d29167516f
Fixes -Wzero-as-null-pointer-constant warning. Test: m Bug: 68236239 Change-Id: I41cd58617d6df6de7942a541fb6dc9519c70bef0 Merged-In: I41cd58617d6df6de7942a541fb6dc9519c70bef0
400 lines
13 KiB
C++
400 lines
13 KiB
C++
/* Copyright 2014 The Android Open Source Project
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
|
|
|
|
#define LOG_TAG "keystore-engine"
|
|
|
|
#include <pthread.h>
|
|
#include <sys/socket.h>
|
|
#include <stdarg.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
|
|
#include <cutils/log.h>
|
|
|
|
#include <openssl/bn.h>
|
|
#include <openssl/ec.h>
|
|
#include <openssl/ec_key.h>
|
|
#include <openssl/ecdsa.h>
|
|
#include <openssl/engine.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/rsa.h>
|
|
#include <openssl/x509.h>
|
|
|
|
#include <memory>
|
|
|
|
#ifndef BACKEND_WIFI_HIDL
|
|
#include "keystore_backend_binder.h"
|
|
#else
|
|
#include "keystore_backend_hidl.h"
|
|
#endif
|
|
|
|
namespace {
|
|
KeystoreBackend *g_keystore_backend;
|
|
void ensure_keystore_engine();
|
|
|
|
/* key_id_dup is called when one of the RSA or EC_KEY objects is duplicated. */
|
|
int key_id_dup(CRYPTO_EX_DATA* /* to */,
|
|
const CRYPTO_EX_DATA* /* from */,
|
|
void** from_d,
|
|
int /* index */,
|
|
long /* argl */,
|
|
void* /* argp */) {
|
|
char *key_id = reinterpret_cast<char *>(*from_d);
|
|
if (key_id != nullptr) {
|
|
*from_d = strdup(key_id);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* key_id_free is called when one of the RSA, DSA or EC_KEY object is freed. */
|
|
void key_id_free(void* /* parent */,
|
|
void* ptr,
|
|
CRYPTO_EX_DATA* /* ad */,
|
|
int /* index */,
|
|
long /* argl */,
|
|
void* /* argp */) {
|
|
char *key_id = reinterpret_cast<char *>(ptr);
|
|
free(key_id);
|
|
}
|
|
|
|
/* Many OpenSSL APIs take ownership of an argument on success but don't free
|
|
* the argument on failure. This means we need to tell our scoped pointers when
|
|
* we've transferred ownership, without triggering a warning by not using the
|
|
* result of release(). */
|
|
#define OWNERSHIP_TRANSFERRED(obj) \
|
|
typeof ((obj).release()) _dummy __attribute__((unused)) = (obj).release()
|
|
|
|
const char* rsa_get_key_id(const RSA* rsa);
|
|
|
|
/* rsa_private_transform takes a big-endian integer from |in|, calculates the
|
|
* d'th power of it, modulo the RSA modulus, and writes the result as a
|
|
* big-endian integer to |out|. Both |in| and |out| are |len| bytes long. It
|
|
* returns one on success and zero otherwise. */
|
|
int rsa_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in, size_t len) {
|
|
ALOGV("rsa_private_transform(%p, %p, %p, %u)", rsa, out, in, (unsigned) len);
|
|
|
|
ensure_keystore_engine();
|
|
|
|
const char *key_id = rsa_get_key_id(rsa);
|
|
if (key_id == nullptr) {
|
|
ALOGE("key had no key_id!");
|
|
return 0;
|
|
}
|
|
|
|
uint8_t* reply = nullptr;
|
|
size_t reply_len;
|
|
int32_t ret = g_keystore_backend->sign(key_id, in, len, &reply, &reply_len);
|
|
if (ret < 0) {
|
|
ALOGW("There was an error during rsa_decrypt: could not connect");
|
|
return 0;
|
|
} else if (ret != 0) {
|
|
ALOGW("Error during sign from keystore: %d", ret);
|
|
return 0;
|
|
} else if (reply_len == 0 || reply == nullptr) {
|
|
ALOGW("No valid signature returned");
|
|
return 0;
|
|
}
|
|
|
|
if (reply_len > len) {
|
|
/* The result of the RSA operation can never be larger than the size of
|
|
* the modulus so we assume that the result has extra zeros on the
|
|
* left. This provides attackers with an oracle, but there's nothing
|
|
* that we can do about it here. */
|
|
ALOGW("Reply len %zu greater than expected %zu", reply_len, len);
|
|
memcpy(out, &reply[reply_len - len], len);
|
|
} else if (reply_len < len) {
|
|
/* If the Keystore implementation returns a short value we assume that
|
|
* it's because it removed leading zeros from the left side. This is
|
|
* bad because it provides attackers with an oracle but we cannot do
|
|
* anything about a broken Keystore implementation here. */
|
|
ALOGW("Reply len %zu lesser than expected %zu", reply_len, len);
|
|
memset(out, 0, len);
|
|
memcpy(out + len - reply_len, &reply[0], reply_len);
|
|
} else {
|
|
memcpy(out, &reply[0], len);
|
|
}
|
|
|
|
ALOGV("rsa=%p keystore_rsa_priv_dec successful", rsa);
|
|
return 1;
|
|
}
|
|
|
|
const char* ecdsa_get_key_id(const EC_KEY* ec_key);
|
|
|
|
/* ecdsa_sign signs |digest_len| bytes from |digest| with |ec_key| and writes
|
|
* the resulting signature (an ASN.1 encoded blob) to |sig|. It returns one on
|
|
* success and zero otherwise. */
|
|
static int ecdsa_sign(const uint8_t* digest, size_t digest_len, uint8_t* sig,
|
|
unsigned int* sig_len, EC_KEY* ec_key) {
|
|
ALOGV("ecdsa_sign(%p, %u, %p)", digest, (unsigned) digest_len, ec_key);
|
|
|
|
ensure_keystore_engine();
|
|
|
|
const char *key_id = ecdsa_get_key_id(ec_key);
|
|
if (key_id == nullptr) {
|
|
ALOGE("key had no key_id!");
|
|
return 0;
|
|
}
|
|
|
|
size_t ecdsa_size = ECDSA_size(ec_key);
|
|
|
|
uint8_t* reply = nullptr;
|
|
size_t reply_len;
|
|
int32_t ret = g_keystore_backend->sign(
|
|
key_id, digest, digest_len, &reply, &reply_len);
|
|
if (ret < 0) {
|
|
ALOGW("There was an error during ecdsa_sign: could not connect");
|
|
return 0;
|
|
} else if (reply_len == 0 || reply == nullptr) {
|
|
ALOGW("No valid signature returned");
|
|
return 0;
|
|
} else if (reply_len > ecdsa_size) {
|
|
ALOGW("Signature is too large");
|
|
return 0;
|
|
}
|
|
|
|
// Reviewer: should't sig_len be checked here? Or is it just assumed that it is at least ecdsa_size?
|
|
memcpy(sig, &reply[0], reply_len);
|
|
*sig_len = reply_len;
|
|
|
|
ALOGV("ecdsa_sign(%p, %u, %p) => success", digest, (unsigned)digest_len,
|
|
ec_key);
|
|
return 1;
|
|
}
|
|
|
|
/* KeystoreEngine is a BoringSSL ENGINE that implements RSA and ECDSA by
|
|
* forwarding the requested operations to Keystore. */
|
|
class KeystoreEngine {
|
|
public:
|
|
KeystoreEngine()
|
|
: rsa_index_(RSA_get_ex_new_index(0 /* argl */,
|
|
nullptr /* argp */,
|
|
nullptr /* new_func */,
|
|
key_id_dup,
|
|
key_id_free)),
|
|
ec_key_index_(EC_KEY_get_ex_new_index(0 /* argl */,
|
|
nullptr /* argp */,
|
|
nullptr /* new_func */,
|
|
key_id_dup,
|
|
key_id_free)),
|
|
engine_(ENGINE_new()) {
|
|
memset(&rsa_method_, 0, sizeof(rsa_method_));
|
|
rsa_method_.common.is_static = 1;
|
|
rsa_method_.private_transform = rsa_private_transform;
|
|
rsa_method_.flags = RSA_FLAG_OPAQUE;
|
|
ENGINE_set_RSA_method(engine_, &rsa_method_, sizeof(rsa_method_));
|
|
|
|
memset(&ecdsa_method_, 0, sizeof(ecdsa_method_));
|
|
ecdsa_method_.common.is_static = 1;
|
|
ecdsa_method_.sign = ecdsa_sign;
|
|
ecdsa_method_.flags = ECDSA_FLAG_OPAQUE;
|
|
ENGINE_set_ECDSA_method(engine_, &ecdsa_method_, sizeof(ecdsa_method_));
|
|
}
|
|
|
|
int rsa_ex_index() const { return rsa_index_; }
|
|
int ec_key_ex_index() const { return ec_key_index_; }
|
|
|
|
const ENGINE* engine() const { return engine_; }
|
|
|
|
private:
|
|
const int rsa_index_;
|
|
const int ec_key_index_;
|
|
RSA_METHOD rsa_method_;
|
|
ECDSA_METHOD ecdsa_method_;
|
|
ENGINE* const engine_;
|
|
};
|
|
|
|
pthread_once_t g_keystore_engine_once = PTHREAD_ONCE_INIT;
|
|
KeystoreEngine *g_keystore_engine;
|
|
|
|
/* init_keystore_engine is called to initialize |g_keystore_engine|. This
|
|
* should only be called by |pthread_once|. */
|
|
void init_keystore_engine() {
|
|
g_keystore_engine = new KeystoreEngine;
|
|
#ifndef BACKEND_WIFI_HIDL
|
|
g_keystore_backend = new KeystoreBackendBinder;
|
|
#else
|
|
g_keystore_backend = new KeystoreBackendHidl;
|
|
#endif
|
|
}
|
|
|
|
/* ensure_keystore_engine ensures that |g_keystore_engine| is pointing to a
|
|
* valid |KeystoreEngine| object and creates one if not. */
|
|
void ensure_keystore_engine() {
|
|
pthread_once(&g_keystore_engine_once, init_keystore_engine);
|
|
}
|
|
|
|
const char* rsa_get_key_id(const RSA* rsa) {
|
|
return reinterpret_cast<char*>(
|
|
RSA_get_ex_data(rsa, g_keystore_engine->rsa_ex_index()));
|
|
}
|
|
|
|
const char* ecdsa_get_key_id(const EC_KEY* ec_key) {
|
|
return reinterpret_cast<char*>(
|
|
EC_KEY_get_ex_data(ec_key, g_keystore_engine->ec_key_ex_index()));
|
|
}
|
|
|
|
struct EVP_PKEY_Delete {
|
|
void operator()(EVP_PKEY* p) const {
|
|
EVP_PKEY_free(p);
|
|
}
|
|
};
|
|
typedef std::unique_ptr<EVP_PKEY, EVP_PKEY_Delete> Unique_EVP_PKEY;
|
|
|
|
struct RSA_Delete {
|
|
void operator()(RSA* p) const {
|
|
RSA_free(p);
|
|
}
|
|
};
|
|
typedef std::unique_ptr<RSA, RSA_Delete> Unique_RSA;
|
|
|
|
struct EC_KEY_Delete {
|
|
void operator()(EC_KEY* ec) const {
|
|
EC_KEY_free(ec);
|
|
}
|
|
};
|
|
typedef std::unique_ptr<EC_KEY, EC_KEY_Delete> Unique_EC_KEY;
|
|
|
|
/* wrap_rsa returns an |EVP_PKEY| that contains an RSA key where the public
|
|
* part is taken from |public_rsa| and the private operations are forwarded to
|
|
* KeyStore and operate on the key named |key_id|. */
|
|
static EVP_PKEY *wrap_rsa(const char *key_id, const RSA *public_rsa) {
|
|
Unique_RSA rsa(RSA_new_method(g_keystore_engine->engine()));
|
|
if (rsa.get() == nullptr) {
|
|
return nullptr;
|
|
}
|
|
|
|
char *key_id_copy = strdup(key_id);
|
|
if (key_id_copy == nullptr) {
|
|
return nullptr;
|
|
}
|
|
|
|
if (!RSA_set_ex_data(rsa.get(), g_keystore_engine->rsa_ex_index(),
|
|
key_id_copy)) {
|
|
free(key_id_copy);
|
|
return nullptr;
|
|
}
|
|
|
|
rsa->n = BN_dup(public_rsa->n);
|
|
rsa->e = BN_dup(public_rsa->e);
|
|
if (rsa->n == nullptr || rsa->e == nullptr) {
|
|
return nullptr;
|
|
}
|
|
|
|
Unique_EVP_PKEY result(EVP_PKEY_new());
|
|
if (result.get() == nullptr ||
|
|
!EVP_PKEY_assign_RSA(result.get(), rsa.get())) {
|
|
return nullptr;
|
|
}
|
|
OWNERSHIP_TRANSFERRED(rsa);
|
|
|
|
return result.release();
|
|
}
|
|
|
|
/* wrap_ecdsa returns an |EVP_PKEY| that contains an ECDSA key where the public
|
|
* part is taken from |public_rsa| and the private operations are forwarded to
|
|
* KeyStore and operate on the key named |key_id|. */
|
|
static EVP_PKEY *wrap_ecdsa(const char *key_id, const EC_KEY *public_ecdsa) {
|
|
Unique_EC_KEY ec(EC_KEY_new_method(g_keystore_engine->engine()));
|
|
if (ec.get() == nullptr) {
|
|
return nullptr;
|
|
}
|
|
|
|
if (!EC_KEY_set_group(ec.get(), EC_KEY_get0_group(public_ecdsa)) ||
|
|
!EC_KEY_set_public_key(ec.get(), EC_KEY_get0_public_key(public_ecdsa))) {
|
|
return nullptr;
|
|
}
|
|
|
|
char *key_id_copy = strdup(key_id);
|
|
if (key_id_copy == nullptr) {
|
|
return nullptr;
|
|
}
|
|
|
|
if (!EC_KEY_set_ex_data(ec.get(), g_keystore_engine->ec_key_ex_index(),
|
|
key_id_copy)) {
|
|
free(key_id_copy);
|
|
return nullptr;
|
|
}
|
|
|
|
Unique_EVP_PKEY result(EVP_PKEY_new());
|
|
if (result.get() == nullptr ||
|
|
!EVP_PKEY_assign_EC_KEY(result.get(), ec.get())) {
|
|
return nullptr;
|
|
}
|
|
OWNERSHIP_TRANSFERRED(ec);
|
|
|
|
return result.release();
|
|
}
|
|
|
|
} /* anonymous namespace */
|
|
|
|
extern "C" {
|
|
|
|
EVP_PKEY* EVP_PKEY_from_keystore(const char* key_id) __attribute__((visibility("default")));
|
|
|
|
/* EVP_PKEY_from_keystore returns an |EVP_PKEY| that contains either an RSA or
|
|
* ECDSA key where the public part of the key reflects the value of the key
|
|
* named |key_id| in Keystore and the private operations are forwarded onto
|
|
* KeyStore. */
|
|
EVP_PKEY* EVP_PKEY_from_keystore(const char* key_id) {
|
|
ALOGV("EVP_PKEY_from_keystore(\"%s\")", key_id);
|
|
|
|
ensure_keystore_engine();
|
|
|
|
uint8_t *pubkey = nullptr;
|
|
size_t pubkey_len;
|
|
int32_t ret = g_keystore_backend->get_pubkey(key_id, &pubkey, &pubkey_len);
|
|
if (ret < 0) {
|
|
ALOGW("could not contact keystore");
|
|
return nullptr;
|
|
} else if (ret != 0 || pubkey == nullptr) {
|
|
ALOGW("keystore reports error: %d", ret);
|
|
return nullptr;
|
|
}
|
|
|
|
const uint8_t *inp = pubkey;
|
|
Unique_EVP_PKEY pkey(d2i_PUBKEY(nullptr, &inp, pubkey_len));
|
|
if (pkey.get() == nullptr) {
|
|
ALOGW("Cannot convert pubkey");
|
|
return nullptr;
|
|
}
|
|
|
|
EVP_PKEY *result;
|
|
switch (EVP_PKEY_type(pkey->type)) {
|
|
case EVP_PKEY_RSA: {
|
|
Unique_RSA public_rsa(EVP_PKEY_get1_RSA(pkey.get()));
|
|
result = wrap_rsa(key_id, public_rsa.get());
|
|
break;
|
|
}
|
|
case EVP_PKEY_EC: {
|
|
Unique_EC_KEY public_ecdsa(EVP_PKEY_get1_EC_KEY(pkey.get()));
|
|
result = wrap_ecdsa(key_id, public_ecdsa.get());
|
|
break;
|
|
}
|
|
default:
|
|
ALOGE("Unsupported key type %d", EVP_PKEY_type(pkey->type));
|
|
result = nullptr;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
} // extern "C"
|