/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "FsCrypt.h" #include "Checkpoint.h" #include "KeyStorage.h" #include "KeyUtil.h" #include "Utils.h" #include "VoldUtil.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "android/os/IVold.h" #define MANAGE_MISC_DIRS 0 #include #include #include #include #include #include #include #include #include #include using android::base::Basename; using android::base::Realpath; using android::base::StartsWith; using android::base::StringPrintf; using android::fs_mgr::GetEntryForMountPoint; using android::vold::BuildDataPath; using android::vold::IsDotOrDotDot; using android::vold::IsFilesystemSupported; using android::vold::kEmptyAuthentication; using android::vold::KeyBuffer; using android::vold::KeyGeneration; using android::vold::retrieveKey; using android::vold::retrieveOrGenerateKey; using android::vold::SetDefaultAcl; using android::vold::SetQuotaInherit; using android::vold::SetQuotaProjectId; using namespace android::fscrypt; using namespace android::dm; namespace { const std::string device_key_dir = std::string() + DATA_MNT_POINT + fscrypt_unencrypted_folder; const std::string device_key_path = device_key_dir + "/key"; const std::string device_key_temp = device_key_dir + "/temp"; const std::string user_key_dir = std::string() + DATA_MNT_POINT + "/misc/vold/user_keys"; const std::string user_key_temp = user_key_dir + "/temp"; const std::string prepare_subdirs_path = "/system/bin/vold_prepare_subdirs"; const std::string systemwide_volume_key_dir = std::string() + DATA_MNT_POINT + "/misc/vold/volume_keys"; const std::string data_data_dir = std::string() + DATA_MNT_POINT + "/data"; const std::string data_user_0_dir = std::string() + DATA_MNT_POINT + "/user/0"; const std::string media_obb_dir = std::string() + DATA_MNT_POINT + "/media/obb"; // The file encryption options to use on the /data filesystem EncryptionOptions s_data_options; // Some users are ephemeral; don't try to store or wipe their keys on disk. std::set s_ephemeral_users; // New CE keys that haven't been committed to disk yet std::map s_new_ce_keys; // CE key fixation operations that have been deferred to checkpoint commit std::map s_deferred_fixations; // The system DE encryption policy EncryptionPolicy s_device_policy; // Struct that holds the EncryptionPolicy for each CE or DE key that is currently installed // (added to the kernel) for a particular user struct UserPolicies { // Internal storage policy. Exists whenever a user's UserPolicies exists at all, and used // instead of a map entry keyed by an empty UUID to make this invariant explicit. EncryptionPolicy internal; // Adoptable storage policies, indexed by (nonempty) volume UUID std::map adoptable; }; // The currently installed CE and DE keys for each user. Protected by VolumeManager::mCryptLock. std::map s_ce_policies; std::map s_de_policies; } // namespace // Returns KeyGeneration suitable for key as described in EncryptionOptions static KeyGeneration makeGen(const EncryptionOptions& options) { if (options.version == 0) { LOG(ERROR) << "EncryptionOptions not initialized"; return android::vold::neverGen(); } return KeyGeneration{FSCRYPT_MAX_KEY_SIZE, true, options.use_hw_wrapped_key}; } static const char* escape_empty(const std::string& value) { return value.empty() ? "null" : value.c_str(); } static std::string get_de_key_path(userid_t user_id) { return StringPrintf("%s/de/%d", user_key_dir.c_str(), user_id); } static std::string get_ce_key_directory_path(userid_t user_id) { return StringPrintf("%s/ce/%d", user_key_dir.c_str(), user_id); } // Returns the keys newest first static std::vector get_ce_key_paths(const std::string& directory_path) { auto dirp = std::unique_ptr(opendir(directory_path.c_str()), closedir); if (!dirp) { PLOG(ERROR) << "Unable to open ce key directory: " + directory_path; return std::vector(); } std::vector result; for (;;) { errno = 0; auto const entry = readdir(dirp.get()); if (!entry) { if (errno) { PLOG(ERROR) << "Unable to read ce key directory: " + directory_path; return std::vector(); } break; } if (IsDotOrDotDot(*entry)) continue; if (entry->d_type != DT_DIR || entry->d_name[0] != 'c') { LOG(DEBUG) << "Skipping non-key " << entry->d_name; continue; } result.emplace_back(directory_path + "/" + entry->d_name); } std::sort(result.begin(), result.end()); std::reverse(result.begin(), result.end()); return result; } static std::string get_ce_key_current_path(const std::string& directory_path) { return directory_path + "/current"; } static bool get_ce_key_new_path(const std::string& directory_path, const std::vector& paths, std::string* ce_key_path) { if (paths.empty()) { *ce_key_path = get_ce_key_current_path(directory_path); return true; } for (unsigned int i = 0; i < UINT_MAX; i++) { auto const candidate = StringPrintf("%s/cx%010u", directory_path.c_str(), i); if (paths[0] < candidate) { *ce_key_path = candidate; return true; } } return false; } // Discard all keys but the named one; rename it to canonical name. static bool fixate_user_ce_key(const std::string& directory_path, const std::string& to_fix, const std::vector& paths) { bool need_sync = false; for (auto const other_path : paths) { if (other_path != to_fix) { android::vold::destroyKey(other_path); need_sync = true; } } auto const current_path = get_ce_key_current_path(directory_path); if (to_fix != current_path) { LOG(DEBUG) << "Renaming " << to_fix << " to " << current_path; if (!android::vold::RenameKeyDir(to_fix, current_path)) return false; need_sync = true; } if (need_sync && !android::vold::FsyncDirectory(directory_path)) return false; return true; } static bool read_and_fixate_user_ce_key(userid_t user_id, const android::vold::KeyAuthentication& auth, KeyBuffer* ce_key) { auto const directory_path = get_ce_key_directory_path(user_id); auto const paths = get_ce_key_paths(directory_path); for (auto const ce_key_path : paths) { LOG(DEBUG) << "Trying user CE key " << ce_key_path; if (retrieveKey(ce_key_path, auth, ce_key)) { LOG(DEBUG) << "Successfully retrieved key"; s_deferred_fixations.erase(directory_path); fixate_user_ce_key(directory_path, ce_key_path, paths); return true; } } LOG(ERROR) << "Failed to find working ce key for user " << user_id; return false; } static bool MightBeEmmcStorage(const std::string& blk_device) { // Handle symlinks. std::string real_path; if (!Realpath(blk_device, &real_path)) { real_path = blk_device; } // Handle logical volumes. auto& dm = DeviceMapper::Instance(); for (;;) { auto parent = dm.GetParentBlockDeviceByPath(real_path); if (!parent.has_value()) break; real_path = *parent; } // Now we should have the "real" block device. LOG(DEBUG) << "MightBeEmmcStorage(): blk_device = " << blk_device << ", real_path=" << real_path; std::string name = Basename(real_path); return StartsWith(name, "mmcblk") || // virtio devices may provide inline encryption support that is // backed by eMMC inline encryption on the host, thus inheriting the // DUN size limitation. So virtio devices must be allowed here too. // TODO(b/207390665): check the maximum DUN size directly instead. StartsWith(name, "vd"); } // Sets s_data_options to the file encryption options for the /data filesystem. static bool init_data_file_encryption_options() { auto entry = GetEntryForMountPoint(&fstab_default, DATA_MNT_POINT); if (entry == nullptr) { LOG(ERROR) << "No mount point entry for " << DATA_MNT_POINT; return false; } if (!ParseOptions(entry->encryption_options, &s_data_options)) { LOG(ERROR) << "Unable to parse encryption options for " << DATA_MNT_POINT ": " << entry->encryption_options; return false; } if ((s_data_options.flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) && !MightBeEmmcStorage(entry->blk_device)) { LOG(ERROR) << "The emmc_optimized encryption flag is only allowed on eMMC storage. Remove " "this flag from the device's fstab"; return false; } return true; } static bool install_storage_key(const std::string& mountpoint, const EncryptionOptions& options, const KeyBuffer& key, EncryptionPolicy* policy) { if (options.version == 0) { LOG(ERROR) << "EncryptionOptions not initialized"; return false; } KeyBuffer ephemeral_wrapped_key; if (options.use_hw_wrapped_key) { if (!exportWrappedStorageKey(key, &ephemeral_wrapped_key)) { LOG(ERROR) << "Failed to get ephemeral wrapped key"; return false; } } return installKey(mountpoint, options, options.use_hw_wrapped_key ? ephemeral_wrapped_key : key, policy); } // Retrieve the options to use for encryption policies on adoptable storage. static bool get_volume_file_encryption_options(EncryptionOptions* options) { // If we give the empty string, libfscrypt will use the default (currently XTS) auto contents_mode = android::base::GetProperty("ro.crypto.volume.contents_mode", ""); // HEH as default was always a mistake. Use the libfscrypt default (CTS) // for devices launching on versions above Android 10. auto first_api_level = GetFirstApiLevel(); auto filenames_mode = android::base::GetProperty("ro.crypto.volume.filenames_mode", first_api_level > __ANDROID_API_Q__ ? "" : "aes-256-heh"); auto options_string = android::base::GetProperty("ro.crypto.volume.options", contents_mode + ":" + filenames_mode); if (!ParseOptionsForApiLevel(first_api_level, options_string, options)) { LOG(ERROR) << "Unable to parse volume encryption options: " << options_string; return false; } if (options->flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) { LOG(ERROR) << "The emmc_optimized encryption flag is only allowed on eMMC storage. Remove " "this flag from ro.crypto.volume.options"; return false; } return true; } // Prepare a directory without assigning it an encryption policy. The directory // will inherit the encryption policy of its parent directory, or will be // unencrypted if the parent directory is unencrypted. static bool prepare_dir(const std::string& dir, mode_t mode, uid_t uid, gid_t gid) { LOG(DEBUG) << "Preparing: " << dir; if (android::vold::PrepareDir(dir, mode, uid, gid, 0) != 0) { PLOG(ERROR) << "Failed to prepare " << dir; return false; } return true; } // Prepare a directory and assign it the given encryption policy. static bool prepare_dir_with_policy(const std::string& dir, mode_t mode, uid_t uid, gid_t gid, const EncryptionPolicy& policy) { if (android::vold::pathExists(dir)) { if (!prepare_dir(dir, mode, uid, gid)) return false; if (IsFbeEnabled() && !EnsurePolicy(policy, dir)) return false; } else { // If the directory does not yet exist, then create it under a temporary name, and only move // it to the final name after it is fully prepared with an encryption policy and the desired // file permissions. This prevents the directory from being accessed before it is ready. // // Note: this relies on the SELinux file_contexts assigning the same type to the file path // with the ".new" suffix as to the file path without the ".new" suffix. const std::string tmp_dir = dir + ".new"; if (android::vold::pathExists(tmp_dir)) { android::vold::DeleteDirContentsAndDir(tmp_dir); } if (!prepare_dir(tmp_dir, mode, uid, gid)) return false; if (IsFbeEnabled() && !EnsurePolicy(policy, tmp_dir)) return false; // On some buggy kernels, renaming a directory that is both encrypted and case-insensitive // fails in some specific circumstances. Unfortunately, these circumstances happen here // when processing the "media" directory. This was already fixed by kernel commit // https://git.kernel.org/linus/b5639bb4313b9d45 ('f2fs: don't use casefolded comparison for // "." and ".."'). But to support kernels that lack that fix, we use the below workaround. // It bypasses the bug by making the encryption key of tmp_dir be loaded before the rename. android::vold::pathExists(tmp_dir + "/subdir"); if (rename(tmp_dir.c_str(), dir.c_str()) != 0) { PLOG(ERROR) << "Failed to rename " << tmp_dir << " to " << dir; return false; } } return true; } static bool destroy_dir(const std::string& dir) { LOG(DEBUG) << "Destroying: " << dir; if (rmdir(dir.c_str()) != 0 && errno != ENOENT) { PLOG(ERROR) << "Failed to destroy " << dir; return false; } return true; } // Checks whether the DE key directory exists for the given user. static bool de_key_exists(userid_t user_id) { return android::vold::pathExists(get_de_key_path(user_id)); } // Checks whether at least one CE key subdirectory exists for the given user. static bool ce_key_exists(userid_t user_id) { auto directory_path = get_ce_key_directory_path(user_id); // The common case is that "$dir/current" exists, so check for that first. if (android::vold::pathExists(get_ce_key_current_path(directory_path))) return true; // Else, there could still be another subdirectory of $dir (if a crash // occurred during fixate_user_ce_key()), so check for one. return android::vold::pathExists(directory_path) && !get_ce_key_paths(directory_path).empty(); } static bool create_de_key(userid_t user_id, bool ephemeral) { KeyBuffer de_key; if (!generateStorageKey(makeGen(s_data_options), &de_key)) return false; if (!ephemeral && !android::vold::storeKeyAtomically(get_de_key_path(user_id), user_key_temp, kEmptyAuthentication, de_key)) return false; EncryptionPolicy de_policy; if (!install_storage_key(DATA_MNT_POINT, s_data_options, de_key, &de_policy)) return false; s_de_policies[user_id].internal = de_policy; LOG(INFO) << "Created DE key for user " << user_id; return true; } static bool create_ce_key(userid_t user_id, bool ephemeral) { KeyBuffer ce_key; if (!generateStorageKey(makeGen(s_data_options), &ce_key)) return false; if (!ephemeral) { if (!prepare_dir(get_ce_key_directory_path(user_id), 0700, AID_ROOT, AID_ROOT)) return false; // We don't store the CE key on disk here, since here we don't have the // secret needed to do so securely. Instead, we cache it in memory for // now, and we store it later in fscrypt_set_ce_key_protection(). s_new_ce_keys.insert({user_id, ce_key}); } EncryptionPolicy ce_policy; if (!install_storage_key(DATA_MNT_POINT, s_data_options, ce_key, &ce_policy)) return false; s_ce_policies[user_id].internal = ce_policy; LOG(INFO) << "Created CE key for user " << user_id; return true; } static bool is_numeric(const char* name) { for (const char* p = name; *p != '\0'; p++) { if (!isdigit(*p)) return false; } return true; } static bool load_all_de_keys() { auto de_dir = user_key_dir + "/de"; auto dirp = std::unique_ptr(opendir(de_dir.c_str()), closedir); if (!dirp) { PLOG(ERROR) << "Unable to read de key directory"; return false; } for (;;) { errno = 0; auto entry = readdir(dirp.get()); if (!entry) { if (errno) { PLOG(ERROR) << "Unable to read de key directory"; return false; } break; } if (IsDotOrDotDot(*entry)) continue; if (entry->d_type != DT_DIR || !is_numeric(entry->d_name)) { LOG(DEBUG) << "Skipping non-de-key " << entry->d_name; continue; } userid_t user_id = std::stoi(entry->d_name); auto key_path = de_dir + "/" + entry->d_name; KeyBuffer de_key; if (!retrieveKey(key_path, kEmptyAuthentication, &de_key)) { // This is probably a partially removed user, so ignore if (user_id != 0) continue; return false; } EncryptionPolicy de_policy; if (!install_storage_key(DATA_MNT_POINT, s_data_options, de_key, &de_policy)) return false; const auto& [existing, is_new] = s_de_policies.insert({user_id, {de_policy, {}}}); if (!is_new && existing->second.internal != de_policy) { LOG(ERROR) << "DE policy for user" << user_id << " changed"; return false; } LOG(DEBUG) << "Installed de key for user " << user_id; } // fscrypt:TODO: go through all DE directories, ensure that all user dirs have the // correct policy set on them, and that no rogue ones exist. return true; } bool fscrypt_initialize_systemwide_keys() { LOG(INFO) << "fscrypt_initialize_systemwide_keys"; if (!init_data_file_encryption_options()) return false; KeyBuffer device_key; if (!retrieveOrGenerateKey(device_key_path, device_key_temp, kEmptyAuthentication, makeGen(s_data_options), &device_key)) return false; // This initializes s_device_policy, which is a global variable so that // fscrypt_init_user0() can access it later. if (!install_storage_key(DATA_MNT_POINT, s_data_options, device_key, &s_device_policy)) return false; std::string options_string; if (!OptionsToString(s_device_policy.options, &options_string)) { LOG(ERROR) << "Unable to serialize options"; return false; } std::string options_filename = std::string(DATA_MNT_POINT) + fscrypt_key_mode; if (!android::vold::writeStringToFile(options_string, options_filename)) return false; std::string ref_filename = std::string(DATA_MNT_POINT) + fscrypt_key_ref; if (!android::vold::writeStringToFile(s_device_policy.key_raw_ref, ref_filename)) return false; LOG(INFO) << "Wrote system DE key reference to:" << ref_filename; KeyBuffer per_boot_key; if (!generateStorageKey(makeGen(s_data_options), &per_boot_key)) return false; EncryptionPolicy per_boot_policy; if (!install_storage_key(DATA_MNT_POINT, s_data_options, per_boot_key, &per_boot_policy)) return false; std::string per_boot_ref_filename = std::string("/data") + fscrypt_key_per_boot_ref; if (!android::vold::writeStringToFile(per_boot_policy.key_raw_ref, per_boot_ref_filename)) return false; LOG(INFO) << "Wrote per boot key reference to:" << per_boot_ref_filename; return true; } static bool prepare_special_dirs() { // Ensure that /data/data and its "alias" /data/user/0 exist, and create the // bind mount of /data/data onto /data/user/0. This *should* happen in // fscrypt_prepare_user_storage(). However, it actually must be done early, // before the rest of user 0's CE storage is prepared. This is because // zygote may need to set up app data isolation before then, which requires // mounting a tmpfs over /data/data to ensure it remains hidden. This issue // arises due to /data/data being in the top-level directory. // /data/user/0 used to be a symlink to /data/data, so we must first delete // the old symlink if present. if (android::vold::IsSymlink(data_user_0_dir) && android::vold::Unlink(data_user_0_dir) != 0) return false; // On first boot, we'll be creating /data/data for the first time, and user // 0's CE key will be installed already since it was just created. Take the // opportunity to also set the encryption policy of /data/data right away. if (s_ce_policies.count(0) != 0) { const EncryptionPolicy& ce_policy = s_ce_policies[0].internal; if (!prepare_dir_with_policy(data_data_dir, 0771, AID_SYSTEM, AID_SYSTEM, ce_policy)) { // Preparing /data/data failed, yet we had just generated a new CE // key because one wasn't stored. Before erroring out, try deleting // the directory and retrying, as it's possible that the directory // exists with different CE policy from an interrupted first boot. if (rmdir(data_data_dir.c_str()) != 0) { PLOG(ERROR) << "rmdir " << data_data_dir << " failed"; } if (!prepare_dir_with_policy(data_data_dir, 0771, AID_SYSTEM, AID_SYSTEM, ce_policy)) return false; } } else { if (!prepare_dir(data_data_dir, 0771, AID_SYSTEM, AID_SYSTEM)) return false; // EnsurePolicy() will have to happen later, in fscrypt_prepare_user_storage(). } if (!prepare_dir(data_user_0_dir, 0700, AID_SYSTEM, AID_SYSTEM)) return false; if (android::vold::BindMount(data_data_dir, data_user_0_dir) != 0) return false; // If /data/media/obb doesn't exist, create it and encrypt it with the // device policy. Normally, device-policy-encrypted directories are created // and encrypted by init; /data/media/obb is special because it is located // in /data/media. Since /data/media also contains per-user encrypted // directories, by design only vold can write to it. As a side effect of // that, vold must create /data/media/obb. // // We must tolerate /data/media/obb being unencrypted if it already exists // on-disk, since it used to be unencrypted (b/64566063). if (android::vold::pathExists(media_obb_dir)) { if (!prepare_dir(media_obb_dir, 0770, AID_MEDIA_RW, AID_MEDIA_RW)) return false; } else { if (!prepare_dir_with_policy(media_obb_dir, 0770, AID_MEDIA_RW, AID_MEDIA_RW, s_device_policy)) return false; } return true; } bool fscrypt_init_user0_done; bool fscrypt_init_user0() { LOG(DEBUG) << "fscrypt_init_user0"; if (IsFbeEnabled()) { if (!prepare_dir(user_key_dir, 0700, AID_ROOT, AID_ROOT)) return false; if (!prepare_dir(user_key_dir + "/ce", 0700, AID_ROOT, AID_ROOT)) return false; if (!prepare_dir(user_key_dir + "/de", 0700, AID_ROOT, AID_ROOT)) return false; // Create user 0's DE and CE keys if they don't already exist. Check // each key independently, since if the first boot was interrupted it is // possible that the DE key exists but the CE key does not. if (!de_key_exists(0) && !create_de_key(0, false)) return false; if (!ce_key_exists(0) && !create_ce_key(0, false)) return false; // TODO: switch to loading only DE_0 here once framework makes // explicit calls to install DE keys for secondary users if (!load_all_de_keys()) return false; } // Now that user 0's CE key has been created, we can prepare /data/data. if (!prepare_special_dirs()) return false; // With the exception of what is done by prepare_special_dirs() above, we // only prepare DE storage here, since user 0's CE key won't be installed // yet unless it was just created. The framework will prepare the user's CE // storage later, once their CE key is installed. if (!fscrypt_prepare_user_storage("", 0, android::os::IVold::STORAGE_FLAG_DE)) { LOG(ERROR) << "Failed to prepare user 0 storage"; return false; } fscrypt_init_user0_done = true; return true; } // Creates the CE and DE keys for a new user. bool fscrypt_create_user_keys(userid_t user_id, bool ephemeral) { LOG(DEBUG) << "fscrypt_create_user_keys for " << user_id; if (!IsFbeEnabled()) { return true; } // FIXME test for existence of key that is not loaded yet if (s_ce_policies.count(user_id) != 0) { LOG(ERROR) << "Already exists, can't create keys for " << user_id; // FIXME should we fail the command? return true; } if (!create_de_key(user_id, ephemeral)) return false; if (!create_ce_key(user_id, ephemeral)) return false; if (ephemeral) s_ephemeral_users.insert(user_id); return true; } // Evicts all the user's keys of one type from all volumes (internal and adoptable). // This evicts either CE keys or DE keys, depending on which map is passed. static bool evict_user_keys(std::map& policy_map, userid_t user_id) { bool success = true; auto it = policy_map.find(user_id); if (it != policy_map.end()) { const UserPolicies& policies = it->second; success &= android::vold::evictKey(BuildDataPath(""), policies.internal); for (const auto& [volume_uuid, policy] : policies.adoptable) { success &= android::vold::evictKey(BuildDataPath(volume_uuid), policy); } policy_map.erase(it); } return success; } // Evicts and destroys all CE and DE keys for a user. This is called when the user is removed. bool fscrypt_destroy_user_keys(userid_t user_id) { LOG(DEBUG) << "fscrypt_destroy_user_keys(" << user_id << ")"; if (!IsFbeEnabled()) { return true; } bool success = true; success &= evict_user_keys(s_ce_policies, user_id); success &= evict_user_keys(s_de_policies, user_id); if (!s_ephemeral_users.erase(user_id)) { auto ce_path = get_ce_key_directory_path(user_id); if (!s_new_ce_keys.erase(user_id)) { for (auto const path : get_ce_key_paths(ce_path)) { success &= android::vold::destroyKey(path); } } s_deferred_fixations.erase(ce_path); success &= destroy_dir(ce_path); auto de_key_path = get_de_key_path(user_id); if (android::vold::pathExists(de_key_path)) { success &= android::vold::destroyKey(de_key_path); } else { LOG(INFO) << "Not present so not erasing: " << de_key_path; } } return success; } static bool parse_hex(const std::string& hex, std::string* result) { if (hex == "!") { *result = ""; return true; } if (android::vold::HexToStr(hex, *result) != 0) { LOG(ERROR) << "Invalid FBE hex string"; // Don't log the string for security reasons return false; } return true; } static std::optional authentication_from_hex( const std::string& secret_hex) { std::string secret; if (!parse_hex(secret_hex, &secret)) return std::optional(); if (secret.empty()) { return kEmptyAuthentication; } else { return android::vold::KeyAuthentication(secret); } } static std::string volkey_path(const std::string& misc_path, const std::string& volume_uuid) { return misc_path + "/vold/volume_keys/" + volume_uuid + "/default"; } static std::string volume_secdiscardable_path(const std::string& volume_uuid) { return systemwide_volume_key_dir + "/" + volume_uuid + "/secdiscardable"; } static bool read_or_create_volkey(const std::string& misc_path, const std::string& volume_uuid, UserPolicies& user_policies, EncryptionPolicy* policy) { auto secdiscardable_path = volume_secdiscardable_path(volume_uuid); std::string secdiscardable_hash; if (android::vold::pathExists(secdiscardable_path)) { if (!android::vold::readSecdiscardable(secdiscardable_path, &secdiscardable_hash)) return false; } else { if (!android::vold::MkdirsSync(secdiscardable_path, 0700)) return false; if (!android::vold::createSecdiscardable(secdiscardable_path, &secdiscardable_hash)) return false; } auto key_path = volkey_path(misc_path, volume_uuid); if (!android::vold::MkdirsSync(key_path, 0700)) return false; android::vold::KeyAuthentication auth(secdiscardable_hash); EncryptionOptions options; if (!get_volume_file_encryption_options(&options)) return false; KeyBuffer key; if (!retrieveOrGenerateKey(key_path, key_path + "_tmp", auth, makeGen(options), &key)) return false; if (!install_storage_key(BuildDataPath(volume_uuid), options, key, policy)) return false; user_policies.adoptable[volume_uuid] = *policy; return true; } static bool destroy_volkey(const std::string& misc_path, const std::string& volume_uuid) { auto path = volkey_path(misc_path, volume_uuid); if (!android::vold::pathExists(path)) return true; return android::vold::destroyKey(path); } // (Re-)encrypts the user's CE key with the given secret. This function handles // storing the CE key for a new user for the first time. It also handles // re-encrypting the CE key upon upgrade from an Android version where the CE // key was stored with kEmptyAuthentication when the user didn't have an LSKF. // See the comments below for the different cases handled. bool fscrypt_set_ce_key_protection(userid_t user_id, const std::string& secret_hex) { LOG(DEBUG) << "fscrypt_set_ce_key_protection " << user_id; if (!IsFbeEnabled()) return true; auto auth = authentication_from_hex(secret_hex); if (!auth) return false; if (auth->secret.empty()) { LOG(ERROR) << "fscrypt_set_ce_key_protection: secret must be nonempty"; return false; } // We shouldn't store any keys for ephemeral users. if (s_ephemeral_users.count(user_id) != 0) { LOG(DEBUG) << "Not storing key because user is ephemeral"; return true; } KeyBuffer ce_key; auto it = s_new_ce_keys.find(user_id); if (it != s_new_ce_keys.end()) { // If the key exists in s_new_ce_keys, then the key is a // not-yet-committed key for a new user, and we are committing it here. // This happens when the user's synthetic password is created. ce_key = it->second; } else if (ce_key_exists(user_id)) { // If the key doesn't exist in s_new_ce_keys but does exist on-disk, // then we are setting the protection on an existing key. This happens // at upgrade time, when CE keys that were previously protected by // kEmptyAuthentication are encrypted by the user's synthetic password. LOG(DEBUG) << "CE key already exists on-disk; re-protecting it with the given secret"; if (!read_and_fixate_user_ce_key(user_id, kEmptyAuthentication, &ce_key)) { LOG(ERROR) << "Failed to retrieve CE key for user " << user_id << " using empty auth"; // Before failing, also check whether the key is already protected // with the given secret. This isn't expected, but in theory it // could happen if an upgrade is requested for a user more than once // due to a power-off or other interruption. if (read_and_fixate_user_ce_key(user_id, *auth, &ce_key)) { LOG(WARNING) << "CE key is already protected by given secret"; return true; } // The key isn't protected by either kEmptyAuthentication or by // |auth|. This should never happen, and there's nothing we can do // besides return an error. return false; } } else { // If the key doesn't exist in memory or on-disk, then we need to // generate it here, then commit it to disk. This is needed after the // unusual case where a non-system user was created during early boot, // and then the device was force-rebooted before the boot completed. In // that case, the Android user record was committed but the CE key was // not. So the CE key was lost, and we need to regenerate it. This // should be fine, since the key should not have been used yet. LOG(WARNING) << "CE key not found! Regenerating it"; if (!create_ce_key(user_id, false)) return false; ce_key = s_new_ce_keys.find(user_id)->second; } auto const directory_path = get_ce_key_directory_path(user_id); auto const paths = get_ce_key_paths(directory_path); std::string ce_key_path; if (!get_ce_key_new_path(directory_path, paths, &ce_key_path)) return false; if (!android::vold::storeKeyAtomically(ce_key_path, user_key_temp, *auth, ce_key)) return false; // Fixate the key, i.e. delete all other bindings of it. (In practice this // just means the kEmptyAuthentication binding, if there is one.) However, // if a userdata filesystem checkpoint is pending, then we need to delay the // fixation until the checkpoint has been committed, since deleting keys // from Keystore cannot be rolled back. if (android::vold::cp_needsCheckpoint()) { LOG(INFO) << "Deferring fixation of " << directory_path << " until checkpoint is committed"; s_deferred_fixations[directory_path] = ce_key_path; } else { s_deferred_fixations.erase(directory_path); if (!fixate_user_ce_key(directory_path, ce_key_path, paths)) return false; } if (s_new_ce_keys.erase(user_id)) { LOG(INFO) << "Stored CE key for new user " << user_id; } return true; } void fscrypt_deferred_fixate_ce_keys() { for (const auto& it : s_deferred_fixations) { const auto& directory_path = it.first; const auto& to_fix = it.second; LOG(INFO) << "Doing deferred fixation of " << directory_path; fixate_user_ce_key(directory_path, to_fix, get_ce_key_paths(directory_path)); // Continue on error. } s_deferred_fixations.clear(); } std::vector fscrypt_get_unlocked_users() { std::vector user_ids; for (const auto& [user_id, user_policies] : s_ce_policies) { user_ids.push_back(user_id); } return user_ids; } // Unlocks internal CE storage for the given user. This only unlocks internal storage, since // fscrypt_prepare_user_storage() has to be called for each adoptable storage volume anyway (since // the volume might have been absent when the user was created), and that handles the unlocking. bool fscrypt_unlock_ce_storage(userid_t user_id, const std::string& secret_hex) { LOG(DEBUG) << "fscrypt_unlock_ce_storage " << user_id; if (!IsFbeEnabled()) return true; if (s_ce_policies.count(user_id) != 0) { LOG(WARNING) << "CE storage for user " << user_id << " is already unlocked"; return true; } auto auth = authentication_from_hex(secret_hex); if (!auth) return false; KeyBuffer ce_key; if (!read_and_fixate_user_ce_key(user_id, *auth, &ce_key)) return false; EncryptionPolicy ce_policy; if (!install_storage_key(DATA_MNT_POINT, s_data_options, ce_key, &ce_policy)) return false; s_ce_policies[user_id].internal = ce_policy; LOG(DEBUG) << "Installed CE key for user " << user_id; return true; } // Locks CE storage for the given user. This locks both internal and adoptable storage. bool fscrypt_lock_ce_storage(userid_t user_id) { LOG(DEBUG) << "fscrypt_lock_ce_storage " << user_id; if (!IsFbeEnabled()) return true; return evict_user_keys(s_ce_policies, user_id); } static bool prepare_subdirs(const std::string& action, const std::string& volume_uuid, userid_t user_id, int flags) { if (0 != android::vold::ForkExecvp( std::vector{prepare_subdirs_path, action, volume_uuid, std::to_string(user_id), std::to_string(flags)})) { LOG(ERROR) << "vold_prepare_subdirs failed"; return false; } return true; } bool fscrypt_prepare_user_storage(const std::string& volume_uuid, userid_t user_id, int flags) { LOG(DEBUG) << "fscrypt_prepare_user_storage for volume " << escape_empty(volume_uuid) << ", user " << user_id << ", flags " << flags; // Internal storage must be prepared before adoptable storage, since the // user's volume keys are stored in their internal storage. if (!volume_uuid.empty()) { if ((flags & android::os::IVold::STORAGE_FLAG_DE) && !android::vold::pathExists(android::vold::BuildDataMiscDePath("", user_id))) { LOG(ERROR) << "Cannot prepare DE storage for user " << user_id << " on volume " << volume_uuid << " before internal storage"; return false; } if ((flags & android::os::IVold::STORAGE_FLAG_CE) && !android::vold::pathExists(android::vold::BuildDataMiscCePath("", user_id))) { LOG(ERROR) << "Cannot prepare CE storage for user " << user_id << " on volume " << volume_uuid << " before internal storage"; return false; } } if (flags & android::os::IVold::STORAGE_FLAG_DE) { // DE_sys key auto system_legacy_path = android::vold::BuildDataSystemLegacyPath(user_id); auto misc_legacy_path = android::vold::BuildDataMiscLegacyPath(user_id); auto profiles_de_path = android::vold::BuildDataProfilesDePath(user_id); // DE_n key EncryptionPolicy de_policy; auto system_de_path = android::vold::BuildDataSystemDePath(user_id); auto misc_de_path = android::vold::BuildDataMiscDePath(volume_uuid, user_id); auto vendor_de_path = android::vold::BuildDataVendorDePath(user_id); auto user_de_path = android::vold::BuildDataUserDePath(volume_uuid, user_id); if (IsFbeEnabled()) { auto it = s_de_policies.find(user_id); if (it == s_de_policies.end()) { LOG(ERROR) << "Cannot find DE policy for user " << user_id; return false; } UserPolicies& user_de_policies = it->second; if (volume_uuid.empty()) { de_policy = user_de_policies.internal; } else { auto misc_de_empty_volume_path = android::vold::BuildDataMiscDePath("", user_id); if (!read_or_create_volkey(misc_de_empty_volume_path, volume_uuid, user_de_policies, &de_policy)) { return false; } } } if (volume_uuid.empty()) { if (!prepare_dir(system_legacy_path, 0700, AID_SYSTEM, AID_SYSTEM)) return false; #if MANAGE_MISC_DIRS if (!prepare_dir(misc_legacy_path, 0750, multiuser_get_uid(user_id, AID_SYSTEM), multiuser_get_uid(user_id, AID_EVERYBODY))) return false; #endif if (!prepare_dir(profiles_de_path, 0771, AID_SYSTEM, AID_SYSTEM)) return false; if (!prepare_dir_with_policy(system_de_path, 0770, AID_SYSTEM, AID_SYSTEM, de_policy)) return false; if (!prepare_dir_with_policy(vendor_de_path, 0771, AID_ROOT, AID_ROOT, de_policy)) return false; } if (!prepare_dir_with_policy(misc_de_path, 01771, AID_SYSTEM, AID_MISC, de_policy)) return false; if (!prepare_dir_with_policy(user_de_path, 0771, AID_SYSTEM, AID_SYSTEM, de_policy)) return false; } if (flags & android::os::IVold::STORAGE_FLAG_CE) { // CE_n key EncryptionPolicy ce_policy; auto system_ce_path = android::vold::BuildDataSystemCePath(user_id); auto misc_ce_path = android::vold::BuildDataMiscCePath(volume_uuid, user_id); auto vendor_ce_path = android::vold::BuildDataVendorCePath(user_id); auto media_ce_path = android::vold::BuildDataMediaCePath(volume_uuid, user_id); auto user_ce_path = android::vold::BuildDataUserCePath(volume_uuid, user_id); if (IsFbeEnabled()) { auto it = s_ce_policies.find(user_id); if (it == s_ce_policies.end()) { LOG(ERROR) << "Cannot find CE policy for user " << user_id; return false; } UserPolicies& user_ce_policies = it->second; if (volume_uuid.empty()) { ce_policy = user_ce_policies.internal; } else { auto misc_ce_empty_volume_path = android::vold::BuildDataMiscCePath("", user_id); if (!read_or_create_volkey(misc_ce_empty_volume_path, volume_uuid, user_ce_policies, &ce_policy)) { return false; } } } if (volume_uuid.empty()) { if (!prepare_dir_with_policy(system_ce_path, 0770, AID_SYSTEM, AID_SYSTEM, ce_policy)) return false; if (!prepare_dir_with_policy(vendor_ce_path, 0771, AID_ROOT, AID_ROOT, ce_policy)) return false; } if (!prepare_dir_with_policy(media_ce_path, 02770, AID_MEDIA_RW, AID_MEDIA_RW, ce_policy)) return false; // On devices without sdcardfs (kernel 5.4+), the path permissions aren't fixed // up automatically; therefore, use a default ACL, to ensure apps with MEDIA_RW // can keep reading external storage; in particular, this allows app cloning // scenarios to work correctly on such devices. int ret = SetDefaultAcl(media_ce_path, 02770, AID_MEDIA_RW, AID_MEDIA_RW, {AID_MEDIA_RW}); if (ret != android::OK) { return false; } if (!prepare_dir_with_policy(misc_ce_path, 01771, AID_SYSTEM, AID_MISC, ce_policy)) return false; if (!prepare_dir_with_policy(user_ce_path, 0771, AID_SYSTEM, AID_SYSTEM, ce_policy)) return false; if (volume_uuid.empty()) { // Now that credentials have been installed, we can run restorecon // over these paths // NOTE: these paths need to be kept in sync with libselinux android::vold::RestoreconRecursive(system_ce_path); android::vold::RestoreconRecursive(vendor_ce_path); android::vold::RestoreconRecursive(misc_ce_path); } } if (!prepare_subdirs("prepare", volume_uuid, user_id, flags)) return false; return true; } bool fscrypt_destroy_user_storage(const std::string& volume_uuid, userid_t user_id, int flags) { LOG(DEBUG) << "fscrypt_destroy_user_storage for volume " << escape_empty(volume_uuid) << ", user " << user_id << ", flags " << flags; bool res = true; res &= prepare_subdirs("destroy", volume_uuid, user_id, flags); if (flags & android::os::IVold::STORAGE_FLAG_CE) { // CE_n key auto system_ce_path = android::vold::BuildDataSystemCePath(user_id); auto misc_ce_path = android::vold::BuildDataMiscCePath(volume_uuid, user_id); auto vendor_ce_path = android::vold::BuildDataVendorCePath(user_id); auto media_ce_path = android::vold::BuildDataMediaCePath(volume_uuid, user_id); auto user_ce_path = android::vold::BuildDataUserCePath(volume_uuid, user_id); res &= destroy_dir(media_ce_path); res &= destroy_dir(misc_ce_path); res &= destroy_dir(user_ce_path); if (volume_uuid.empty()) { res &= destroy_dir(system_ce_path); res &= destroy_dir(vendor_ce_path); } else { if (IsFbeEnabled()) { auto misc_ce_empty_volume_path = android::vold::BuildDataMiscCePath("", user_id); res &= destroy_volkey(misc_ce_empty_volume_path, volume_uuid); } } } if (flags & android::os::IVold::STORAGE_FLAG_DE) { // DE_sys key auto system_legacy_path = android::vold::BuildDataSystemLegacyPath(user_id); auto misc_legacy_path = android::vold::BuildDataMiscLegacyPath(user_id); auto profiles_de_path = android::vold::BuildDataProfilesDePath(user_id); // DE_n key auto system_de_path = android::vold::BuildDataSystemDePath(user_id); auto misc_de_path = android::vold::BuildDataMiscDePath(volume_uuid, user_id); auto vendor_de_path = android::vold::BuildDataVendorDePath(user_id); auto user_de_path = android::vold::BuildDataUserDePath(volume_uuid, user_id); res &= destroy_dir(user_de_path); res &= destroy_dir(misc_de_path); if (volume_uuid.empty()) { res &= destroy_dir(system_legacy_path); #if MANAGE_MISC_DIRS res &= destroy_dir(misc_legacy_path); #endif res &= destroy_dir(profiles_de_path); res &= destroy_dir(system_de_path); res &= destroy_dir(vendor_de_path); } else { if (IsFbeEnabled()) { auto misc_de_empty_volume_path = android::vold::BuildDataMiscDePath("", user_id); res &= destroy_volkey(misc_de_empty_volume_path, volume_uuid); } } } return res; } static bool destroy_volume_keys(const std::string& directory_path, const std::string& volume_uuid) { auto dirp = std::unique_ptr(opendir(directory_path.c_str()), closedir); if (!dirp) { PLOG(ERROR) << "Unable to open directory: " + directory_path; return false; } bool res = true; for (;;) { errno = 0; auto const entry = readdir(dirp.get()); if (!entry) { if (errno) { PLOG(ERROR) << "Unable to read directory: " + directory_path; return false; } break; } if (IsDotOrDotDot(*entry)) continue; if (entry->d_type != DT_DIR || entry->d_name[0] == '.') { LOG(DEBUG) << "Skipping non-user " << entry->d_name; continue; } res &= destroy_volkey(directory_path + "/" + entry->d_name, volume_uuid); } return res; } static void erase_volume_policies(std::map& policy_map, const std::string& volume_uuid) { for (auto& [user_id, user_policies] : policy_map) { user_policies.adoptable.erase(volume_uuid); } } // Destroys all CE and DE keys for an adoptable storage volume that is permanently going away. // Requires VolumeManager::mCryptLock. bool fscrypt_destroy_volume_keys(const std::string& volume_uuid) { if (!IsFbeEnabled()) return true; bool res = true; LOG(DEBUG) << "fscrypt_destroy_volume_keys for volume " << escape_empty(volume_uuid); auto secdiscardable_path = volume_secdiscardable_path(volume_uuid); res &= android::vold::runSecdiscardSingle(secdiscardable_path); res &= destroy_volume_keys("/data/misc_ce", volume_uuid); res &= destroy_volume_keys("/data/misc_de", volume_uuid); // Drop the CE and DE policies stored in memory, as they are not needed anymore. Note that it's // not necessary to also evict the corresponding keys from the kernel, as that happens // automatically as a result of the volume being unmounted. erase_volume_policies(s_ce_policies, volume_uuid); erase_volume_policies(s_de_policies, volume_uuid); return res; }