Commit graph

8 commits

Author SHA1 Message Date
Jeff Sharkey
c86ab6f538 Trim both internal and adopted private storage.
Refactor fstrim code to be encapsulated in unique task object, and
give it option of benchmarking when finished.  Trimming now includes
both storage from fstab and adopted private volumes.  Cleaner timing
stats are logged for each unique volume.

Add wakelock during ongoing async move tasks.  Push disk sysfs path
to framework so it can parse any SD card registers as desired.

Bug: 21831325
Change-Id: I76577685f5cae4929c251ad314ffdaeb5eb1c8bf
2015-07-01 15:53:51 -07:00
Jeff Sharkey
5a6bfca163 Initial pass at storage benchmarks.
Now that we're offering to store private app data on adopted storage
devices, the performance of those devices is much more important to
overall user experience.

To help set user expectations, this change offers to execute a
real-world benchmark on a storage device, returning a metric that can
be used to compare internal and external storage.  The benchmark is
generated from the strace-instrumented storage access patterns of
typical apps.

A typical device completes the benchmark in under two seconds on
internal storage, a UHS-3 SD card is even faster (!), but a very slow
Class 4 SD card takes about 30 seconds to complete, giving us a clear
signal.

The measured benchmark numbers are logged along with information
about the storage device, such as manufacturer, model, etc.  Card
serial numbers are scrubbed from output.

Bug: 21172095
Change-Id: I9b2713dafdfdfcf5d97bf1bc21841f39409a7e54
2015-05-15 10:48:11 -07:00
Jeff Sharkey
c8e04c5a82 Wider volume mutation lock, move force adoptable.
We eventually should move back to per-disk locks, but use a giant
lock to keep development rolling forward.  Also move force adoptable
flag to framework since, since encrypted devices don't have persisted
properties loaded early during boot.

Bug: 19993667
Change-Id: Ifa3016ef41b038f8f71fc30bc81596cfd21dcd2a
2015-04-21 12:24:57 -07:00
Jeff Sharkey
7d9d011865 Lock while partitioning.
Otherwise we get really excited and trip over ourselves while
partitions are still being created.

Bug: 19993667
Change-Id: I034e56b3063a71d73f9311a945c05ea2ae255f7d
2015-04-14 23:14:23 -07:00
Jeff Sharkey
ce6a913aea Exclusive exec() path, format after partition.
Sadly setexeccon() is process global, so we need to carefully ensure
that all exec() are mutually exclusive to avoid transitioning into
unwanted domains.  Also, because we have several threads floating
around, we need to guard all our FDs with O_CLOEXEC.

Format all newly created volumes immediately after partitioning,
but silence all events emitted from those volumes to prevent the
framework from getting all excited.  Unify all notify events under a
single codepath to make them easy to silence.

Sent SIGINT before escalating to SIGTERM when unmounting.

Bug: 19993667
Change-Id: Idc6c806afc7919a004a93e2240b42884f6b52d6b
2015-04-11 08:48:13 -07:00
Jeff Sharkey
9c48498f45 Support for private (adopted) volumes.
This adds support for private volumes which is just a filesystem
wrapped in a dm-crypt layer.  For now we're using the exact same
configuration as internal encryption (aes-cbc-essiv:sha256), but we
don't store any key material on the removable media.  Instead, we
store the key on internal storage, and use the GPT partition GUID
to identify which key should be used.

This means that private external storage is effectively as secure as
the internal storage of the device.  That is, if the internal storage
is encrypted, then our external storage key is also encrypted.

When partitioning disks, we now support a "private" mode which has
a PrivateVolume partition, and a currently unused 16MB metadata
partition reserved for future use.  It also supports a "mixed" mode
which creates both a PublicVolume and PrivateVolume on the same
disk.  Mixed mode is currently experimental.

For now, just add ext4 support to PrivateVolume; we'll look at f2fs
in a future change.  Add VolumeBase lifecycle for setting up crypto
mappings, and extract blkid logic into shared method.  Sprinkle some
more "static" around the cryptfs code to improve invariants.

Bug: 19993667
Change-Id: Ibd1df6250735b706959a1eb9d9f7219ea85912a0
2015-04-01 10:45:05 -07:00
Jeff Sharkey
36801cccf2 Progress towards dynamic storage support.
Wire up new Disk and VolumeBase objects and events to start replacing
older DirectVolume code.  Use filesystem UUID as visible PublicVolume
name to be more deterministic.

When starting, create DiskSource instances based on fstab, and watch
for kernel devices to appear.  Turn matching devices into Disk
objects, scan for partitions, and create any relevant VolumeBase
objects.  Broadcast all of these events towards userspace so the
framework can decide what to mount.

Keep track of the primary VolumeBase, and update the new per-user
/storage/self/primary symlink for all started users.

Provide a reset command that framework uses to start from a known
state when runtime is restarted.  When vold is unexpectedly killed,
try recovering by unmounting everything under /mnt and /storage
before moving forward.

Remove UMS sharing support for now, since no current devices support
it; MTP is the recommended solution going forward because it offers
better multi-user support.

Switch killProcessesWithOpenFiles() to directly take signal.  Fix
one SOCK_CLOEXEC bug, but SELinux says there are more lurking.

Bug: 19993667
Change-Id: I2dad1303aa4667ec14c52f774e2a28b3c1c1ff6d
2015-03-30 19:46:31 -07:00
Jeff Sharkey
deb2405737 Checkpoint of better dynamic device support.
This is the first in a series of changes that are designed to
introduce better support for dynamic block devices.

It starts by defining a new Volume object which represents a storage
endpoint that knows how to mount, unmount, and format itself.  This
could be a filesystem directly on a partition, or it could be an
emulated FUSE filesystem, an ASEC, or an OBB.

These new volumes can be "stacked" so that unmounting a volume will
also unmount any volumes stacked above it.  Volumes that provide
shared storage can also be asked to present themselves (through bind
mounts) into user-specific mount areas.

This change also adds a Disk class which is created based on block
kernel netlink events.  Instead of waiting for partition events from
the kernel, it uses gptfdisk to read partition details and creates
the relevant Volume objects.

Change-Id: I0e8bc1f8f9dcb24405f5e795c0658998e22ae2f7
2015-03-13 10:12:57 -07:00