/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* TO DO: * 1. Perhaps keep several copies of the encrypted key, in case something * goes horribly wrong? * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cryptfs.h" #define LOG_TAG "Cryptfs" #include "cutils/log.h" #include "cutils/properties.h" #include "hardware_legacy/power.h" #include "VolumeManager.h" #define DM_CRYPT_BUF_SIZE 4096 #define DATA_MNT_POINT "/data" #define HASH_COUNT 2000 #define KEY_LEN_BYTES 16 #define IV_LEN_BYTES 16 #define KEY_LOC_PROP "ro.crypto.keyfile.userdata" #define KEY_IN_FOOTER "footer" #define EXT4_FS 1 #define FAT_FS 2 char *me = "cryptfs"; static unsigned char saved_master_key[KEY_LEN_BYTES]; static char *saved_data_blkdev; static int master_key_saved = 0; static void ioctl_init(struct dm_ioctl *io, size_t dataSize, const char *name, unsigned flags) { memset(io, 0, dataSize); io->data_size = dataSize; io->data_start = sizeof(struct dm_ioctl); io->version[0] = 4; io->version[1] = 0; io->version[2] = 0; io->flags = flags; if (name) { strncpy(io->name, name, sizeof(io->name)); } } static unsigned int get_fs_size(char *dev) { int fd, block_size; struct ext4_super_block sb; off64_t len; if ((fd = open(dev, O_RDONLY)) < 0) { SLOGE("Cannot open device to get filesystem size "); return 0; } if (lseek64(fd, 1024, SEEK_SET) < 0) { SLOGE("Cannot seek to superblock"); return 0; } if (read(fd, &sb, sizeof(sb)) != sizeof(sb)) { SLOGE("Cannot read superblock"); return 0; } close(fd); block_size = 1024 << sb.s_log_block_size; /* compute length in bytes */ len = ( ((off64_t)sb.s_blocks_count_hi << 32) + sb.s_blocks_count_lo) * block_size; /* return length in sectors */ return (unsigned int) (len / 512); } static unsigned int get_blkdev_size(int fd) { unsigned int nr_sec; if ( (ioctl(fd, BLKGETSIZE, &nr_sec)) == -1) { nr_sec = 0; } return nr_sec; } /* key or salt can be NULL, in which case just skip writing that value. Useful to * update the failed mount count but not change the key. */ static int put_crypt_ftr_and_key(char *real_blk_name, struct crypt_mnt_ftr *crypt_ftr, unsigned char *key, unsigned char *salt) { int fd; unsigned int nr_sec, cnt; off64_t off; int rc = -1; char *fname; char key_loc[PROPERTY_VALUE_MAX]; struct stat statbuf; property_get(KEY_LOC_PROP, key_loc, KEY_IN_FOOTER); if (!strcmp(key_loc, KEY_IN_FOOTER)) { fname = real_blk_name; if ( (fd = open(fname, O_RDWR)) < 0) { SLOGE("Cannot open real block device %s\n", fname); return -1; } if ( (nr_sec = get_blkdev_size(fd)) == 0) { SLOGE("Cannot get size of block device %s\n", fname); goto errout; } /* If it's an encrypted Android partition, the last 16 Kbytes contain the * encryption info footer and key, and plenty of bytes to spare for future * growth. */ off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET; if (lseek64(fd, off, SEEK_SET) == -1) { SLOGE("Cannot seek to real block device footer\n"); goto errout; } } else if (key_loc[0] == '/') { fname = key_loc; if ( (fd = open(fname, O_RDWR | O_CREAT, 0600)) < 0) { SLOGE("Cannot open footer file %s\n", fname); return -1; } } else { SLOGE("Unexpected value for" KEY_LOC_PROP "\n"); return -1;; } if ((cnt = write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) { SLOGE("Cannot write real block device footer\n"); goto errout; } if (key) { if (crypt_ftr->keysize != KEY_LEN_BYTES) { SLOGE("Keysize of %d bits not supported for real block device %s\n", crypt_ftr->keysize*8, fname); goto errout; } if ( (cnt = write(fd, key, crypt_ftr->keysize)) != crypt_ftr->keysize) { SLOGE("Cannot write key for real block device %s\n", fname); goto errout; } } if (salt) { /* Compute the offset from the last write to the salt */ off = KEY_TO_SALT_PADDING; if (! key) off += crypt_ftr->keysize; if (lseek64(fd, off, SEEK_CUR) == -1) { SLOGE("Cannot seek to real block device salt \n"); goto errout; } if ( (cnt = write(fd, salt, SALT_LEN)) != SALT_LEN) { SLOGE("Cannot write salt for real block device %s\n", fname); goto errout; } } fstat(fd, &statbuf); /* If the keys are kept on a raw block device, do not try to truncate it. */ if (S_ISREG(statbuf.st_mode) && (key_loc[0] == '/')) { if (ftruncate(fd, 0x4000)) { SLOGE("Cannot set footer file size\n", fname); goto errout; } } /* Success! */ rc = 0; errout: close(fd); return rc; } static int get_crypt_ftr_and_key(char *real_blk_name, struct crypt_mnt_ftr *crypt_ftr, unsigned char *key, unsigned char *salt) { int fd; unsigned int nr_sec, cnt; off64_t off; int rc = -1; char key_loc[PROPERTY_VALUE_MAX]; char *fname; struct stat statbuf; property_get(KEY_LOC_PROP, key_loc, KEY_IN_FOOTER); if (!strcmp(key_loc, KEY_IN_FOOTER)) { fname = real_blk_name; if ( (fd = open(fname, O_RDONLY)) < 0) { SLOGE("Cannot open real block device %s\n", fname); return -1; } if ( (nr_sec = get_blkdev_size(fd)) == 0) { SLOGE("Cannot get size of block device %s\n", fname); goto errout; } /* If it's an encrypted Android partition, the last 16 Kbytes contain the * encryption info footer and key, and plenty of bytes to spare for future * growth. */ off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET; if (lseek64(fd, off, SEEK_SET) == -1) { SLOGE("Cannot seek to real block device footer\n"); goto errout; } } else if (key_loc[0] == '/') { fname = key_loc; if ( (fd = open(fname, O_RDONLY)) < 0) { SLOGE("Cannot open footer file %s\n", fname); return -1; } /* Make sure it's 16 Kbytes in length */ fstat(fd, &statbuf); if (S_ISREG(statbuf.st_mode) && (statbuf.st_size != 0x4000)) { SLOGE("footer file %s is not the expected size!\n", fname); goto errout; } } else { SLOGE("Unexpected value for" KEY_LOC_PROP "\n"); return -1;; } if ( (cnt = read(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) { SLOGE("Cannot read real block device footer\n"); goto errout; } if (crypt_ftr->magic != CRYPT_MNT_MAGIC) { SLOGE("Bad magic for real block device %s\n", fname); goto errout; } if (crypt_ftr->major_version != 1) { SLOGE("Cannot understand major version %d real block device footer\n", crypt_ftr->major_version); goto errout; } if (crypt_ftr->minor_version != 0) { SLOGW("Warning: crypto footer minor version %d, expected 0, continuing...\n", crypt_ftr->minor_version); } if (crypt_ftr->ftr_size > sizeof(struct crypt_mnt_ftr)) { /* the footer size is bigger than we expected. * Skip to it's stated end so we can read the key. */ if (lseek(fd, crypt_ftr->ftr_size - sizeof(struct crypt_mnt_ftr), SEEK_CUR) == -1) { SLOGE("Cannot seek to start of key\n"); goto errout; } } if (crypt_ftr->keysize != KEY_LEN_BYTES) { SLOGE("Keysize of %d bits not supported for real block device %s\n", crypt_ftr->keysize * 8, fname); goto errout; } if ( (cnt = read(fd, key, crypt_ftr->keysize)) != crypt_ftr->keysize) { SLOGE("Cannot read key for real block device %s\n", fname); goto errout; } if (lseek64(fd, KEY_TO_SALT_PADDING, SEEK_CUR) == -1) { SLOGE("Cannot seek to real block device salt\n"); goto errout; } if ( (cnt = read(fd, salt, SALT_LEN)) != SALT_LEN) { SLOGE("Cannot read salt for real block device %s\n", fname); goto errout; } /* Success! */ rc = 0; errout: close(fd); return rc; } /* Convert a binary key of specified length into an ascii hex string equivalent, * without the leading 0x and with null termination */ void convert_key_to_hex_ascii(unsigned char *master_key, unsigned int keysize, char *master_key_ascii) { unsigned int i, a; unsigned char nibble; for (i=0, a=0; i> 4) & 0xf; master_key_ascii[a] = nibble + (nibble > 9 ? 0x37 : 0x30); nibble = master_key[i] & 0xf; master_key_ascii[a+1] = nibble + (nibble > 9 ? 0x37 : 0x30); } /* Add the null termination */ master_key_ascii[a] = '\0'; } static int create_crypto_blk_dev(struct crypt_mnt_ftr *crypt_ftr, unsigned char *master_key, char *real_blk_name, char *crypto_blk_name, const char *name) { char buffer[DM_CRYPT_BUF_SIZE]; char master_key_ascii[129]; /* Large enough to hold 512 bit key and null */ char *crypt_params; struct dm_ioctl *io; struct dm_target_spec *tgt; unsigned int minor; int fd; int retval = -1; if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) { SLOGE("Cannot open device-mapper\n"); goto errout; } io = (struct dm_ioctl *) buffer; ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); if (ioctl(fd, DM_DEV_CREATE, io)) { SLOGE("Cannot create dm-crypt device\n"); goto errout; } /* Get the device status, in particular, the name of it's device file */ ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); if (ioctl(fd, DM_DEV_STATUS, io)) { SLOGE("Cannot retrieve dm-crypt device status\n"); goto errout; } minor = (io->dev & 0xff) | ((io->dev >> 12) & 0xfff00); snprintf(crypto_blk_name, MAXPATHLEN, "/dev/block/dm-%u", minor); /* Load the mapping table for this device */ tgt = (struct dm_target_spec *) &buffer[sizeof(struct dm_ioctl)]; ioctl_init(io, 4096, name, 0); io->target_count = 1; tgt->status = 0; tgt->sector_start = 0; tgt->length = crypt_ftr->fs_size; strcpy(tgt->target_type, "crypt"); crypt_params = buffer + sizeof(struct dm_ioctl) + sizeof(struct dm_target_spec); convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii); sprintf(crypt_params, "%s %s 0 %s 0", crypt_ftr->crypto_type_name, master_key_ascii, real_blk_name); crypt_params += strlen(crypt_params) + 1; crypt_params = (char *) (((unsigned long)crypt_params + 7) & ~8); /* Align to an 8 byte boundary */ tgt->next = crypt_params - buffer; if (ioctl(fd, DM_TABLE_LOAD, io)) { SLOGE("Cannot load dm-crypt mapping table.\n"); goto errout; } /* Resume this device to activate it */ ioctl_init(io, 4096, name, 0); if (ioctl(fd, DM_DEV_SUSPEND, io)) { SLOGE("Cannot resume the dm-crypt device\n"); goto errout; } /* We made it here with no errors. Woot! */ retval = 0; errout: close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */ return retval; } static int delete_crypto_blk_dev(char *name) { int fd; char buffer[DM_CRYPT_BUF_SIZE]; struct dm_ioctl *io; int retval = -1; if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) { SLOGE("Cannot open device-mapper\n"); goto errout; } io = (struct dm_ioctl *) buffer; ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); if (ioctl(fd, DM_DEV_REMOVE, io)) { SLOGE("Cannot remove dm-crypt device\n"); goto errout; } /* We made it here with no errors. Woot! */ retval = 0; errout: close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */ return retval; } static void pbkdf2(char *passwd, unsigned char *salt, unsigned char *ikey) { /* Turn the password into a key and IV that can decrypt the master key */ PKCS5_PBKDF2_HMAC_SHA1(passwd, strlen(passwd), salt, SALT_LEN, HASH_COUNT, KEY_LEN_BYTES+IV_LEN_BYTES, ikey); } static int encrypt_master_key(char *passwd, unsigned char *salt, unsigned char *decrypted_master_key, unsigned char *encrypted_master_key) { unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */ EVP_CIPHER_CTX e_ctx; int encrypted_len, final_len; /* Turn the password into a key and IV that can decrypt the master key */ pbkdf2(passwd, salt, ikey); /* Initialize the decryption engine */ if (! EVP_EncryptInit(&e_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) { SLOGE("EVP_EncryptInit failed\n"); return -1; } EVP_CIPHER_CTX_set_padding(&e_ctx, 0); /* Turn off padding as our data is block aligned */ /* Encrypt the master key */ if (! EVP_EncryptUpdate(&e_ctx, encrypted_master_key, &encrypted_len, decrypted_master_key, KEY_LEN_BYTES)) { SLOGE("EVP_EncryptUpdate failed\n"); return -1; } if (! EVP_EncryptFinal(&e_ctx, encrypted_master_key + encrypted_len, &final_len)) { SLOGE("EVP_EncryptFinal failed\n"); return -1; } if (encrypted_len + final_len != KEY_LEN_BYTES) { SLOGE("EVP_Encryption length check failed with %d, %d bytes\n", encrypted_len, final_len); return -1; } else { return 0; } } static int decrypt_master_key(char *passwd, unsigned char *salt, unsigned char *encrypted_master_key, unsigned char *decrypted_master_key) { unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */ EVP_CIPHER_CTX d_ctx; int decrypted_len, final_len; /* Turn the password into a key and IV that can decrypt the master key */ pbkdf2(passwd, salt, ikey); /* Initialize the decryption engine */ if (! EVP_DecryptInit(&d_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) { return -1; } EVP_CIPHER_CTX_set_padding(&d_ctx, 0); /* Turn off padding as our data is block aligned */ /* Decrypt the master key */ if (! EVP_DecryptUpdate(&d_ctx, decrypted_master_key, &decrypted_len, encrypted_master_key, KEY_LEN_BYTES)) { return -1; } if (! EVP_DecryptFinal(&d_ctx, decrypted_master_key + decrypted_len, &final_len)) { return -1; } if (decrypted_len + final_len != KEY_LEN_BYTES) { return -1; } else { return 0; } } static int create_encrypted_random_key(char *passwd, unsigned char *master_key, unsigned char *salt) { int fd; unsigned char key_buf[KEY_LEN_BYTES]; EVP_CIPHER_CTX e_ctx; int encrypted_len, final_len; /* Get some random bits for a key */ fd = open("/dev/urandom", O_RDONLY); read(fd, key_buf, sizeof(key_buf)); read(fd, salt, SALT_LEN); close(fd); /* Now encrypt it with the password */ return encrypt_master_key(passwd, salt, key_buf, master_key); } static int get_orig_mount_parms(char *mount_point, char *fs_type, char *real_blkdev, unsigned long *mnt_flags, char *fs_options) { char mount_point2[PROPERTY_VALUE_MAX]; char fs_flags[PROPERTY_VALUE_MAX]; property_get("ro.crypto.fs_type", fs_type, ""); property_get("ro.crypto.fs_real_blkdev", real_blkdev, ""); property_get("ro.crypto.fs_mnt_point", mount_point2, ""); property_get("ro.crypto.fs_options", fs_options, ""); property_get("ro.crypto.fs_flags", fs_flags, ""); *mnt_flags = strtol(fs_flags, 0, 0); if (strcmp(mount_point, mount_point2)) { /* Consistency check. These should match. If not, something odd happened. */ return -1; } return 0; } static int wait_and_unmount(char *mountpoint) { int i, rc; #define WAIT_UNMOUNT_COUNT 20 /* Now umount the tmpfs filesystem */ for (i=0; ifs_size = %lld\n", crypt_ftr.fs_size); orig_failed_decrypt_count = crypt_ftr.failed_decrypt_count; if (! (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) ) { decrypt_master_key(passwd, salt, encrypted_master_key, decrypted_master_key); } if (create_crypto_blk_dev(&crypt_ftr, decrypted_master_key, real_blkdev, crypto_blkdev, label)) { SLOGE("Error creating decrypted block device\n"); return -1; } /* If init detects an encrypted filesystme, it writes a file for each such * encrypted fs into the tmpfs /data filesystem, and then the framework finds those * files and passes that data to me */ /* Create a tmp mount point to try mounting the decryptd fs * Since we're here, the mount_point should be a tmpfs filesystem, so make * a directory in it to test mount the decrypted filesystem. */ sprintf(tmp_mount_point, "%s/tmp_mnt", mount_point); mkdir(tmp_mount_point, 0755); if ( mount(crypto_blkdev, tmp_mount_point, "ext4", MS_RDONLY, "") ) { SLOGE("Error temp mounting decrypted block device\n"); delete_crypto_blk_dev(label); crypt_ftr.failed_decrypt_count++; } else { /* Success, so just umount and we'll mount it properly when we restart * the framework. */ umount(tmp_mount_point); crypt_ftr.failed_decrypt_count = 0; } if (orig_failed_decrypt_count != crypt_ftr.failed_decrypt_count) { put_crypt_ftr_and_key(real_blkdev, &crypt_ftr, 0, 0); } if (crypt_ftr.failed_decrypt_count) { /* We failed to mount the device, so return an error */ rc = crypt_ftr.failed_decrypt_count; } else { /* Woot! Success! Save the name of the crypto block device * so we can mount it when restarting the framework. */ property_set("ro.crypto.fs_crypto_blkdev", crypto_blkdev); /* Also save a the master key so we can reencrypted the key * the key when we want to change the password on it. */ memcpy(saved_master_key, decrypted_master_key, KEY_LEN_BYTES); saved_data_blkdev = strdup(real_blkdev); master_key_saved = 1; rc = 0; } return rc; } /* Called by vold when it wants to undo the crypto mapping of a volume it * manages. This is usually in response to a factory reset, when we want * to undo the crypto mapping so the volume is formatted in the clear. */ int cryptfs_revert_volume(const char *label) { return delete_crypto_blk_dev((char *)label); } /* * Called by vold when it's asked to mount an encrypted, nonremovable volume. * Setup a dm-crypt mapping, use the saved master key from * setting up the /data mapping, and return the new device path. */ int cryptfs_setup_volume(const char *label, int major, int minor, char *crypto_sys_path, unsigned int max_path, int *new_major, int *new_minor) { char real_blkdev[MAXPATHLEN], crypto_blkdev[MAXPATHLEN]; struct crypt_mnt_ftr sd_crypt_ftr; unsigned char key[32], salt[32]; struct stat statbuf; int nr_sec, fd; sprintf(real_blkdev, "/dev/block/vold/%d:%d", major, minor); /* Just want the footer, but gotta get it all */ get_crypt_ftr_and_key(saved_data_blkdev, &sd_crypt_ftr, key, salt); /* Update the fs_size field to be the size of the volume */ fd = open(real_blkdev, O_RDONLY); nr_sec = get_blkdev_size(fd); close(fd); if (nr_sec == 0) { SLOGE("Cannot get size of volume %s\n", real_blkdev); return -1; } sd_crypt_ftr.fs_size = nr_sec; create_crypto_blk_dev(&sd_crypt_ftr, saved_master_key, real_blkdev, crypto_blkdev, label); stat(crypto_blkdev, &statbuf); *new_major = MAJOR(statbuf.st_rdev); *new_minor = MINOR(statbuf.st_rdev); /* Create path to sys entry for this block device */ snprintf(crypto_sys_path, max_path, "/devices/virtual/block/%s", strrchr(crypto_blkdev, '/')+1); return 0; } int cryptfs_crypto_complete(void) { return do_crypto_complete("/data"); } int cryptfs_check_passwd(char *passwd) { int rc = -1; rc = test_mount_encrypted_fs(passwd, DATA_MNT_POINT, "userdata"); return rc; } /* Initialize a crypt_mnt_ftr structure. The keysize is * defaulted to 16 bytes, and the filesystem size to 0. * Presumably, at a minimum, the caller will update the * filesystem size and crypto_type_name after calling this function. */ static void cryptfs_init_crypt_mnt_ftr(struct crypt_mnt_ftr *ftr) { ftr->magic = CRYPT_MNT_MAGIC; ftr->major_version = 1; ftr->minor_version = 0; ftr->ftr_size = sizeof(struct crypt_mnt_ftr); ftr->flags = 0; ftr->keysize = KEY_LEN_BYTES; ftr->spare1 = 0; ftr->fs_size = 0; ftr->failed_decrypt_count = 0; ftr->crypto_type_name[0] = '\0'; } static int cryptfs_enable_wipe(char *crypto_blkdev, off64_t size, int type) { char cmdline[256]; int rc = -1; if (type == EXT4_FS) { snprintf(cmdline, sizeof(cmdline), "/system/bin/make_ext4fs -a /data -l %lld %s", size * 512, crypto_blkdev); SLOGI("Making empty filesystem with command %s\n", cmdline); } else if (type== FAT_FS) { snprintf(cmdline, sizeof(cmdline), "/system/bin/newfs_msdos -F 32 -O android -c 8 -s %lld %s", size, crypto_blkdev); SLOGI("Making empty filesystem with command %s\n", cmdline); } else { SLOGE("cryptfs_enable_wipe(): unknown filesystem type %d\n", type); return -1; } if (system(cmdline)) { SLOGE("Error creating empty filesystem on %s\n", crypto_blkdev); } else { SLOGD("Successfully created empty filesystem on %s\n", crypto_blkdev); rc = 0; } return rc; } static inline int unix_read(int fd, void* buff, int len) { int ret; do { ret = read(fd, buff, len); } while (ret < 0 && errno == EINTR); return ret; } static inline int unix_write(int fd, const void* buff, int len) { int ret; do { ret = write(fd, buff, len); } while (ret < 0 && errno == EINTR); return ret; } #define CRYPT_INPLACE_BUFSIZE 4096 #define CRYPT_SECTORS_PER_BUFSIZE (CRYPT_INPLACE_BUFSIZE / 512) static int cryptfs_enable_inplace(char *crypto_blkdev, char *real_blkdev, off64_t size, off64_t *size_already_done, off64_t tot_size) { int realfd, cryptofd; char *buf[CRYPT_INPLACE_BUFSIZE]; int rc = -1; off64_t numblocks, i, remainder; off64_t one_pct, cur_pct, new_pct; off64_t blocks_already_done, tot_numblocks; if ( (realfd = open(real_blkdev, O_RDONLY)) < 0) { SLOGE("Error opening real_blkdev %s for inplace encrypt\n", real_blkdev); return -1; } if ( (cryptofd = open(crypto_blkdev, O_WRONLY)) < 0) { SLOGE("Error opening crypto_blkdev %s for inplace encrypt\n", crypto_blkdev); close(realfd); return -1; } /* This is pretty much a simple loop of reading 4K, and writing 4K. * The size passed in is the number of 512 byte sectors in the filesystem. * So compute the number of whole 4K blocks we should read/write, * and the remainder. */ numblocks = size / CRYPT_SECTORS_PER_BUFSIZE; remainder = size % CRYPT_SECTORS_PER_BUFSIZE; tot_numblocks = tot_size / CRYPT_SECTORS_PER_BUFSIZE; blocks_already_done = *size_already_done / CRYPT_SECTORS_PER_BUFSIZE; SLOGE("Encrypting filesystem in place..."); one_pct = tot_numblocks / 100; cur_pct = 0; /* process the majority of the filesystem in blocks */ for (i=0; i cur_pct) { char buf[8]; cur_pct = new_pct; snprintf(buf, sizeof(buf), "%lld", cur_pct); property_set("vold.encrypt_progress", buf); } if (unix_read(realfd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) { SLOGE("Error reading real_blkdev %s for inplace encrypt\n", crypto_blkdev); goto errout; } if (unix_write(cryptofd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) { SLOGE("Error writing crypto_blkdev %s for inplace encrypt\n", crypto_blkdev); goto errout; } } /* Do any remaining sectors */ for (i=0; iflags & (VOL_ENCRYPTABLE | VOL_NONREMOVABLE)) == (VOL_ENCRYPTABLE | VOL_NONREMOVABLE); } int cryptfs_enable(char *howarg, char *passwd) { int how = 0; char crypto_blkdev[MAXPATHLEN], real_blkdev[MAXPATHLEN], sd_crypto_blkdev[MAXPATHLEN]; char fs_type[PROPERTY_VALUE_MAX], fs_options[PROPERTY_VALUE_MAX], mount_point[PROPERTY_VALUE_MAX]; unsigned long mnt_flags, nr_sec; unsigned char master_key[KEY_LEN_BYTES], decrypted_master_key[KEY_LEN_BYTES]; unsigned char salt[SALT_LEN]; int rc=-1, fd, i, ret; struct crypt_mnt_ftr crypt_ftr, sd_crypt_ftr;; char tmpfs_options[PROPERTY_VALUE_MAX]; char encrypted_state[PROPERTY_VALUE_MAX]; char lockid[32] = { 0 }; char key_loc[PROPERTY_VALUE_MAX]; char fuse_sdcard[PROPERTY_VALUE_MAX]; char *sd_mnt_point; char sd_blk_dev[256] = { 0 }; int num_vols; struct volume_info *vol_list = 0; off64_t cur_encryption_done=0, tot_encryption_size=0; property_get("ro.crypto.state", encrypted_state, ""); if (strcmp(encrypted_state, "unencrypted")) { SLOGE("Device is already running encrypted, aborting"); goto error_unencrypted; } property_get(KEY_LOC_PROP, key_loc, KEY_IN_FOOTER); if (!strcmp(howarg, "wipe")) { how = CRYPTO_ENABLE_WIPE; } else if (! strcmp(howarg, "inplace")) { how = CRYPTO_ENABLE_INPLACE; } else { /* Shouldn't happen, as CommandListener vets the args */ goto error_unencrypted; } get_orig_mount_parms(mount_point, fs_type, real_blkdev, &mnt_flags, fs_options); /* Get the size of the real block device */ fd = open(real_blkdev, O_RDONLY); if ( (nr_sec = get_blkdev_size(fd)) == 0) { SLOGE("Cannot get size of block device %s\n", real_blkdev); goto error_unencrypted; } close(fd); /* If doing inplace encryption, make sure the orig fs doesn't include the crypto footer */ if ((how == CRYPTO_ENABLE_INPLACE) && (!strcmp(key_loc, KEY_IN_FOOTER))) { unsigned int fs_size_sec, max_fs_size_sec; fs_size_sec = get_fs_size(real_blkdev); max_fs_size_sec = nr_sec - (CRYPT_FOOTER_OFFSET / 512); if (fs_size_sec > max_fs_size_sec) { SLOGE("Orig filesystem overlaps crypto footer region. Cannot encrypt in place."); goto error_unencrypted; } } /* Get a wakelock as this may take a while, and we don't want the * device to sleep on us. We'll grab a partial wakelock, and if the UI * wants to keep the screen on, it can grab a full wakelock. */ snprintf(lockid, sizeof(lockid), "enablecrypto%d", (int) getpid()); acquire_wake_lock(PARTIAL_WAKE_LOCK, lockid); /* Get the sdcard mount point */ sd_mnt_point = getenv("EXTERNAL_STORAGE"); if (! sd_mnt_point) { sd_mnt_point = "/mnt/sdcard"; } num_vols=vold_getNumDirectVolumes(); vol_list = malloc(sizeof(struct volume_info) * num_vols); vold_getDirectVolumeList(vol_list); for (i=0; i