/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "IdleMaint.h" #include "FileDeviceUtils.h" #include "Utils.h" #include "VoldUtil.h" #include "VolumeManager.h" #include "model/PrivateVolume.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using android::base::Basename; using android::base::ReadFileToString; using android::base::Realpath; using android::base::StringPrintf; using android::base::Timer; using android::base::WriteStringToFile; using android::hardware::Return; using android::hardware::Void; using AStorage = aidl::android::hardware::health::storage::IStorage; using ABnGarbageCollectCallback = aidl::android::hardware::health::storage::BnGarbageCollectCallback; using AResult = aidl::android::hardware::health::storage::Result; using HStorage = android::hardware::health::storage::V1_0::IStorage; using HGarbageCollectCallback = android::hardware::health::storage::V1_0::IGarbageCollectCallback; using HResult = android::hardware::health::storage::V1_0::Result; using std::string_literals::operator""s; namespace android { namespace vold { enum class PathTypes { kMountPoint = 1, kBlkDevice, }; enum class IdleMaintStats { kStopped = 1, kRunning, kAbort, }; static const char* kWakeLock = "IdleMaint"; static const int DIRTY_SEGMENTS_THRESHOLD = 100; /* * Timing policy: * 1. F2FS_GC = 7 mins * 2. Trim = 1 min * 3. Dev GC = 2 mins */ static const int GC_TIMEOUT_SEC = 420; static const int DEVGC_TIMEOUT_SEC = 120; static const int KBYTES_IN_SEGMENT = 2048; static const int ONE_MINUTE_IN_MS = 60000; static const int GC_NORMAL_MODE = 0; static const int GC_URGENT_MID_MODE = 3; static int32_t previousSegmentWrite = 0; static IdleMaintStats idle_maint_stat(IdleMaintStats::kStopped); static std::condition_variable cv_abort, cv_stop; static std::mutex cv_m; static void addFromVolumeManager(std::list* paths, PathTypes path_type) { VolumeManager* vm = VolumeManager::Instance(); std::list privateIds; vm->listVolumes(VolumeBase::Type::kPrivate, privateIds); for (const auto& id : privateIds) { PrivateVolume* vol = static_cast(vm->findVolume(id).get()); if (vol != nullptr && vol->getState() == VolumeBase::State::kMounted) { if (path_type == PathTypes::kMountPoint) { paths->push_back(vol->getPath()); } else if (path_type == PathTypes::kBlkDevice) { std::string gc_path; const std::string& fs_type = vol->getFsType(); if (fs_type == "f2fs" && (Realpath(vol->getRawDmDevPath(), &gc_path) || Realpath(vol->getRawDevPath(), &gc_path))) { paths->push_back(std::string("/sys/fs/") + fs_type + "/" + Basename(gc_path)); } } } } } static void addFromFstab(std::list* paths, PathTypes path_type, bool only_data_part) { std::string previous_mount_point; for (const auto& entry : fstab_default) { // Skip raw partitions and swap space. if (entry.fs_type == "emmc" || entry.fs_type == "mtd" || entry.fs_type == "swap") { continue; } // Skip read-only filesystems and bind mounts. if (entry.flags & (MS_RDONLY | MS_BIND)) { continue; } // Skip anything without an underlying block device, e.g. virtiofs. if (entry.blk_device[0] != '/') { continue; } if (entry.fs_mgr_flags.vold_managed) { continue; // Should we trim fat32 filesystems? } if (entry.fs_mgr_flags.no_trim) { continue; } if (only_data_part && entry.mount_point != "/data") { continue; } // Skip the multi-type partitions, which are required to be following each other. // See fs_mgr.c's mount_with_alternatives(). if (entry.mount_point == previous_mount_point) { continue; } if (path_type == PathTypes::kMountPoint) { paths->push_back(entry.mount_point); } else if (path_type == PathTypes::kBlkDevice) { std::string path; if (entry.fs_type == "f2fs" && Realpath(android::vold::BlockDeviceForPath(entry.mount_point + "/"), &path)) { paths->push_back("/sys/fs/" + entry.fs_type + "/" + Basename(path)); } } previous_mount_point = entry.mount_point; } } void Trim(const android::sp& listener) { auto wl = android::wakelock::WakeLock::tryGet(kWakeLock); if (!wl.has_value()) { return; } // Collect both fstab and vold volumes std::list paths; addFromFstab(&paths, PathTypes::kMountPoint, false); addFromVolumeManager(&paths, PathTypes::kMountPoint); for (const auto& path : paths) { LOG(DEBUG) << "Starting trim of " << path; android::os::PersistableBundle extras; extras.putString(String16("path"), String16(path.c_str())); int fd = open(path.c_str(), O_RDONLY | O_DIRECTORY | O_CLOEXEC | O_NOFOLLOW); if (fd < 0) { PLOG(WARNING) << "Failed to open " << path; if (listener) { listener->onStatus(-1, extras); } continue; } struct fstrim_range range; memset(&range, 0, sizeof(range)); range.len = ULLONG_MAX; nsecs_t start = systemTime(SYSTEM_TIME_BOOTTIME); if (ioctl(fd, FITRIM, &range)) { PLOG(WARNING) << "Trim failed on " << path; if (listener) { listener->onStatus(-1, extras); } } else { nsecs_t time = systemTime(SYSTEM_TIME_BOOTTIME) - start; LOG(INFO) << "Trimmed " << range.len << " bytes on " << path << " in " << nanoseconds_to_milliseconds(time) << "ms"; extras.putLong(String16("bytes"), range.len); extras.putLong(String16("time"), time); if (listener) { listener->onStatus(0, extras); } } close(fd); } if (listener) { android::os::PersistableBundle extras; listener->onFinished(0, extras); } } static bool waitForGc(const std::list& paths) { std::unique_lock lk(cv_m, std::defer_lock); bool stop = false, aborted = false; Timer timer; while (!stop && !aborted) { stop = true; for (const auto& path : paths) { std::string dirty_segments; if (!ReadFileToString(path + "/dirty_segments", &dirty_segments)) { PLOG(WARNING) << "Reading dirty_segments failed in " << path; continue; } if (std::stoi(dirty_segments) > DIRTY_SEGMENTS_THRESHOLD) { stop = false; break; } } if (stop) break; if (timer.duration() >= std::chrono::seconds(GC_TIMEOUT_SEC)) { LOG(WARNING) << "GC timeout"; break; } lk.lock(); aborted = cv_abort.wait_for(lk, 10s, [] { return idle_maint_stat == IdleMaintStats::kAbort; }); lk.unlock(); } return aborted; } static int startGc(const std::list& paths) { for (const auto& path : paths) { LOG(DEBUG) << "Start GC on " << path; if (!WriteStringToFile("1", path + "/gc_urgent")) { PLOG(WARNING) << "Start GC failed on " << path; } } return android::OK; } static int stopGc(const std::list& paths) { for (const auto& path : paths) { LOG(DEBUG) << "Stop GC on " << path; if (!WriteStringToFile("0", path + "/gc_urgent")) { PLOG(WARNING) << "Stop GC failed on " << path; } } return android::OK; } static std::string getDevSysfsPath() { for (const auto& entry : fstab_default) { if (!entry.sysfs_path.empty()) { return entry.sysfs_path; } } LOG(WARNING) << "Cannot find dev sysfs path"; return ""; } static void runDevGcFstab(void) { std::string path = getDevSysfsPath(); if (path.empty()) { return; } path = path + "/manual_gc"; Timer timer; LOG(DEBUG) << "Start Dev GC on " << path; while (1) { std::string require; if (!ReadFileToString(path, &require)) { PLOG(WARNING) << "Reading manual_gc failed in " << path; break; } require = android::base::Trim(require); if (require == "" || require == "off" || require == "disabled") { LOG(DEBUG) << "No more to do Dev GC"; break; } LOG(DEBUG) << "Trigger Dev GC on " << path; if (!WriteStringToFile("1", path)) { PLOG(WARNING) << "Start Dev GC failed on " << path; break; } if (timer.duration() >= std::chrono::seconds(DEVGC_TIMEOUT_SEC)) { LOG(WARNING) << "Dev GC timeout"; break; } sleep(2); } LOG(DEBUG) << "Stop Dev GC on " << path; if (!WriteStringToFile("0", path)) { PLOG(WARNING) << "Stop Dev GC failed on " << path; } return; } enum class IDL { HIDL, AIDL }; std::ostream& operator<<(std::ostream& os, IDL idl) { return os << (idl == IDL::HIDL ? "HIDL" : "AIDL"); } template class GcCallbackImpl { protected: void onFinishInternal(Result result) { std::unique_lock lock(mMutex); mFinished = true; mResult = result; lock.unlock(); mCv.notify_all(); } public: void wait(uint64_t seconds) { std::unique_lock lock(mMutex); mCv.wait_for(lock, std::chrono::seconds(seconds), [this] { return mFinished; }); if (!mFinished) { LOG(WARNING) << "Dev GC on " << idl << " HAL timeout"; } else if (mResult != Result::SUCCESS) { LOG(WARNING) << "Dev GC on " << idl << " HAL failed with " << toString(mResult); } else { LOG(INFO) << "Dev GC on " << idl << " HAL successful"; } } private: std::mutex mMutex; std::condition_variable mCv; bool mFinished{false}; Result mResult{Result::UNKNOWN_ERROR}; }; class AGcCallbackImpl : public ABnGarbageCollectCallback, public GcCallbackImpl { ndk::ScopedAStatus onFinish(AResult result) override { onFinishInternal(result); return ndk::ScopedAStatus::ok(); } }; class HGcCallbackImpl : public HGarbageCollectCallback, public GcCallbackImpl { Return onFinish(HResult result) override { onFinishInternal(result); return Void(); } }; template static void runDevGcOnHal(Service service, GcCallbackImpl cb, GetDescription get_description) { LOG(DEBUG) << "Start Dev GC on " << idl << " HAL"; auto ret = service->garbageCollect(DEVGC_TIMEOUT_SEC, cb); if (!ret.isOk()) { LOG(WARNING) << "Cannot start Dev GC on " << idl << " HAL: " << std::invoke(get_description, ret); return; } cb->wait(DEVGC_TIMEOUT_SEC); } static void runDevGc(void) { runDevGcFstab(); } int RunIdleMaint(bool needGC, const android::sp& listener) { std::unique_lock lk(cv_m); bool gc_aborted = false; if (idle_maint_stat != IdleMaintStats::kStopped) { LOG(DEBUG) << "idle maintenance is already running"; if (listener) { android::os::PersistableBundle extras; listener->onFinished(0, extras); } return android::OK; } idle_maint_stat = IdleMaintStats::kRunning; lk.unlock(); LOG(DEBUG) << "idle maintenance started"; auto wl = android::wakelock::WakeLock::tryGet(kWakeLock); if (!wl.has_value()) { return android::UNEXPECTED_NULL; } if (needGC) { std::list paths; addFromFstab(&paths, PathTypes::kBlkDevice, false); addFromVolumeManager(&paths, PathTypes::kBlkDevice); startGc(paths); gc_aborted = waitForGc(paths); stopGc(paths); } if (!gc_aborted) { Trim(nullptr); runDevGc(); } lk.lock(); idle_maint_stat = IdleMaintStats::kStopped; lk.unlock(); cv_stop.notify_one(); if (listener) { android::os::PersistableBundle extras; listener->onFinished(0, extras); } LOG(DEBUG) << "idle maintenance completed"; return android::OK; } int AbortIdleMaint(const android::sp& listener) { auto wl = android::wakelock::WakeLock::tryGet(kWakeLock); if (!wl.has_value()) { return android::UNEXPECTED_NULL; } std::unique_lock lk(cv_m); if (idle_maint_stat != IdleMaintStats::kStopped) { idle_maint_stat = IdleMaintStats::kAbort; lk.unlock(); cv_abort.notify_one(); lk.lock(); LOG(DEBUG) << "aborting idle maintenance"; cv_stop.wait(lk, [] { return idle_maint_stat == IdleMaintStats::kStopped; }); } lk.unlock(); if (listener) { android::os::PersistableBundle extras; listener->onFinished(0, extras); } LOG(DEBUG) << "idle maintenance stopped"; return android::OK; } int getLifeTime(const std::string& path) { std::string result; if (!ReadFileToString(path, &result)) { PLOG(WARNING) << "Reading lifetime estimation failed for " << path; return -1; } return std::stoi(result, 0, 16); } int32_t GetStorageLifeTime() { std::string path = getDevSysfsPath(); if (path.empty()) { return -1; } std::string lifeTimeBasePath = path + "/health_descriptor/life_time_estimation_"; int32_t lifeTime = getLifeTime(lifeTimeBasePath + "c"); if (lifeTime != -1) { return lifeTime; } int32_t lifeTimeA = getLifeTime(lifeTimeBasePath + "a"); int32_t lifeTimeB = getLifeTime(lifeTimeBasePath + "b"); lifeTime = std::max(lifeTimeA, lifeTimeB); if (lifeTime != -1) { return lifeTime == 0 ? -1 : lifeTime * 10; } return -1; } void SetGCUrgentPace(int32_t neededSegments, int32_t minSegmentThreshold, float dirtyReclaimRate, float reclaimWeight, int32_t gcPeriod, int32_t minGCSleepTime, int32_t targetDirtyRatio) { std::list paths; bool needGC = false; int32_t sleepTime; addFromFstab(&paths, PathTypes::kBlkDevice, true); if (paths.empty()) { LOG(WARNING) << "There is no valid blk device path for data partition"; return; } std::string f2fsSysfsPath = paths.front(); std::string freeSegmentsPath = f2fsSysfsPath + "/free_segments"; std::string dirtySegmentsPath = f2fsSysfsPath + "/dirty_segments"; std::string gcSleepTimePath = f2fsSysfsPath + "/gc_urgent_sleep_time"; std::string gcUrgentModePath = f2fsSysfsPath + "/gc_urgent"; std::string ovpSegmentsPath = f2fsSysfsPath + "/ovp_segments"; std::string reservedBlocksPath = f2fsSysfsPath + "/reserved_blocks"; std::string freeSegmentsStr, dirtySegmentsStr, ovpSegmentsStr, reservedBlocksStr; if (!ReadFileToString(freeSegmentsPath, &freeSegmentsStr)) { PLOG(WARNING) << "Reading failed in " << freeSegmentsPath; return; } if (!ReadFileToString(dirtySegmentsPath, &dirtySegmentsStr)) { PLOG(WARNING) << "Reading failed in " << dirtySegmentsPath; return; } if (!ReadFileToString(ovpSegmentsPath, &ovpSegmentsStr)) { PLOG(WARNING) << "Reading failed in " << ovpSegmentsPath; return; } if (!ReadFileToString(reservedBlocksPath, &reservedBlocksStr)) { PLOG(WARNING) << "Reading failed in " << reservedBlocksPath; return; } int32_t freeSegments = std::stoi(freeSegmentsStr); int32_t dirtySegments = std::stoi(dirtySegmentsStr); int32_t reservedBlocks = std::stoi(ovpSegmentsStr) + std::stoi(reservedBlocksStr); freeSegments = freeSegments > reservedBlocks ? freeSegments - reservedBlocks : 0; int32_t totalSegments = freeSegments + dirtySegments; int32_t finalTargetSegments = 0; if (totalSegments < minSegmentThreshold) { LOG(INFO) << "The sum of free segments: " << freeSegments << ", dirty segments: " << dirtySegments << " is under " << minSegmentThreshold; } else { int32_t dirtyRatio = dirtySegments * 100 / totalSegments; int32_t neededForTargetRatio = (dirtyRatio > targetDirtyRatio) ? totalSegments * (dirtyRatio - targetDirtyRatio) / 100 : 0; neededSegments *= reclaimWeight; neededSegments = (neededSegments > freeSegments) ? neededSegments - freeSegments : 0; finalTargetSegments = std::max(neededSegments, neededForTargetRatio); if (finalTargetSegments == 0) { LOG(INFO) << "Enough free segments: " << freeSegments; } else { finalTargetSegments = std::min(finalTargetSegments, (int32_t)(dirtySegments * dirtyReclaimRate)); if (finalTargetSegments == 0) { LOG(INFO) << "Low dirty segments: " << dirtySegments; } else if (neededSegments >= neededForTargetRatio) { LOG(INFO) << "Trigger GC, because of needed segments exceeding free segments"; needGC = true; } else { LOG(INFO) << "Trigger GC for target dirty ratio diff of: " << dirtyRatio - targetDirtyRatio; needGC = true; } } } if (!needGC) { if (!WriteStringToFile(std::to_string(GC_NORMAL_MODE), gcUrgentModePath)) { PLOG(WARNING) << "Writing failed in " << gcUrgentModePath; } return; } sleepTime = gcPeriod * ONE_MINUTE_IN_MS / finalTargetSegments; if (sleepTime < minGCSleepTime) { sleepTime = minGCSleepTime; } if (!WriteStringToFile(std::to_string(sleepTime), gcSleepTimePath)) { PLOG(WARNING) << "Writing failed in " << gcSleepTimePath; return; } if (!WriteStringToFile(std::to_string(GC_URGENT_MID_MODE), gcUrgentModePath)) { PLOG(WARNING) << "Writing failed in " << gcUrgentModePath; return; } LOG(INFO) << "Successfully set gc urgent mode: " << "free segments: " << freeSegments << ", reclaim target: " << finalTargetSegments << ", sleep time: " << sleepTime; } static int32_t getLifeTimeWrite() { std::list paths; addFromFstab(&paths, PathTypes::kBlkDevice, true); if (paths.empty()) { LOG(WARNING) << "There is no valid blk device path for data partition"; return -1; } std::string writeKbytesPath = paths.front() + "/lifetime_write_kbytes"; std::string writeKbytesStr; if (!ReadFileToString(writeKbytesPath, &writeKbytesStr)) { PLOG(WARNING) << "Reading failed in " << writeKbytesPath; return -1; } long long writeBytes = std::stoll(writeKbytesStr); return writeBytes / KBYTES_IN_SEGMENT; } void RefreshLatestWrite() { int32_t segmentWrite = getLifeTimeWrite(); if (segmentWrite != -1) { previousSegmentWrite = segmentWrite; } } int32_t GetWriteAmount() { int32_t currentSegmentWrite = getLifeTimeWrite(); if (currentSegmentWrite == -1) { return -1; } int32_t writeAmount = currentSegmentWrite - previousSegmentWrite; previousSegmentWrite = currentSegmentWrite; return writeAmount; } } // namespace vold } // namespace android