/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "KeyUtil.h" #include #include #include #include #include #include #include #include #include #include #include "KeyStorage.h" #include "Utils.h" namespace android { namespace vold { constexpr int FS_AES_256_XTS_KEY_SIZE = 64; bool randomKey(KeyBuffer* key) { *key = KeyBuffer(FS_AES_256_XTS_KEY_SIZE); if (ReadRandomBytes(key->size(), key->data()) != 0) { // TODO status_t plays badly with PLOG, fix it. LOG(ERROR) << "Random read failed"; return false; } return true; } // Return true if the kernel supports the ioctls to add/remove fscrypt keys // directly to/from the filesystem. bool isFsKeyringSupported(void) { static bool initialized = false; static bool supported; if (!initialized) { android::base::unique_fd fd(open("/data", O_RDONLY | O_DIRECTORY | O_CLOEXEC)); // FS_IOC_ADD_ENCRYPTION_KEY with a NULL argument will fail with ENOTTY // if the ioctl isn't supported. Otherwise it will fail with another // error code such as EFAULT. errno = 0; (void)ioctl(fd, FS_IOC_ADD_ENCRYPTION_KEY, NULL); if (errno == ENOTTY) { LOG(INFO) << "Kernel doesn't support FS_IOC_ADD_ENCRYPTION_KEY. Falling back to " "session keyring"; supported = false; } else { if (errno != EFAULT) { PLOG(WARNING) << "Unexpected error from FS_IOC_ADD_ENCRYPTION_KEY"; } LOG(DEBUG) << "Detected support for FS_IOC_ADD_ENCRYPTION_KEY"; supported = true; } // There's no need to check for FS_IOC_REMOVE_ENCRYPTION_KEY, since it's // guaranteed to be available if FS_IOC_ADD_ENCRYPTION_KEY is. There's // also no need to check for support on external volumes separately from // /data, since either the kernel supports the ioctls on all // fscrypt-capable filesystems or it doesn't. initialized = true; } return supported; } // Get raw keyref - used to make keyname and to pass to ioctl static std::string generateKeyRef(const uint8_t* key, int length) { SHA512_CTX c; SHA512_Init(&c); SHA512_Update(&c, key, length); unsigned char key_ref1[SHA512_DIGEST_LENGTH]; SHA512_Final(key_ref1, &c); SHA512_Init(&c); SHA512_Update(&c, key_ref1, SHA512_DIGEST_LENGTH); unsigned char key_ref2[SHA512_DIGEST_LENGTH]; SHA512_Final(key_ref2, &c); static_assert(FS_KEY_DESCRIPTOR_SIZE <= SHA512_DIGEST_LENGTH, "Hash too short for descriptor"); return std::string((char*)key_ref2, FS_KEY_DESCRIPTOR_SIZE); } static bool fillKey(const KeyBuffer& key, fscrypt_key* fs_key) { if (key.size() != FS_AES_256_XTS_KEY_SIZE) { LOG(ERROR) << "Wrong size key " << key.size(); return false; } static_assert(FS_AES_256_XTS_KEY_SIZE <= sizeof(fs_key->raw), "Key too long!"); fs_key->mode = FS_ENCRYPTION_MODE_AES_256_XTS; fs_key->size = key.size(); memset(fs_key->raw, 0, sizeof(fs_key->raw)); memcpy(fs_key->raw, key.data(), key.size()); return true; } static char const* const NAME_PREFIXES[] = {"ext4", "f2fs", "fscrypt", nullptr}; static std::string keyrefstring(const std::string& raw_ref) { std::ostringstream o; for (unsigned char i : raw_ref) { o << std::hex << std::setw(2) << std::setfill('0') << (int)i; } return o.str(); } static std::string buildLegacyKeyName(const std::string& prefix, const std::string& raw_ref) { return prefix + ":" + keyrefstring(raw_ref); } // Get the ID of the keyring we store all fscrypt keys in when the kernel is too // old to support FS_IOC_ADD_ENCRYPTION_KEY and FS_IOC_REMOVE_ENCRYPTION_KEY. static bool fscryptKeyring(key_serial_t* device_keyring) { *device_keyring = keyctl_search(KEY_SPEC_SESSION_KEYRING, "keyring", "fscrypt", 0); if (*device_keyring == -1) { PLOG(ERROR) << "Unable to find device keyring"; return false; } return true; } // Add an encryption key to the legacy global session keyring. static bool installKeyLegacy(const KeyBuffer& key, const std::string& raw_ref) { // Place fscrypt_key into automatically zeroing buffer. KeyBuffer fsKeyBuffer(sizeof(fscrypt_key)); fscrypt_key& fs_key = *reinterpret_cast(fsKeyBuffer.data()); if (!fillKey(key, &fs_key)) return false; key_serial_t device_keyring; if (!fscryptKeyring(&device_keyring)) return false; for (char const* const* name_prefix = NAME_PREFIXES; *name_prefix != nullptr; name_prefix++) { auto ref = buildLegacyKeyName(*name_prefix, raw_ref); key_serial_t key_id = add_key("logon", ref.c_str(), (void*)&fs_key, sizeof(fs_key), device_keyring); if (key_id == -1) { PLOG(ERROR) << "Failed to insert key into keyring " << device_keyring; return false; } LOG(DEBUG) << "Added key " << key_id << " (" << ref << ") to keyring " << device_keyring << " in process " << getpid(); } return true; } // Build a struct fscrypt_key_specifier for use in the key management ioctls. static bool buildKeySpecifier(fscrypt_key_specifier* spec, const std::string& raw_ref, int policy_version) { switch (policy_version) { case 1: if (raw_ref.size() != FSCRYPT_KEY_DESCRIPTOR_SIZE) { LOG(ERROR) << "Invalid key specifier size for v1 encryption policy: " << raw_ref.size(); return false; } spec->type = FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR; memcpy(spec->u.descriptor, raw_ref.c_str(), FSCRYPT_KEY_DESCRIPTOR_SIZE); return true; case 2: if (raw_ref.size() != FSCRYPT_KEY_IDENTIFIER_SIZE) { LOG(ERROR) << "Invalid key specifier size for v2 encryption policy: " << raw_ref.size(); return false; } spec->type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER; memcpy(spec->u.identifier, raw_ref.c_str(), FSCRYPT_KEY_IDENTIFIER_SIZE); return true; default: LOG(ERROR) << "Invalid encryption policy version: " << policy_version; return false; } } // Install a file-based encryption key to the kernel, for use by encrypted files // on the specified filesystem using the specified encryption policy version. // // For v1 policies, we use FS_IOC_ADD_ENCRYPTION_KEY if the kernel supports it. // Otherwise we add the key to the legacy global session keyring. // // For v2 policies, we always use FS_IOC_ADD_ENCRYPTION_KEY; it's the only way // the kernel supports. // // Returns %true on success, %false on failure. On success also sets *raw_ref // to the raw key reference for use in the encryption policy. bool installKey(const KeyBuffer& key, const std::string& mountpoint, int policy_version, std::string* raw_ref) { // Put the fscrypt_add_key_arg in an automatically-zeroing buffer, since we // have to copy the raw key into it. KeyBuffer arg_buf(sizeof(struct fscrypt_add_key_arg) + key.size(), 0); struct fscrypt_add_key_arg* arg = (struct fscrypt_add_key_arg*)arg_buf.data(); // Initialize the "key specifier", which is like a name for the key. switch (policy_version) { case 1: // A key for a v1 policy is specified by an arbitrary 8-byte // "descriptor", which must be provided by userspace. We use the // first 8 bytes from the double SHA-512 of the key itself. *raw_ref = generateKeyRef((const uint8_t*)key.data(), key.size()); if (!isFsKeyringSupported()) { return installKeyLegacy(key, *raw_ref); } if (!buildKeySpecifier(&arg->key_spec, *raw_ref, policy_version)) { return false; } break; case 2: // A key for a v2 policy is specified by an 16-byte "identifier", // which is a cryptographic hash of the key itself which the kernel // computes and returns. Any user-provided value is ignored; we // just need to set the specifier type to indicate that we're adding // this type of key. arg->key_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER; break; default: LOG(ERROR) << "Invalid encryption policy version: " << policy_version; return false; } // Provide the raw key. arg->raw_size = key.size(); memcpy(arg->raw, key.data(), key.size()); android::base::unique_fd fd(open(mountpoint.c_str(), O_RDONLY | O_DIRECTORY | O_CLOEXEC)); if (fd == -1) { PLOG(ERROR) << "Failed to open " << mountpoint << " to install key"; return false; } if (ioctl(fd, FS_IOC_ADD_ENCRYPTION_KEY, arg) != 0) { PLOG(ERROR) << "Failed to install fscrypt key to " << mountpoint; return false; } if (arg->key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { // Retrieve the key identifier that the kernel computed. *raw_ref = std::string((char*)arg->key_spec.u.identifier, FSCRYPT_KEY_IDENTIFIER_SIZE); } LOG(DEBUG) << "Installed fscrypt key with ref " << keyrefstring(*raw_ref) << " to " << mountpoint; return true; } // Remove an encryption key from the legacy global session keyring. static bool evictKeyLegacy(const std::string& raw_ref) { key_serial_t device_keyring; if (!fscryptKeyring(&device_keyring)) return false; bool success = true; for (char const* const* name_prefix = NAME_PREFIXES; *name_prefix != nullptr; name_prefix++) { auto ref = buildLegacyKeyName(*name_prefix, raw_ref); auto key_serial = keyctl_search(device_keyring, "logon", ref.c_str(), 0); // Unlink the key from the keyring. Prefer unlinking to revoking or // invalidating, since unlinking is actually no less secure currently, and // it avoids bugs in certain kernel versions where the keyring key is // referenced from places it shouldn't be. if (keyctl_unlink(key_serial, device_keyring) != 0) { PLOG(ERROR) << "Failed to unlink key with serial " << key_serial << " ref " << ref; success = false; } else { LOG(DEBUG) << "Unlinked key with serial " << key_serial << " ref " << ref; } } return success; } // Evict a file-based encryption key from the kernel. // // We use FS_IOC_REMOVE_ENCRYPTION_KEY if the kernel supports it. Otherwise we // remove the key from the legacy global session keyring. // // In the latter case, the caller is responsible for dropping caches. bool evictKey(const std::string& mountpoint, const std::string& raw_ref, int policy_version) { if (policy_version == 1 && !isFsKeyringSupported()) { return evictKeyLegacy(raw_ref); } android::base::unique_fd fd(open(mountpoint.c_str(), O_RDONLY | O_DIRECTORY | O_CLOEXEC)); if (fd == -1) { PLOG(ERROR) << "Failed to open " << mountpoint << " to evict key"; return false; } struct fscrypt_remove_key_arg arg; memset(&arg, 0, sizeof(arg)); if (!buildKeySpecifier(&arg.key_spec, raw_ref, policy_version)) { return false; } std::string ref = keyrefstring(raw_ref); if (ioctl(fd, FS_IOC_REMOVE_ENCRYPTION_KEY, &arg) != 0) { PLOG(ERROR) << "Failed to evict fscrypt key with ref " << ref << " from " << mountpoint; return false; } LOG(DEBUG) << "Evicted fscrypt key with ref " << ref << " from " << mountpoint; if (arg.removal_status_flags & FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS) { // Should never happen because keys are only added/removed as root. LOG(ERROR) << "Unexpected case: key with ref " << ref << " is still added by other users!"; } else if (arg.removal_status_flags & FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY) { LOG(ERROR) << "Files still open after removing key with ref " << ref << ". These files were not locked!"; } return true; } bool retrieveAndInstallKey(bool create_if_absent, const KeyAuthentication& key_authentication, const std::string& key_path, const std::string& tmp_path, const std::string& volume_uuid, int policy_version, std::string* key_ref) { KeyBuffer key; if (pathExists(key_path)) { LOG(DEBUG) << "Key exists, using: " << key_path; if (!retrieveKey(key_path, key_authentication, &key)) return false; } else { if (!create_if_absent) { LOG(ERROR) << "No key found in " << key_path; return false; } LOG(INFO) << "Creating new key in " << key_path; if (!randomKey(&key)) return false; if (!storeKeyAtomically(key_path, tmp_path, key_authentication, key)) return false; } if (!installKey(key, BuildDataPath(volume_uuid), policy_version, key_ref)) { LOG(ERROR) << "Failed to install key in " << key_path; return false; } return true; } bool retrieveKey(bool create_if_absent, const std::string& key_path, const std::string& tmp_path, KeyBuffer* key, bool keepOld) { if (pathExists(key_path)) { LOG(DEBUG) << "Key exists, using: " << key_path; if (!retrieveKey(key_path, kEmptyAuthentication, key, keepOld)) return false; } else { if (!create_if_absent) { LOG(ERROR) << "No key found in " << key_path; return false; } LOG(INFO) << "Creating new key in " << key_path; if (!randomKey(key)) return false; if (!storeKeyAtomically(key_path, tmp_path, kEmptyAuthentication, *key)) return false; } return true; } } // namespace vold } // namespace android