/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "Checkpoint" #include "Checkpoint.h" #include "VoldUtil.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using android::base::SetProperty; using android::binder::Status; using android::fs_mgr::Fstab; using android::fs_mgr::ReadDefaultFstab; using android::fs_mgr::ReadFstabFromFile; using android::hardware::hidl_string; using android::hardware::boot::V1_0::BoolResult; using android::hardware::boot::V1_0::CommandResult; using android::hardware::boot::V1_0::IBootControl; using android::hardware::boot::V1_0::Slot; namespace android { namespace vold { namespace { const std::string kMetadataCPFile = "/metadata/vold/checkpoint"; bool setBowState(std::string const& block_device, std::string const& state) { if (block_device.substr(0, 5) != "/dev/") { LOG(ERROR) << "Expected block device, got " << block_device; return false; } std::string state_filename = std::string("/sys/") + block_device.substr(5) + "/bow/state"; if (!android::base::WriteStringToFile(state, state_filename)) { PLOG(ERROR) << "Failed to write to file " << state_filename; return false; } return true; } } // namespace Status cp_supportsCheckpoint(bool& result) { result = false; for (const auto& entry : fstab_default) { if (entry.fs_mgr_flags.checkpoint_blk || entry.fs_mgr_flags.checkpoint_fs) { result = true; return Status::ok(); } } return Status::ok(); } Status cp_startCheckpoint(int retry) { if (retry < -1) return Status::fromExceptionCode(EINVAL, "Retry count must be more than -1"); std::string content = std::to_string(retry + 1); if (retry == -1) { sp module = IBootControl::getService(); if (module) { std::string suffix; auto cb = [&suffix](hidl_string s) { suffix = s; }; if (module->getSuffix(module->getCurrentSlot(), cb).isOk()) content += " " + suffix; } } if (!android::base::WriteStringToFile(content, kMetadataCPFile)) return Status::fromExceptionCode(errno, "Failed to write checkpoint file"); return Status::ok(); } namespace { bool isCheckpointing = false; } Status cp_commitChanges() { if (!isCheckpointing) { return Status::ok(); } sp module = IBootControl::getService(); if (module) { CommandResult cr; module->markBootSuccessful([&cr](CommandResult result) { cr = result; }); if (!cr.success) { std::string msg = "Error marking booted successfully: " + std::string(cr.errMsg); return Status::fromExceptionCode(EINVAL, String8(msg.c_str())); } LOG(INFO) << "Marked slot as booted successfully."; } // Must take action for list of mounted checkpointed things here // To do this, we walk the list of mounted file systems. // But we also need to get the matching fstab entries to see // the original flags std::string err_str; Fstab mounts; if (!ReadFstabFromFile("/proc/mounts", &mounts)) { return Status::fromExceptionCode(EINVAL, "Failed to get /proc/mounts"); } // Walk mounted file systems for (const auto& mount_rec : mounts) { const auto fstab_rec = GetEntryForMountPoint(&fstab_default, mount_rec.mount_point); if (!fstab_rec) continue; if (fstab_rec->fs_mgr_flags.checkpoint_fs) { if (fstab_rec->fs_type == "f2fs") { std::string options = mount_rec.fs_options + ",checkpoint=enable"; if (mount(mount_rec.blk_device.c_str(), mount_rec.mount_point.c_str(), "none", MS_REMOUNT | fstab_rec->flags, options.c_str())) { return Status::fromExceptionCode(EINVAL, "Failed to remount"); } } } else if (fstab_rec->fs_mgr_flags.checkpoint_blk) { if (!setBowState(mount_rec.blk_device, "2")) return Status::fromExceptionCode(EINVAL, "Failed to set bow state"); } } SetProperty("vold.checkpoint_committed", "1"); LOG(INFO) << "Checkpoint has been committed."; isCheckpointing = false; if (!android::base::RemoveFileIfExists(kMetadataCPFile, &err_str)) return Status::fromExceptionCode(errno, err_str.c_str()); return Status::ok(); } Status cp_abortChanges() { android_reboot(ANDROID_RB_RESTART2, 0, nullptr); return Status::ok(); } bool cp_needsRollback() { std::string content; bool ret; ret = android::base::ReadFileToString(kMetadataCPFile, &content); if (ret) { if (content == "0") return true; if (content.substr(0, 3) == "-1 ") { std::string oldSuffix = content.substr(3); sp module = IBootControl::getService(); std::string newSuffix; if (module) { auto cb = [&newSuffix](hidl_string s) { newSuffix = s; }; module->getSuffix(module->getCurrentSlot(), cb); if (oldSuffix == newSuffix) return true; } } } return false; } bool cp_needsCheckpoint() { bool ret; std::string content; sp module = IBootControl::getService(); if (module && module->isSlotMarkedSuccessful(module->getCurrentSlot()) == BoolResult::FALSE) { isCheckpointing = true; return true; } ret = android::base::ReadFileToString(kMetadataCPFile, &content); if (ret) { ret = content != "0"; isCheckpointing = ret; return ret; } return false; } Status cp_prepareCheckpoint() { if (!isCheckpointing) { return Status::ok(); } Fstab mounts; if (!ReadFstabFromFile("/proc/mounts", &mounts)) { return Status::fromExceptionCode(EINVAL, "Failed to get /proc/mounts"); } for (const auto& mount_rec : mounts) { const auto fstab_rec = GetEntryForMountPoint(&fstab_default, mount_rec.mount_point); if (!fstab_rec) continue; if (fstab_rec->fs_mgr_flags.checkpoint_blk) { android::base::unique_fd fd( TEMP_FAILURE_RETRY(open(mount_rec.mount_point.c_str(), O_RDONLY | O_CLOEXEC))); if (!fd) { PLOG(ERROR) << "Failed to open mount point" << mount_rec.mount_point; continue; } struct fstrim_range range = {}; range.len = ULLONG_MAX; if (ioctl(fd, FITRIM, &range)) { PLOG(ERROR) << "Failed to trim " << mount_rec.mount_point; continue; } setBowState(mount_rec.blk_device, "1"); } } return Status::ok(); } namespace { const int kSectorSize = 512; typedef uint64_t sector_t; struct log_entry { sector_t source; // in sectors of size kSectorSize sector_t dest; // in sectors of size kSectorSize uint32_t size; // in bytes uint32_t checksum; } __attribute__((packed)); struct log_sector_v1_0 { uint32_t magic; uint16_t header_version; uint16_t header_size; uint32_t block_size; uint32_t count; uint32_t sequence; uint64_t sector0; } __attribute__((packed)); // MAGIC is BOW in ascii const int kMagic = 0x00574f42; void crc32(const void* data, size_t n_bytes, uint32_t* crc) { static uint32_t table[0x100] = { 0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3, 0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91, 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE, 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7, 0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5, 0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B, 0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59, 0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F, 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, 0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D, 0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433, 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01, 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, 0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457, 0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65, 0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB, 0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9, 0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F, 0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD, 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A, 0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683, 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1, 0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7, 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC, 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5, 0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B, 0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79, 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236, 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F, 0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D, 0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713, 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21, 0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777, 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45, 0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2, 0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB, 0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9, 0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF, 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94, 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D}; for (size_t i = 0; i < n_bytes; ++i) { *crc ^= ((uint8_t*)data)[i]; *crc = table[(uint8_t)*crc] ^ *crc >> 8; } } // A map of relocations. // The map must be initialized so that relocations[0] = 0 // During restore, we replay the log records in reverse, copying from dest to // source // To validate, we must be able to read the 'dest' sectors as though they had // been copied but without actually copying. This map represents how the sectors // would have been moved. To read a sector s, find the index <= s and read // relocations[index] + s - index typedef std::map Relocations; void relocate(Relocations& relocations, sector_t dest, sector_t source, int count) { // Find first one we're equal to or greater than auto s = --relocations.upper_bound(source); // Take slice Relocations slice; slice[dest] = source - s->first + s->second; ++s; // Add rest of elements for (; s != relocations.end() && s->first < source + count; ++s) slice[dest - source + s->first] = s->second; // Split range at end of dest auto dest_end = --relocations.upper_bound(dest + count); relocations[dest + count] = dest + count - dest_end->first + dest_end->second; // Remove all elements in [dest, dest + count) relocations.erase(relocations.lower_bound(dest), relocations.lower_bound(dest + count)); // Add new elements relocations.insert(slice.begin(), slice.end()); } // Read from the device // If we are validating, the read occurs as though the relocations had happened std::vector relocatedRead(int device_fd, Relocations const& relocations, bool validating, sector_t sector, uint32_t size, uint32_t block_size) { if (!validating) { std::vector buffer(size); lseek64(device_fd, sector * kSectorSize, SEEK_SET); read(device_fd, &buffer[0], size); return buffer; } std::vector buffer(size); for (uint32_t i = 0; i < size; i += block_size, sector += block_size / kSectorSize) { auto relocation = --relocations.upper_bound(sector); lseek64(device_fd, (sector + relocation->second - relocation->first) * kSectorSize, SEEK_SET); read(device_fd, &buffer[i], block_size); } return buffer; } } // namespace Status cp_restoreCheckpoint(const std::string& blockDevice) { bool validating = true; std::string action = "Validating"; for (;;) { Relocations relocations; relocations[0] = 0; Status status = Status::ok(); LOG(INFO) << action << " checkpoint on " << blockDevice; base::unique_fd device_fd(open(blockDevice.c_str(), O_RDWR)); if (device_fd < 0) { PLOG(ERROR) << "Cannot open " << blockDevice; return Status::fromExceptionCode(errno, ("Cannot open " + blockDevice).c_str()); } log_sector_v1_0 original_ls; read(device_fd, reinterpret_cast(&original_ls), sizeof(original_ls)); if (original_ls.magic != kMagic) { LOG(ERROR) << "No magic"; return Status::fromExceptionCode(EINVAL, "No magic"); } LOG(INFO) << action << " " << original_ls.sequence << " log sectors"; for (int sequence = original_ls.sequence; sequence >= 0 && status.isOk(); sequence--) { auto buffer = relocatedRead(device_fd, relocations, validating, 0, original_ls.block_size, original_ls.block_size); log_sector_v1_0 const& ls = *reinterpret_cast(&buffer[0]); if (ls.magic != kMagic) { LOG(ERROR) << "No magic!"; status = Status::fromExceptionCode(EINVAL, "No magic"); break; } if (ls.block_size != original_ls.block_size) { LOG(ERROR) << "Block size mismatch!"; status = Status::fromExceptionCode(EINVAL, "Block size mismatch"); break; } if ((int)ls.sequence != sequence) { LOG(ERROR) << "Expecting log sector " << sequence << " but got " << ls.sequence; status = Status::fromExceptionCode( EINVAL, ("Expecting log sector " + std::to_string(sequence) + " but got " + std::to_string(ls.sequence)) .c_str()); break; } LOG(INFO) << action << " from log sector " << ls.sequence; for (log_entry* le = reinterpret_cast(&buffer[ls.header_size]) + ls.count - 1; le >= reinterpret_cast(&buffer[ls.header_size]); --le) { // This is very noisy - limit to DEBUG only LOG(VERBOSE) << action << " " << le->size << " bytes from sector " << le->dest << " to " << le->source << " with checksum " << std::hex << le->checksum; auto buffer = relocatedRead(device_fd, relocations, validating, le->dest, le->size, ls.block_size); uint32_t checksum = le->source / (ls.block_size / kSectorSize); for (size_t i = 0; i < le->size; i += ls.block_size) { crc32(&buffer[i], ls.block_size, &checksum); } if (le->checksum && checksum != le->checksum) { LOG(ERROR) << "Checksums don't match " << std::hex << checksum; status = Status::fromExceptionCode(EINVAL, "Checksums don't match"); break; } if (validating) { relocate(relocations, le->source, le->dest, le->size / kSectorSize); } else { lseek64(device_fd, le->source * kSectorSize, SEEK_SET); write(device_fd, &buffer[0], le->size); } } } if (!status.isOk()) { if (!validating) { LOG(ERROR) << "Checkpoint restore failed even though checkpoint validation passed"; return status; } LOG(WARNING) << "Checkpoint validation failed - attempting to roll forward"; auto buffer = relocatedRead(device_fd, relocations, false, original_ls.sector0, original_ls.block_size, original_ls.block_size); lseek64(device_fd, 0, SEEK_SET); write(device_fd, &buffer[0], original_ls.block_size); return Status::ok(); } if (!validating) break; validating = false; action = "Restoring"; } return Status::ok(); } Status cp_markBootAttempt() { std::string oldContent, newContent; int retry = 0; struct stat st; int result = stat(kMetadataCPFile.c_str(), &st); // If the file doesn't exist, we aren't managing a checkpoint retry counter if (result != 0) return Status::ok(); if (!android::base::ReadFileToString(kMetadataCPFile, &oldContent)) { PLOG(ERROR) << "Failed to read checkpoint file"; return Status::fromExceptionCode(errno, "Failed to read checkpoint file"); } std::string retryContent = oldContent.substr(0, oldContent.find_first_of(" ")); if (!android::base::ParseInt(retryContent, &retry)) return Status::fromExceptionCode(EINVAL, "Could not parse retry count"); if (retry > 0) { retry--; newContent = std::to_string(retry); if (!android::base::WriteStringToFile(newContent, kMetadataCPFile)) return Status::fromExceptionCode(errno, "Could not write checkpoint file"); } return Status::ok(); } } // namespace vold } // namespace android