/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* TO DO: * 1. Perhaps keep several copies of the encrypted key, in case something * goes horribly wrong? * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cryptfs.h" #define LOG_TAG "Cryptfs" #include "cutils/log.h" #include "cutils/properties.h" #define DM_CRYPT_BUF_SIZE 4096 #define DATA_MNT_POINT "/data" char *me = "cryptfs"; static unsigned char saved_key_sha1[20] = { '\0' }; static int key_sha1_saved = 0; static void ioctl_init(struct dm_ioctl *io, size_t dataSize, const char *name, unsigned flags) { memset(io, 0, dataSize); io->data_size = dataSize; io->data_start = sizeof(struct dm_ioctl); io->version[0] = 4; io->version[1] = 0; io->version[2] = 0; io->flags = flags; if (name) { strncpy(io->name, name, sizeof(io->name)); } } static unsigned int get_blkdev_size(int fd) { unsigned int nr_sec; if ( (ioctl(fd, BLKGETSIZE, &nr_sec)) == -1) { nr_sec = 0; } return nr_sec; } /* key can be NULL, in which case just write out the footer. Useful to * update the failed mount count but not change the key. */ static int put_crypt_ftr_and_key(char *real_blk_name, struct crypt_mnt_ftr *crypt_ftr, unsigned char *key) { int fd; unsigned int nr_sec, cnt; off64_t off; int rc = -1; if ( (fd = open(real_blk_name, O_RDWR)) < 0) { SLOGE("Cannot open real block device %s\n", real_blk_name); return -1; } if ( (nr_sec = get_blkdev_size(fd)) == 0) { SLOGE("Cannot get size of block device %s\n", real_blk_name); goto errout; } /* If it's an encrypted Android partition, the last 16 Kbytes contain the * encryption info footer and key, and plenty of bytes to spare for future * growth. */ off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET; if (lseek64(fd, off, SEEK_SET) == -1) { SLOGE("Cannot seek to real block device footer\n"); goto errout; } if ((cnt = write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) { SLOGE("Cannot write real block device footer\n"); goto errout; } if (key) { if (crypt_ftr->keysize != 16) { SLOGE("Keysize of %d bits not supported for real block device %s\n", crypt_ftr->keysize * 8, real_blk_name); goto errout; } if ( (cnt = write(fd, key, crypt_ftr->keysize)) != crypt_ftr->keysize) { SLOGE("Cannot write key for real block device %s\n", real_blk_name); goto errout; } } /* Success! */ rc = 0; errout: close(fd); return rc; } static int get_crypt_ftr_and_key(char *real_blk_name, struct crypt_mnt_ftr *crypt_ftr, unsigned char *key) { int fd; unsigned int nr_sec, cnt; off64_t off; int rc = -1; if ( (fd = open(real_blk_name, O_RDWR)) < 0) { SLOGE("Cannot open real block device %s\n", real_blk_name); return -1; } if ( (nr_sec = get_blkdev_size(fd)) == 0) { SLOGE("Cannot get size of block device %s\n", real_blk_name); goto errout; } /* If it's an encrypted Android partition, the last 16 Kbytes contain the * encryption info footer and key, and plenty of bytes to spare for future * growth. */ off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET; if (lseek64(fd, off, SEEK_SET) == -1) { SLOGE("Cannot seek to real block device footer\n"); goto errout; } if ( (cnt = read(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) { SLOGE("Cannot read real block device footer\n"); goto errout; } if (crypt_ftr->magic != CRYPT_MNT_MAGIC) { SLOGE("Bad magic for real block device %s\n", real_blk_name); goto errout; } if (crypt_ftr->major_version != 1) { SLOGE("Cannot understand major version %d real block device footer\n", crypt_ftr->major_version); goto errout; } if (crypt_ftr->minor_version != 0) { SLOGW("Warning: crypto footer minor version %d, expected 0, continuing...\n", crypt_ftr->minor_version); } if (crypt_ftr->ftr_size > sizeof(struct crypt_mnt_ftr)) { /* the footer size is bigger than we expected. * Skip to it's stated end so we can read the key. */ if (lseek(fd, crypt_ftr->ftr_size - sizeof(struct crypt_mnt_ftr), SEEK_CUR) == -1) { SLOGE("Cannot seek to start of key\n"); goto errout; } } if (crypt_ftr->keysize != 16) { SLOGE("Keysize of %d bits not supported for real block device %s\n", crypt_ftr->keysize * 8, real_blk_name); goto errout; } if ( (cnt = read(fd, key, crypt_ftr->keysize)) != crypt_ftr->keysize) { SLOGE("Cannot read key for real block device %s\n", real_blk_name); goto errout; } /* Success! */ rc = 0; errout: close(fd); return rc; } /* Convert a binary key of specified length into an ascii hex string equivalent, * without the leading 0x and with null termination */ void convert_key_to_hex_ascii(unsigned char *master_key, unsigned int keysize, char *master_key_ascii) { unsigned int i, a; unsigned char nibble; for (i=0, a=0; i> 4) & 0xf; master_key_ascii[a] = nibble + (nibble > 9 ? 0x37 : 0x30); nibble = master_key[i] & 0xf; master_key_ascii[a+1] = nibble + (nibble > 9 ? 0x37 : 0x30); } /* Add the null termination */ master_key_ascii[a] = '\0'; } static int create_crypto_blk_dev(struct crypt_mnt_ftr *crypt_ftr, unsigned char *master_key, char *real_blk_name, char *crypto_blk_name) { char buffer[DM_CRYPT_BUF_SIZE]; char master_key_ascii[129]; /* Large enough to hold 512 bit key and null */ char *crypt_params; struct dm_ioctl *io; struct dm_target_spec *tgt; unsigned int minor; int fd; int retval = -1; char *name ="datadev"; /* FIX ME: Make me a parameter */ if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) { SLOGE("Cannot open device-mapper\n"); goto errout; } io = (struct dm_ioctl *) buffer; ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); if (ioctl(fd, DM_DEV_CREATE, io)) { SLOGE("Cannot create dm-crypt device\n"); goto errout; } /* Get the device status, in particular, the name of it's device file */ ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); if (ioctl(fd, DM_DEV_STATUS, io)) { SLOGE("Cannot retrieve dm-crypt device status\n"); goto errout; } minor = (io->dev & 0xff) | ((io->dev >> 12) & 0xfff00); snprintf(crypto_blk_name, MAXPATHLEN, "/dev/block/dm-%u", minor); /* Load the mapping table for this device */ tgt = (struct dm_target_spec *) &buffer[sizeof(struct dm_ioctl)]; ioctl_init(io, 4096, name, 0); io->target_count = 1; tgt->status = 0; tgt->sector_start = 0; tgt->length = crypt_ftr->fs_size; strcpy(tgt->target_type, "crypt"); crypt_params = buffer + sizeof(struct dm_ioctl) + sizeof(struct dm_target_spec); convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii); sprintf(crypt_params, "%s %s 0 %s 0", crypt_ftr->crypto_type_name, master_key_ascii, real_blk_name); crypt_params += strlen(crypt_params) + 1; crypt_params = (char *) (((unsigned long)crypt_params + 7) & ~8); /* Align to an 8 byte boundary */ tgt->next = crypt_params - buffer; if (ioctl(fd, DM_TABLE_LOAD, io)) { SLOGE("Cannot load dm-crypt mapping table.\n"); goto errout; } /* Resume this device to activate it */ ioctl_init(io, 4096, name, 0); if (ioctl(fd, DM_DEV_SUSPEND, io)) { SLOGE("Cannot resume the dm-crypt device\n"); goto errout; } /* We made it here with no errors. Woot! */ retval = 0; errout: close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */ return retval; } static int delete_crypto_blk_dev(char *crypto_blkdev) { int fd; char buffer[DM_CRYPT_BUF_SIZE]; struct dm_ioctl *io; char *name ="datadev"; /* FIX ME: Make me a paraameter */ int retval = -1; if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) { SLOGE("Cannot open device-mapper\n"); goto errout; } io = (struct dm_ioctl *) buffer; ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); if (ioctl(fd, DM_DEV_REMOVE, io)) { SLOGE("Cannot remove dm-crypt device\n"); goto errout; } /* We made it here with no errors. Woot! */ retval = 0; errout: close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */ return retval; } #define HASH_COUNT 2000 #define KEY_LEN_BYTES 16 #define IV_LEN_BYTES 16 static void pbkdf2(char *passwd, unsigned char *ikey) { unsigned char salt[32] = { 0 }; /* To Do: Make a salt based on some immutable data about this device. * IMEI, or MEID, or CPU serial number, or whatever we can find */ /* Turn the password into a key and IV that can decrypt the master key */ PKCS5_PBKDF2_HMAC_SHA1(passwd, strlen(passwd), salt, sizeof(salt), HASH_COUNT, KEY_LEN_BYTES+IV_LEN_BYTES, ikey); } static int encrypt_master_key(char *passwd, unsigned char *decrypted_master_key, unsigned char *encrypted_master_key) { unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */ EVP_CIPHER_CTX e_ctx; int encrypted_len, final_len; /* Turn the password into a key and IV that can decrypt the master key */ pbkdf2(passwd, ikey); /* Initialize the decryption engine */ if (! EVP_EncryptInit(&e_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) { SLOGE("EVP_EncryptInit failed\n"); return -1; } EVP_CIPHER_CTX_set_padding(&e_ctx, 0); /* Turn off padding as our data is block aligned */ /* Encrypt the master key */ if (! EVP_EncryptUpdate(&e_ctx, encrypted_master_key, &encrypted_len, decrypted_master_key, KEY_LEN_BYTES)) { SLOGE("EVP_EncryptUpdate failed\n"); return -1; } if (! EVP_EncryptFinal(&e_ctx, encrypted_master_key + encrypted_len, &final_len)) { SLOGE("EVP_EncryptFinal failed\n"); return -1; } if (encrypted_len + final_len != KEY_LEN_BYTES) { SLOGE("EVP_Encryption length check failed with %d, %d bytes\n", encrypted_len, final_len); return -1; } else { return 0; } } static int decrypt_master_key(char *passwd, unsigned char *encrypted_master_key, unsigned char *decrypted_master_key) { unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */ EVP_CIPHER_CTX d_ctx; int decrypted_len, final_len; /* Turn the password into a key and IV that can decrypt the master key */ pbkdf2(passwd, ikey); /* Initialize the decryption engine */ if (! EVP_DecryptInit(&d_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) { return -1; } EVP_CIPHER_CTX_set_padding(&d_ctx, 0); /* Turn off padding as our data is block aligned */ /* Decrypt the master key */ if (! EVP_DecryptUpdate(&d_ctx, decrypted_master_key, &decrypted_len, encrypted_master_key, KEY_LEN_BYTES)) { return -1; } if (! EVP_DecryptFinal(&d_ctx, decrypted_master_key + decrypted_len, &final_len)) { return -1; } if (decrypted_len + final_len != KEY_LEN_BYTES) { return -1; } else { return 0; } } static int create_encrypted_random_key(char *passwd, unsigned char *master_key) { int fd; unsigned char buf[KEY_LEN_BYTES]; unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */ unsigned char salt[32] = { 0 }; EVP_CIPHER_CTX e_ctx; int encrypted_len, final_len; /* Get some random bits for a key */ fd = open("/dev/urandom", O_RDONLY); read(fd, buf, sizeof(buf)); close(fd); /* Now encrypt it with the password */ return encrypt_master_key(passwd, buf, master_key); } static int get_orig_mount_parms(char *mount_point, char *fs_type, char *real_blkdev, unsigned long *mnt_flags, char *fs_options) { char mount_point2[32]; char fs_flags[32]; property_get("ro.crypto.fs_type", fs_type, ""); property_get("ro.crypto.fs_real_blkdev", real_blkdev, ""); property_get("ro.crypto.fs_mnt_point", mount_point2, ""); property_get("ro.crypto.fs_options", fs_options, ""); property_get("ro.crypto.fs_flags", fs_flags, ""); *mnt_flags = strtol(fs_flags, 0, 0); if (strcmp(mount_point, mount_point2)) { /* Consistency check. These should match. If not, something odd happened. */ return -1; } return 0; } static int wait_and_unmount(char *mountpoint) { int i, rc; #define WAIT_UNMOUNT_COUNT 20 /* Now umount the tmpfs filesystem */ for (i=0; ifs_size = %lld\n", crypt_ftr.fs_size); orig_failed_decrypt_count = crypt_ftr.failed_decrypt_count; if (! (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) ) { decrypt_master_key(passwd, encrypted_master_key, decrypted_master_key); } if (create_crypto_blk_dev(&crypt_ftr, decrypted_master_key, real_blkdev, crypto_blkdev)) { SLOGE("Error creating decrypted block device\n"); return -1; } /* If init detects an encrypted filesystme, it writes a file for each such * encrypted fs into the tmpfs /data filesystem, and then the framework finds those * files and passes that data to me */ /* Create a tmp mount point to try mounting the decryptd fs * Since we're here, the mount_point should be a tmpfs filesystem, so make * a directory in it to test mount the decrypted filesystem. */ sprintf(tmp_mount_point, "%s/tmp_mnt", mount_point); mkdir(tmp_mount_point, 0755); if ( mount(crypto_blkdev, tmp_mount_point, "ext4", MS_RDONLY, "") ) { SLOGE("Error temp mounting decrypted block device\n"); delete_crypto_blk_dev(crypto_blkdev); crypt_ftr.failed_decrypt_count++; } else { /* Success, so just umount and we'll mount it properly when we restart * the framework. */ umount(tmp_mount_point); crypt_ftr.failed_decrypt_count = 0; } if (orig_failed_decrypt_count != crypt_ftr.failed_decrypt_count) { put_crypt_ftr_and_key(real_blkdev, &crypt_ftr, 0); } if (crypt_ftr.failed_decrypt_count) { /* We failed to mount the device, so return an error */ rc = crypt_ftr.failed_decrypt_count; } else { /* Woot! Success! Save the name of the crypto block device * so we can mount it when restarting the framework. */ property_set("ro.crypto.fs_crypto_blkdev", crypto_blkdev); /* Also save a SHA1 of the master key so we can know if we * successfully decrypted the key when we want to change the * password on it. */ SHA1(decrypted_master_key, KEY_LEN_BYTES, saved_key_sha1); key_sha1_saved = 1; rc = 0; } return rc; } int cryptfs_check_passwd(char *passwd) { int rc = -1; rc = test_mount_encrypted_fs(passwd, DATA_MNT_POINT); return rc; } /* Initialize a crypt_mnt_ftr structure. The keysize is * defaulted to 16 bytes, and the filesystem size to 0. * Presumably, at a minimum, the caller will update the * filesystem size and crypto_type_name after calling this function. */ static void cryptfs_init_crypt_mnt_ftr(struct crypt_mnt_ftr *ftr) { ftr->magic = CRYPT_MNT_MAGIC; ftr->major_version = 1; ftr->minor_version = 0; ftr->ftr_size = sizeof(struct crypt_mnt_ftr); ftr->flags = 0; ftr->keysize = 16; ftr->spare1 = 0; ftr->fs_size = 0; ftr->failed_decrypt_count = 0; ftr->crypto_type_name[0] = '\0'; } static int cryptfs_enable_wipe(char *crypto_blkdev, off64_t size) { char cmdline[256]; int rc = -1; snprintf(cmdline, sizeof(cmdline), "/system/bin/make_ext4fs -a /data -l %lld %s", size * 512, crypto_blkdev); SLOGI("Making empty filesystem with command %s\n", cmdline); if (system(cmdline)) { SLOGE("Error creating empty filesystem on %s\n", crypto_blkdev); } else { SLOGD("Successfully created empty filesystem on %s\n", crypto_blkdev); rc = 0; } return rc; } static inline int unix_read(int fd, void* buff, int len) { int ret; do { ret = read(fd, buff, len); } while (ret < 0 && errno == EINTR); return ret; } static inline int unix_write(int fd, const void* buff, int len) { int ret; do { ret = write(fd, buff, len); } while (ret < 0 && errno == EINTR); return ret; } #define CRYPT_INPLACE_BUFSIZE 4096 #define CRYPT_SECTORS_PER_BUFSIZE (CRYPT_INPLACE_BUFSIZE / 512) static int cryptfs_enable_inplace(char *crypto_blkdev, char *real_blkdev, off64_t size) { int realfd, cryptofd; char *buf[CRYPT_INPLACE_BUFSIZE]; int rc = -1; off64_t numblocks, i, remainder; off64_t one_pct, cur_pct, new_pct; if ( (realfd = open(real_blkdev, O_RDONLY)) < 0) { SLOGE("Error opening real_blkdev %s for inplace encrypt\n", real_blkdev); return -1; } if ( (cryptofd = open(crypto_blkdev, O_WRONLY)) < 0) { SLOGE("Error opening crypto_blkdev %s for inplace encrypt\n", crypto_blkdev); close(realfd); return -1; } /* This is pretty much a simple loop of reading 4K, and writing 4K. * The size passed in is the number of 512 byte sectors in the filesystem. * So compute the number of whole 4K blocks we should read/write, * and the remainder. */ numblocks = size / CRYPT_SECTORS_PER_BUFSIZE; remainder = size % CRYPT_SECTORS_PER_BUFSIZE; SLOGE("Encrypting filesystem in place..."); one_pct = numblocks / 100; cur_pct = 0; /* process the majority of the filesystem in blocks */ for (i=0; i cur_pct) { char buf[8]; cur_pct = new_pct; snprintf(buf, sizeof(buf), "%lld", cur_pct); property_set("vold.encrypt_progress", buf); } if (unix_read(realfd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) { SLOGE("Error reading real_blkdev %s for inplace encrypt\n", crypto_blkdev); goto errout; } if (unix_write(cryptofd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) { SLOGE("Error writing crypto_blkdev %s for inplace encrypt\n", crypto_blkdev); goto errout; } } /* Do any remaining sectors */ for (i=0; i