Support for encrypting /data on Stingray.

There are still a few hacks and performance issues related
to shutting down the framework in this code, but it is
functional and tested.  Without the UI changes, it requires
cryptic adb shell commands to enable, which I shall not
utter here.

Change-Id: I0b8f90afd707e17fbdb0373d156236946633cf8b
This commit is contained in:
Ken Sumrall 2010-12-03 03:47:09 -08:00
parent 3c9a73f643
commit 8f869aa1bc
5 changed files with 960 additions and 2 deletions

View file

@ -21,7 +21,8 @@ common_src_files := \
Loop.cpp \
Devmapper.cpp \
ResponseCode.cpp \
Xwarp.cpp
Xwarp.cpp \
cryptfs.c
common_c_includes := \
$(KERNEL_HEADERS) \

View file

@ -36,6 +36,7 @@
#include "Xwarp.h"
#include "Loop.h"
#include "Devmapper.h"
#include "cryptfs.h"
CommandListener::CommandListener() :
FrameworkListener("vold") {
@ -46,6 +47,7 @@ CommandListener::CommandListener() :
registerCmd(new ShareCmd());
registerCmd(new StorageCmd());
registerCmd(new XwarpCmd());
registerCmd(new CryptfsCmd());
}
void CommandListener::dumpArgs(int argc, char **argv, int argObscure) {
@ -55,7 +57,7 @@ void CommandListener::dumpArgs(int argc, char **argv, int argObscure) {
memset(buffer, 0, sizeof(buffer));
int i;
for (i = 0; i < argc; i++) {
int len = strlen(argv[i]) + 1; // Account for space
unsigned int len = strlen(argv[i]) + 1; // Account for space
if (i == argObscure) {
len += 2; // Account for {}
}
@ -505,3 +507,46 @@ int CommandListener::XwarpCmd::runCommand(SocketClient *cli,
return 0;
}
CommandListener::CryptfsCmd::CryptfsCmd() :
VoldCommand("cryptfs") {
}
int CommandListener::CryptfsCmd::runCommand(SocketClient *cli,
int argc, char **argv) {
dumpArgs(argc, argv, -1);
if (argc < 2) {
cli->sendMsg(ResponseCode::CommandSyntaxError, "Missing Argument", false);
return 0;
}
int rc = 0;
if (!strcmp(argv[1], "checkpw")) {
if (argc != 3) {
cli->sendMsg(ResponseCode::CommandSyntaxError, "Usage: cryptfs checkpw <passwd>", false);
return 0;
}
rc = cryptfs_check_passwd(argv[2]);
} else if (!strcmp(argv[1], "enablecrypto")) {
if ( (argc != 4) || (strcmp(argv[2], "wipe") && strcmp(argv[2], "inplace")) ) {
cli->sendMsg(ResponseCode::CommandSyntaxError, "Usage: cryptfs enablecrypto <wipe|inplace> <passwd>", false);
return 0;
}
rc = cryptfs_enable(argv[2], argv[3]);
} else {
cli->sendMsg(ResponseCode::CommandSyntaxError, "Unknown cryptfs cmd", false);
}
if (!rc) {
cli->sendMsg(ResponseCode::CommandOkay, "cryptfs operation succeeded", false);
} else {
int erno = errno;
rc = ResponseCode::convertFromErrno();
cli->sendMsg(rc, "cryptfs operation failed", true);
}
return 0;
}

View file

@ -76,6 +76,13 @@ private:
virtual ~XwarpCmd() {}
int runCommand(SocketClient *c, int argc, char ** argv);
};
class CryptfsCmd : public VoldCommand {
public:
CryptfsCmd();
virtual ~CryptfsCmd() {}
int runCommand(SocketClient *c, int argc, char ** argv);
};
};
#endif

845
cryptfs.c Normal file
View file

@ -0,0 +1,845 @@
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* TO DO:
* 1. Perhaps keep several copies of the encrypted key, in case something
* goes horribly wrong?
*
*/
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <sys/ioctl.h>
#include <linux/dm-ioctl.h>
#include <libgen.h>
#include <stdlib.h>
#include <sys/param.h>
#include <string.h>
#include <sys/mount.h>
#include <openssl/evp.h>
#include <errno.h>
#include <sys/reboot.h>
#include "cryptfs.h"
#define LOG_TAG "Cryptfs"
#include "cutils/log.h"
#include "cutils/properties.h"
#define DM_CRYPT_BUF_SIZE 4096
char *me = "cryptfs";
static void ioctl_init(struct dm_ioctl *io, size_t dataSize, const char *name, unsigned flags)
{
memset(io, 0, dataSize);
io->data_size = dataSize;
io->data_start = sizeof(struct dm_ioctl);
io->version[0] = 4;
io->version[1] = 0;
io->version[2] = 0;
io->flags = flags;
if (name) {
strncpy(io->name, name, sizeof(io->name));
}
}
static unsigned int get_blkdev_size(int fd)
{
unsigned int nr_sec;
if ( (ioctl(fd, BLKGETSIZE, &nr_sec)) == -1) {
nr_sec = 0;
}
return nr_sec;
}
/* key can be NULL, in which case just write out the footer. Useful to
* update the failed mount count but not change the key.
*/
static int put_crypt_ftr_and_key(char *real_blk_name, struct crypt_mnt_ftr *crypt_ftr,
unsigned char *key)
{
int fd;
unsigned int nr_sec, cnt;
off64_t off;
int rc = -1;
if ( (fd = open(real_blk_name, O_RDWR)) < 0) {
SLOGE("Cannot open real block device %s\n", real_blk_name);
return -1;
}
if ( (nr_sec = get_blkdev_size(fd)) == 0) {
SLOGE("Cannot get size of block device %s\n", real_blk_name);
goto errout;
}
/* If it's an encrypted Android partition, the last 16 Kbytes contain the
* encryption info footer and key, and plenty of bytes to spare for future
* growth.
*/
off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET;
if (lseek64(fd, off, SEEK_SET) == -1) {
SLOGE("Cannot seek to real block device footer\n");
goto errout;
}
if ((cnt = write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) {
SLOGE("Cannot write real block device footer\n");
goto errout;
}
if (key) {
if (crypt_ftr->keysize != 16) {
SLOGE("Keysize of %d bits not supported for real block device %s\n",
crypt_ftr->keysize * 8, real_blk_name);
goto errout;
}
if ( (cnt = write(fd, key, crypt_ftr->keysize)) != crypt_ftr->keysize) {
SLOGE("Cannot write key for real block device %s\n", real_blk_name);
goto errout;
}
}
/* Success! */
rc = 0;
errout:
close(fd);
return rc;
}
static int get_crypt_ftr_and_key(char *real_blk_name, struct crypt_mnt_ftr *crypt_ftr,
unsigned char *key)
{
int fd;
unsigned int nr_sec, cnt;
off64_t off;
int rc = -1;
if ( (fd = open(real_blk_name, O_RDWR)) < 0) {
SLOGE("Cannot open real block device %s\n", real_blk_name);
return -1;
}
if ( (nr_sec = get_blkdev_size(fd)) == 0) {
SLOGE("Cannot get size of block device %s\n", real_blk_name);
goto errout;
}
/* If it's an encrypted Android partition, the last 16 Kbytes contain the
* encryption info footer and key, and plenty of bytes to spare for future
* growth.
*/
#if 1 /* The real location, use when the enable code works */
off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET;
#else
/* For testing, I'm slapping a handbuild header after my 200 megabyte
* /data partition. So my offset if 200 megabytes */
off = 200*1024*1024;
#endif
if (lseek64(fd, off, SEEK_SET) == -1) {
SLOGE("Cannot seek to real block device footer\n");
goto errout;
}
if ( (cnt = read(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) {
SLOGE("Cannot read real block device footer\n");
goto errout;
}
if (crypt_ftr->magic != CRYPT_MNT_MAGIC) {
SLOGE("Bad magic for real block device %s\n", real_blk_name);
goto errout;
}
if (crypt_ftr->major_version != 1) {
SLOGE("Cannot understand major version %d real block device footer\n",
crypt_ftr->major_version);
goto errout;
}
if (crypt_ftr->minor_version != 0) {
SLOGW("Warning: crypto footer minor version %d, expected 0, continuing...\n",
crypt_ftr->minor_version);
}
if (crypt_ftr->ftr_size > sizeof(struct crypt_mnt_ftr)) {
/* the footer size is bigger than we expected.
* Skip to it's stated end so we can read the key.
*/
if (lseek(fd, crypt_ftr->ftr_size - sizeof(struct crypt_mnt_ftr), SEEK_CUR) == -1) {
SLOGE("Cannot seek to start of key\n");
goto errout;
}
}
if (crypt_ftr->keysize != 16) {
SLOGE("Keysize of %d bits not supported for real block device %s\n",
crypt_ftr->keysize * 8, real_blk_name);
goto errout;
}
if ( (cnt = read(fd, key, crypt_ftr->keysize)) != crypt_ftr->keysize) {
SLOGE("Cannot read key for real block device %s\n", real_blk_name);
goto errout;
}
/* Success! */
rc = 0;
errout:
close(fd);
return rc;
}
/* Convert a binary key of specified length into an ascii hex string equivalent,
* without the leading 0x and with null termination
*/
void convert_key_to_hex_ascii(unsigned char *master_key, unsigned int keysize,
char *master_key_ascii)
{
unsigned int i, a;
unsigned char nibble;
for (i=0, a=0; i<keysize; i++, a+=2) {
/* For each byte, write out two ascii hex digits */
nibble = (master_key[i] >> 4) & 0xf;
master_key_ascii[a] = nibble + (nibble > 9 ? 0x37 : 0x30);
nibble = master_key[i] & 0xf;
master_key_ascii[a+1] = nibble + (nibble > 9 ? 0x37 : 0x30);
}
/* Add the null termination */
master_key_ascii[a] = '\0';
}
static int create_crypto_blk_dev(struct crypt_mnt_ftr *crypt_ftr, unsigned char *master_key,
char *real_blk_name, char *crypto_blk_name)
{
char buffer[DM_CRYPT_BUF_SIZE];
char master_key_ascii[129]; /* Large enough to hold 512 bit key and null */
char *crypt_params;
struct dm_ioctl *io;
struct dm_target_spec *tgt;
unsigned int minor;
int fd;
int retval = -1;
char *name ="datadev"; /* FIX ME: Make me a parameter */
if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) {
SLOGE("Cannot open device-mapper\n");
goto errout;
}
io = (struct dm_ioctl *) buffer;
ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
if (ioctl(fd, DM_DEV_CREATE, io)) {
SLOGE("Cannot create dm-crypt device\n");
goto errout;
}
/* Get the device status, in particular, the name of it's device file */
ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
if (ioctl(fd, DM_DEV_STATUS, io)) {
SLOGE("Cannot retrieve dm-crypt device status\n");
goto errout;
}
minor = (io->dev & 0xff) | ((io->dev >> 12) & 0xfff00);
snprintf(crypto_blk_name, MAXPATHLEN, "/dev/block/dm-%u", minor);
/* Load the mapping table for this device */
tgt = (struct dm_target_spec *) &buffer[sizeof(struct dm_ioctl)];
ioctl_init(io, 4096, name, 0);
io->target_count = 1;
tgt->status = 0;
tgt->sector_start = 0;
tgt->length = crypt_ftr->fs_size;
strcpy(tgt->target_type, "crypt");
crypt_params = buffer + sizeof(struct dm_ioctl) + sizeof(struct dm_target_spec);
convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii);
sprintf(crypt_params, "%s %s 0 %s 0", crypt_ftr->crypto_type_name,
master_key_ascii, real_blk_name);
SLOGD("crypt_params = %s\n", crypt_params);
crypt_params += strlen(crypt_params) + 1;
crypt_params = (char *) (((unsigned long)crypt_params + 7) & ~8); /* Align to an 8 byte boundary */
tgt->next = crypt_params - buffer;
if (ioctl(fd, DM_TABLE_LOAD, io)) {
SLOGE("Cannot load dm-crypt mapping table.\n");
goto errout;
}
/* Resume this device to activate it */
ioctl_init(io, 4096, name, 0);
if (ioctl(fd, DM_DEV_SUSPEND, io)) {
SLOGE("Cannot resume the dm-crypt device\n");
goto errout;
}
/* We made it here with no errors. Woot! */
retval = 0;
errout:
close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */
return retval;
}
static int delete_crypto_blk_dev(char *crypto_blkdev)
{
int fd;
char buffer[DM_CRYPT_BUF_SIZE];
struct dm_ioctl *io;
char *name ="datadev"; /* FIX ME: Make me a paraameter */
int retval = -1;
if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) {
SLOGE("Cannot open device-mapper\n");
goto errout;
}
io = (struct dm_ioctl *) buffer;
ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
if (ioctl(fd, DM_DEV_REMOVE, io)) {
SLOGE("Cannot remove dm-crypt device\n");
goto errout;
}
/* We made it here with no errors. Woot! */
retval = 0;
errout:
close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */
return retval;
}
/* If we need to debug this, look at Devmapper.cpp:dumpState(),
* It does DM_LIST_DEVICES, then iterates on each device and
* calls DM_DEV_STATUS.
*/
#define HASH_COUNT 2000
#define KEY_LEN_BYTES 16
#define IV_LEN_BYTES 16
static int create_encrypted_random_key(char *passwd, unsigned char *master_key)
{
int fd;
unsigned char buf[KEY_LEN_BYTES];
unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */
unsigned char salt[32] = { 0 };
EVP_CIPHER_CTX e_ctx;
int encrypted_len, final_len;
/* Get some random bits for a key */
fd = open("/dev/urandom", O_RDONLY);
read(fd, buf, sizeof(buf));
close(fd);
/* Now encrypt it with the password */
/* To Do: Make a salt based on some immutable data about this device.
* IMEI, or MEID, or CPU serial number, or whatever we can find
*/
/* Turn the password into a key and IV that can decrypt the master key */
PKCS5_PBKDF2_HMAC_SHA1(passwd, strlen(passwd), salt, sizeof(salt),
HASH_COUNT, KEY_LEN_BYTES+IV_LEN_BYTES, ikey);
/* Initialize the decryption engine */
if (! EVP_EncryptInit(&e_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) {
SLOGE("EVP_EncryptInit failed\n");
return -1;
}
EVP_CIPHER_CTX_set_padding(&e_ctx, 0); /* Turn off padding as our data is block aligned */
/* Encrypt the master key */
if (! EVP_EncryptUpdate(&e_ctx, master_key, &encrypted_len,
buf, KEY_LEN_BYTES)) {
SLOGE("EVP_EncryptUpdate failed\n");
return -1;
}
if (! EVP_EncryptFinal(&e_ctx, master_key + encrypted_len, &final_len)) {
SLOGE("EVP_EncryptFinal failed\n");
return -1;
}
if (encrypted_len + final_len != KEY_LEN_BYTES) {
SLOGE("EVP_Encryption length check failed with %d, %d bytes\n", encrypted_len, final_len);
return -1;
} else {
return 0;
}
}
static int decrypt_master_key(char *passwd, unsigned char *encrypted_master_key,
unsigned char *decrypted_master_key)
{
unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */
unsigned char salt[32] = { 0 };
EVP_CIPHER_CTX d_ctx;
int decrypted_len, final_len;
/* To Do: Make a salt based on some immutable data about this device.
* IMEI, or MEID, or CPU serial number, or whatever we can find
*/
/* Turn the password into a key and IV that can decrypt the master key */
PKCS5_PBKDF2_HMAC_SHA1(passwd, strlen(passwd), salt, sizeof(salt),
HASH_COUNT, KEY_LEN_BYTES+IV_LEN_BYTES, ikey);
/* Initialize the decryption engine */
if (! EVP_DecryptInit(&d_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) {
return -1;
}
EVP_CIPHER_CTX_set_padding(&d_ctx, 0); /* Turn off padding as our data is block aligned */
/* Decrypt the master key */
if (! EVP_DecryptUpdate(&d_ctx, decrypted_master_key, &decrypted_len,
encrypted_master_key, KEY_LEN_BYTES)) {
return -1;
}
if (! EVP_DecryptFinal(&d_ctx, decrypted_master_key + decrypted_len, &final_len)) {
return -1;
}
if (decrypted_len + final_len != KEY_LEN_BYTES) {
return -1;
} else {
return 0;
}
}
static int get_orig_mount_parms(char *mount_point, char *fs_type, char *real_blkdev,
unsigned long *mnt_flags, char *fs_options)
{
char mount_point2[32];
char fs_flags[32];
property_get("ro.crypto.fs_type", fs_type, "");
property_get("ro.crypto.fs_real_blkdev", real_blkdev, "");
property_get("ro.crypto.fs_mnt_point", mount_point2, "");
property_get("ro.crypto.fs_options", fs_options, "");
property_get("ro.crypto.fs_flags", fs_flags, "");
*mnt_flags = strtol(fs_flags, 0, 0);
if (strcmp(mount_point, mount_point2)) {
/* Consistency check. These should match. If not, something odd happened. */
return -1;
}
return 0;
}
static int wait_and_unmount(char *mountpoint)
{
int i, rc;
#define WAIT_UNMOUNT_COUNT 100
/* Now umount the tmpfs filesystem */
for (i=0; i<WAIT_UNMOUNT_COUNT; i++) {
if (umount(mountpoint)) {
sleep(1);
i++;
} else {
break;
}
}
if (i < WAIT_UNMOUNT_COUNT) {
SLOGD("unmounting %s succeeded\n", mountpoint);
rc = 0;
} else {
SLOGE("unmounting %s failed\n", mountpoint);
rc = -1;
}
return rc;
}
static int cryptfs_restart(char *crypto_blkdev)
{
char fs_type[32];
char real_blkdev[MAXPATHLEN];
char fs_options[256];
unsigned long mnt_flags;
struct stat statbuf;
int rc = -1, i;
#define DATA_PREP_TIMEOUT 100
/* Here is where we shut down the framework. The init scripts
* start all services in one of three classes: core, main or late_start.
* On boot, we start core and main. Now, we stop main, but not core,
* as core includes vold and a few other really important things that
* we need to keep running. Once main has stopped, we should be able
* to umount the tmpfs /data, then mount the encrypted /data.
* We then restart the class main, and also the class late_start.
* At the moment, I've only put a few things in late_start that I know
* are not needed to bring up the framework, and that also cause problems
* with unmounting the tmpfs /data, but I hope to add add more services
* to the late_start class as we optimize this to decrease the delay
* till the user is asked for the password to the filesystem.
*/
/* The init files are setup to stop the class main when vold.decrypt is
* set to trigger_reset_main.
*/
property_set("vold.decrypt", "trigger_reset_main");
SLOGD("Just asked init to shut down class main\n");
/* Now that the framework is shutdown, we should be able to umount()
* the tmpfs filesystem, and mount the real one.
*/
if (! get_orig_mount_parms("/data", fs_type, real_blkdev, &mnt_flags, fs_options)) {
SLOGD("Just got orig mount parms\n");
if (! (rc = wait_and_unmount("/data")) ) {
/* If that succeeded, then mount the decrypted filesystem */
mount(crypto_blkdev, "/data", fs_type, mnt_flags, fs_options);
/* Do the prep of the /data filesystem */
property_set("vold.post_fs_data_done", "0");
property_set("vold.decrypt", "trigger_post_fs_data");
SLOGD("Just triggered post_fs_data\n");
/* Wait a max of 25 seconds, hopefully it takes much less */
for (i=0; i<DATA_PREP_TIMEOUT; i++) {
char p[16];;
property_get("vold.post_fs_data_done", p, "0");
if (*p == '1') {
break;
} else {
usleep(250000);
}
}
if (i == DATA_PREP_TIMEOUT) {
/* Ugh, we failed to prep /data in time. Bail. */
return -1;
}
/* startup service classes main and late_start */
property_set("vold.decrypt", "trigger_restart_framework");
SLOGD("Just triggered restart_framework\n");
/* Give it a few moments to get started */
sleep(1);
}
}
return rc;
}
static int test_mount_encrypted_fs(char *passwd, char *mount_point)
{
struct crypt_mnt_ftr crypt_ftr;
/* Allocate enough space for a 256 bit key, but we may use less */
unsigned char encrypted_master_key[32], decrypted_master_key[32];
char crypto_blkdev[MAXPATHLEN];
char real_blkdev[MAXPATHLEN];
char fs_type[32];
char fs_options[256];
char tmp_mount_point[64];
unsigned long mnt_flags;
unsigned int orig_failed_decrypt_count;
int rc;
if (get_orig_mount_parms(mount_point, fs_type, real_blkdev, &mnt_flags, fs_options)) {
SLOGE("Error reading original mount parms for mount point %s\n", mount_point);
return -1;
}
if (get_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key)) {
SLOGE("Error getting crypt footer and key\n");
return -1;
}
SLOGD("crypt_ftr->fs_size = %lld\n", crypt_ftr.fs_size);
orig_failed_decrypt_count = crypt_ftr.failed_decrypt_count;
if (! (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) ) {
decrypt_master_key(passwd, encrypted_master_key, decrypted_master_key);
}
if (create_crypto_blk_dev(&crypt_ftr, decrypted_master_key,
real_blkdev, crypto_blkdev)) {
SLOGE("Error creating decrypted block device\n");
return -1;
}
/* If init detects an encrypted filesystme, it writes a file for each such
* encrypted fs into the tmpfs /data filesystem, and then the framework finds those
* files and passes that data to me */
/* Create a tmp mount point to try mounting the decryptd fs
* Since we're here, the mount_point should be a tmpfs filesystem, so make
* a directory in it to test mount the decrypted filesystem.
*/
sprintf(tmp_mount_point, "%s/tmp_mnt", mount_point);
mkdir(tmp_mount_point, 0755);
if ( mount(crypto_blkdev, tmp_mount_point, "ext4", MS_RDONLY, "") ) {
SLOGE("Error temp mounting decrypted block device\n");
delete_crypto_blk_dev(crypto_blkdev);
crypt_ftr.failed_decrypt_count++;
} else {
/* Success, so just umount and we'll mount it properly when we restart
* the framework.
*/
umount(tmp_mount_point);
crypt_ftr.failed_decrypt_count = 0;
}
if (orig_failed_decrypt_count != crypt_ftr.failed_decrypt_count) {
put_crypt_ftr_and_key(real_blkdev, &crypt_ftr, 0);
}
if (crypt_ftr.failed_decrypt_count) {
/* We failed to mount the device, so return an error */
rc = crypt_ftr.failed_decrypt_count;
} else {
/* Woot! Success! Time to do the magic of unmounting the tmpfs
* disk and mounting the encrypted one.
*/
rc = cryptfs_restart(crypto_blkdev);
}
return rc;
}
int cryptfs_check_passwd(char *passwd)
{
int rc = -1;
rc = test_mount_encrypted_fs(passwd, "/data");
return rc;
}
/* Initialize a crypt_mnt_ftr structure. The keysize is
* defaulted to 16 bytes, and the filesystem size to 0.
* Presumably, at a minimum, the caller will update the
* filesystem size and crypto_type_name after calling this function.
*/
static void cryptfs_init_crypt_mnt_ftr(struct crypt_mnt_ftr *ftr)
{
ftr->magic = CRYPT_MNT_MAGIC;
ftr->major_version = 1;
ftr->minor_version = 0;
ftr->ftr_size = sizeof(struct crypt_mnt_ftr);
ftr->flags = 0;
ftr->keysize = 16;
ftr->spare1 = 0;
ftr->fs_size = 0;
ftr->failed_decrypt_count = 0;
ftr->crypto_type_name[0] = '\0';
}
static int cryptfs_enable_wipe(char *crypto_blkdev, off64_t size)
{
char cmdline[256];
int rc = -1;
snprintf(cmdline, sizeof(cmdline), "/system/bin/make_ext4fs -a /data -l %lld %s",
size * 512, crypto_blkdev);
SLOGI("Making empty filesystem with command %s\n", cmdline);
if (system(cmdline)) {
SLOGE("Error creating empty filesystem on %s\n", crypto_blkdev);
} else {
SLOGD("Successfully created empty filesystem on %s\n", crypto_blkdev);
rc = 0;
}
return rc;
}
static inline int unix_read(int fd, void* buff, int len)
{
int ret;
do { ret = read(fd, buff, len); } while (ret < 0 && errno == EINTR);
return ret;
}
static inline int unix_write(int fd, const void* buff, int len)
{
int ret;
do { ret = write(fd, buff, len); } while (ret < 0 && errno == EINTR);
return ret;
}
#define CRYPT_INPLACE_BUFSIZE 4096
#define CRYPT_SECTORS_PER_BUFSIZE (CRYPT_INPLACE_BUFSIZE / 512)
static int cryptfs_enable_inplace(char *crypto_blkdev, char *real_blkdev, off64_t size)
{
int realfd, cryptofd;
char *buf[CRYPT_INPLACE_BUFSIZE];
int rc = -1;
off64_t numblocks, i, remainder;
if ( (realfd = open(real_blkdev, O_RDONLY)) < 0) {
SLOGE("Error opening real_blkdev %s for inplace encrypt\n", real_blkdev);
return -1;
}
if ( (cryptofd = open(crypto_blkdev, O_WRONLY)) < 0) {
SLOGE("Error opening crypto_blkdev %s for inplace encrypt\n", crypto_blkdev);
close(realfd);
return -1;
}
/* This is pretty much a simple loop of reading 4K, and writing 4K.
* The size passed in is the number of 512 byte sectors in the filesystem.
* So compute the number of whole 4K blocks we should read/write,
* and the remainder.
*/
numblocks = size / CRYPT_SECTORS_PER_BUFSIZE;
remainder = size % CRYPT_SECTORS_PER_BUFSIZE;
SLOGE("Encrypting filesystem in place...");
/* process the majority of the filesystem in blocks */
for (i=0; i<numblocks; i++) {
if ( ! (i % 65536)) { //KEN
SLOGE("|"); //KEN
} //KEN
if (unix_read(realfd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) {
SLOGE("Error reading real_blkdev %s for inplace encrypt\n", crypto_blkdev);
goto errout;
}
if (unix_write(cryptofd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) {
SLOGE("Error writing crypto_blkdev %s for inplace encrypt\n", crypto_blkdev);
goto errout;
}
}
/* Do any remaining sectors */
for (i=0; i<remainder; i++) {
if (unix_read(realfd, buf, 512) <= 0) {
SLOGE("Error reading rival sectors from real_blkdev %s for inplace encrypt\n", crypto_blkdev);
goto errout;
}
if (unix_write(cryptofd, buf, 512) <= 0) {
SLOGE("Error writing final sectors to crypto_blkdev %s for inplace encrypt\n", crypto_blkdev);
goto errout;
}
}
rc = 0;
errout:
close(realfd);
close(cryptofd);
return rc;
}
#define CRYPTO_ENABLE_WIPE 1
#define CRYPTO_ENABLE_INPLACE 2
int cryptfs_enable(char *howarg, char *passwd)
{
int how = 0;
char crypto_blkdev[MAXPATHLEN], real_blkdev[MAXPATHLEN];
char fs_type[32], fs_options[256], mount_point[32];
unsigned long mnt_flags, nr_sec;
unsigned char master_key[16], decrypted_master_key[16];
int rc, fd;
struct crypt_mnt_ftr crypt_ftr;
if (!strcmp(howarg, "wipe")) {
how = CRYPTO_ENABLE_WIPE;
} else if (! strcmp(howarg, "inplace")) {
how = CRYPTO_ENABLE_INPLACE;
} else {
/* Shouldn't happen, as CommandListener vets the args */
return -1;
}
get_orig_mount_parms(mount_point, fs_type, real_blkdev, &mnt_flags, fs_options);
/* The init files are setup to stop the class main and late start when
* set to 4. They also unmount the fuse filesystem /mnt/sdcard on stingray.
*/
property_set("vold.decrypt", "trigger_shutdown_framework");
SLOGD("Just asked init to shut down class main\n");
/* Temporary hack FIX ME!*/
sleep(30);
umount("/mnt/sdcard");
/* Now unmount the /data partition. */
if (! (rc = wait_and_unmount("/data")) ) {
/* OK, we've unmounted /data, time to setup an encrypted
* mapping, and either write a new filesystem or encrypt
* in place.
*/
fd = open(real_blkdev, O_RDONLY);
if ( (nr_sec = get_blkdev_size(fd)) == 0) {
SLOGE("Cannot get size of block device %s\n", real_blkdev);
return -1;
}
close(fd);
/* Initialize a crypt_mnt_ftr for the partition */
cryptfs_init_crypt_mnt_ftr(&crypt_ftr);
crypt_ftr.fs_size = nr_sec - (CRYPT_FOOTER_OFFSET / 512);
strcpy((char *)crypt_ftr.crypto_type_name, "aes-cbc-essiv:sha256");
/* Make an encrypted master key */
if (create_encrypted_random_key(passwd, master_key)) {
SLOGE("Cannot create encrypted master key\n");
return -1;
}
/* Write the key to the end of the partition */
put_crypt_ftr_and_key(real_blkdev, &crypt_ftr, master_key);
decrypt_master_key(passwd, master_key, decrypted_master_key);
create_crypto_blk_dev(&crypt_ftr, decrypted_master_key, real_blkdev, crypto_blkdev);
if (how == CRYPTO_ENABLE_WIPE) {
rc = cryptfs_enable_wipe(crypto_blkdev, crypt_ftr.fs_size);
} else if (how == CRYPTO_ENABLE_INPLACE) {
rc = cryptfs_enable_inplace(crypto_blkdev, real_blkdev, crypt_ftr.fs_size);
} else {
/* Shouldn't happen */
SLOGE("cryptfs_enable: internal error, unknown option\n");
return -1;
}
if (! rc) {
delete_crypto_blk_dev(crypto_blkdev);
sync();
reboot(LINUX_REBOOT_CMD_RESTART);
}
} else {
return -1;
}
return 0;
}

60
cryptfs.h Normal file
View file

@ -0,0 +1,60 @@
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* This structure starts 16,384 bytes before the end of a hardware
* partition that is encrypted.
* Immediately following this structure is the encrypted key.
* Obviously, the filesystem does not include the last 16 kbytes
* of the partition.
*/
#define CRYPT_FOOTER_OFFSET 0x4000
#define MAX_CRYPTO_TYPE_NAME_LEN 64
/* definitions of flags in the structure below */
#define CRYPT_MNT_KEY_UNENCRYPTED 0x1 /* The key for the partition is not encrypted. */
#define CRYPT_MNT_MAGIC 0xD0B5B1C4
#define __le32 unsigned int
#define __le16 unsigned short int
struct crypt_mnt_ftr {
__le32 magic; /* See above */
__le16 major_version;
__le16 minor_version;
__le32 ftr_size; /* in bytes, not including key following */
__le32 flags; /* See above */
__le32 keysize; /* in bytes */
__le32 spare1; /* ignored */
__le64 fs_size; /* Size of the encrypted fs, in 512 byte sectors */
__le32 failed_decrypt_count; /* count of # of failed attempts to decrypt and
mount, set to 0 on successful mount */
unsigned char crypto_type_name[MAX_CRYPTO_TYPE_NAME_LEN]; /* The type of encryption
needed to decrypt this
partition, null terminated */
};
#ifdef __cplusplus
extern "C" {
#endif
int cryptfs_check_passwd(char *pw);
int cryptfs_enable(char *flag, char *passwd);
#ifdef __cplusplus
}
#endif