaster_device_, &kmKeyBlob));
}
Return<ErrorCode> LegacyKeymasterDeviceWrapper::deleteAllKeys() {
return legacy_enum_conversion(keymaster_device_->delete_all_keys(keymaster_device_));
}
Return<ErrorCode> LegacyKeymasterDeviceWrapper::destroyAttestationIds() {
return ErrorCode::UNIMPLEMENTED;
}
Return<void> LegacyKeymasterDeviceWrapper::begin(KeyPurpose purpose, const hidl_vec<uint8_t>& key,
const hidl_vec<KeyParameter>& inParams,
begin_cb _hidl_cb) {
// result variables for the wire
hidl_vec<KeyParameter> resultParams;
uint64_t resultOpHandle = 0;
// result variables the backend understands
keymaster_key_param_set_t out_params{nullptr, 0};
keymaster_operation_handle_t& operation_handle = resultOpHandle;
auto kmKey = hidlVec2KmKeyBlob(key);
auto kmInParams = hidlParams2KmParamSet(inParams);
auto rc = keymaster_device_->begin(keymaster_device_, legacy_enum_conversion(purpose), &kmKey,
&kmInParams, &out_params, &operation_handle);
if (rc == KM_ERROR_OK) resultParams = kmParamSet2Hidl(out_params);
_hidl_cb(legacy_enum_conversion(rc), resultParams, resultOpHandle);
keymaster_free_param_set(&out_params);
return Void();
}
Return<void> LegacyKeymasterDeviceWrapper::update(uint64_t operationHandle,
const hidl_vec<KeyParameter>& inParams,
const hidl_vec<uint8_t>& input,
update_cb _hidl_cb) {
// result variables for the wire
uint32_t resultConsumed = 0;
hidl_vec<KeyParameter> resultParams;
hidl_vec<uint8_t> resultBlob;
// result variables the backend understands
size_t consumed = 0;
keymaster_key_param_set_t out_params = {};
keymaster_blob_t out_blob = {};
auto kmInParams = hidlParams2KmParamSet(inParams);
auto kmInput = hidlVec2KmBlob(input);
auto rc = keymaster_device_->update(keymaster_device_, operationHandle, &kmInParams, &kmInput,
&consumed, &out_params, &out_blob);
if (rc == KM_ERROR_OK) {
resultConsumed = consumed;
resultParams = kmParamSet2Hidl(out_params);
resultBlob = kmBlob2hidlVec(out_blob);
}
_hidl_cb(legacy_enum_conversion(rc), resultConsumed, resultParams, resultBlob);
keymaster_free_param_set(&out_params);
if (out_blob.data) free(const_cast<uint8_t*>(out_blob.data));
return Void();
}
Return<void> LegacyKeymasterDeviceWrapper::finish(uint64_t operationHandle,
const hidl_vec<KeyParameter>& inParams,
const hidl_vec<uint8_t>& input,
const hidl_vec<uint8_t>& signature,
finish_cb _hidl_cb) {
// result variables for the wire
hidl_vec<KeyParameter> resultParams;
hidl_vec<uint8_t> resultBlob;
// result variables the backend understands
keymaster_key_param_set_t out_params = {};
keymaster_blob_t out_blob = {};
auto kmInParams = hidlParams2KmParamSet(inParams);
auto kmInput = hidlVec2KmBlob(input);
auto kmSignature = hidlVec2KmBlob(signature);
auto rc = keymaster_device_->finish(keymaster_device_, operationHandle, &kmInParams, &kmInput,
&kmSignature, &out_params, &out_blob);
if (rc == KM_ERROR_OK) {
resultParams = kmParamSet2Hidl(out_params);
resultBlob = kmBlob2hidlVec(out_blob);
}
_hidl_cb(legacy_enum_conversion(rc), resultParams, resultBlob);
keymaster_free_param_set(&out_params);
if (out_blob.data) free(const_cast<uint8_t*>(out_blob.data));
return Void();
}
Return<ErrorCode> LegacyKeymasterDeviceWrapper::abort(uint64_t operationHandle) {
return legacy_enum_conversion(keymaster_device_->abort(keymaster_device_, operationHandle));
}
sp<IKeymasterDevice> makeSoftwareKeymasterDevice() {
keymaster2_device_t* dev = nullptr;
dev = (new SoftKeymasterDevice(keymaster::KmVersion::KEYMASTER_2))->keymaster2_device();
auto kmrc = ::keymaster::ConfigureDevice(dev);
if (kmrc != KM_ERROR_OK) {
dev->common.close(&dev->common);
return nullptr;
}
return new LegacyKeymasterDeviceWrapper(dev);
}
} // namespace keystore
} // namespace android