/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "MetadataCrypt.h" #include "KeyBuffer.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include "Checkpoint.h" #include "CryptoType.h" #include "EncryptInplace.h" #include "KeyStorage.h" #include "KeyUtil.h" #include "Keystore.h" #include "Utils.h" #include "VoldUtil.h" #include "fs/Ext4.h" #include "fs/F2fs.h" namespace android { namespace vold { using android::fs_mgr::FstabEntry; using android::fs_mgr::GetEntryForMountPoint; using android::fscrypt::GetFirstApiLevel; using android::vold::KeyBuffer; using namespace android::dm; using namespace std::chrono_literals; // Parsed from metadata options struct CryptoOptions { struct CryptoType cipher = invalid_crypto_type; bool use_legacy_options_format = false; bool set_dun = true; // Non-legacy driver always sets DUN bool use_hw_wrapped_key = false; }; static const std::string kDmNameUserdata = "userdata"; static const std::string kDmNameUserdataZoned = "userdata_zoned"; // The first entry in this table is the default crypto type. constexpr CryptoType supported_crypto_types[] = {aes_256_xts, adiantum}; static_assert(validateSupportedCryptoTypes(64, supported_crypto_types, array_length(supported_crypto_types)), "We have a CryptoType which was incompletely constructed."); constexpr CryptoType legacy_aes_256_xts = CryptoType().set_config_name("aes-256-xts").set_kernel_name("AES-256-XTS").set_keysize(64); static_assert(isValidCryptoType(64, legacy_aes_256_xts), "We have a CryptoType which was incompletely constructed."); // Returns KeyGeneration suitable for key as described in CryptoOptions const KeyGeneration makeGen(const CryptoOptions& options) { return KeyGeneration{options.cipher.get_keysize(), true, options.use_hw_wrapped_key}; } void defaultkey_precreate_dm_device() { auto& dm = DeviceMapper::Instance(); if (dm.GetState(kDmNameUserdata) != DmDeviceState::INVALID) { LOG(INFO) << "Not pre-creating userdata encryption device; device already exists"; return; } if (!dm.CreatePlaceholderDevice(kDmNameUserdata)) { LOG(ERROR) << "Failed to pre-create userdata metadata encryption device"; } } static bool mount_via_fs_mgr(const char* mount_point, const char* blk_device, bool needs_encrypt) { // fs_mgr_do_mount runs fsck. Use setexeccon to run trusted // partitions in the fsck domain. if (setexeccon(android::vold::sFsckContext)) { PLOG(ERROR) << "Failed to setexeccon"; return false; } auto mount_rc = fs_mgr_do_mount(&fstab_default, mount_point, blk_device, android::vold::cp_needsCheckpoint(), needs_encrypt); if (setexeccon(nullptr)) { PLOG(ERROR) << "Failed to clear setexeccon"; return false; } if (mount_rc != 0) { LOG(ERROR) << "fs_mgr_do_mount failed with rc " << mount_rc; return false; } LOG(DEBUG) << "Mounted " << mount_point; return true; } static bool read_key(const std::string& metadata_key_dir, const KeyGeneration& gen, bool first_key, KeyBuffer* key) { if (metadata_key_dir.empty()) { LOG(ERROR) << "Failed to get metadata_key_dir"; return false; } std::string sKey; auto dir = metadata_key_dir + "/key"; LOG(DEBUG) << "metadata_key_dir/key: " << dir; if (!MkdirsSync(dir, 0700)) return false; auto in_dsu = android::base::GetBoolProperty("ro.gsid.image_running", false); // !pathExists(dir) does not imply there's a factory reset when in DSU mode. if (!pathExists(dir) && !in_dsu && first_key) { auto delete_all = android::base::GetBoolProperty( "ro.crypto.metadata_init_delete_all_keys.enabled", false); if (delete_all) { LOG(INFO) << "Metadata key does not exist, calling deleteAllKeys"; Keystore::deleteAllKeys(); } else { LOG(DEBUG) << "Metadata key does not exist but " "ro.crypto.metadata_init_delete_all_keys.enabled is false"; } } auto temp = metadata_key_dir + "/tmp"; return retrieveOrGenerateKey(dir, temp, kEmptyAuthentication, gen, key); } static bool get_number_of_sectors(const std::string& real_blkdev, uint64_t* nr_sec) { if (android::vold::GetBlockDev512Sectors(real_blkdev, nr_sec) != android::OK) { PLOG(ERROR) << "Unable to measure size of " << real_blkdev; return false; } return true; } static bool create_crypto_blk_dev(const std::string& dm_name, const std::string& blk_device, const KeyBuffer& key, const CryptoOptions& options, std::string* crypto_blkdev, uint64_t* nr_sec) { if (!get_number_of_sectors(blk_device, nr_sec)) return false; // TODO(paulcrowley): don't hardcode that DmTargetDefaultKey uses 4096-byte // sectors *nr_sec &= ~7; KeyBuffer module_key; if (options.use_hw_wrapped_key) { if (!exportWrappedStorageKey(key, &module_key)) { LOG(ERROR) << "Failed to get ephemeral wrapped key"; return false; } } else { module_key = key; } KeyBuffer hex_key_buffer; if (android::vold::StrToHex(module_key, hex_key_buffer) != android::OK) { LOG(ERROR) << "Failed to turn key to hex"; return false; } std::string hex_key(hex_key_buffer.data(), hex_key_buffer.size()); auto target = std::make_unique(0, *nr_sec, options.cipher.get_kernel_name(), hex_key, blk_device, 0); if (options.use_legacy_options_format) target->SetUseLegacyOptionsFormat(); if (options.set_dun) target->SetSetDun(); if (options.use_hw_wrapped_key) target->SetWrappedKeyV0(); DmTable table; table.AddTarget(std::move(target)); auto& dm = DeviceMapper::Instance(); if (dm_name == kDmNameUserdata && dm.GetState(dm_name) == DmDeviceState::SUSPENDED) { // The device was created in advance, populate it now. if (!dm.LoadTableAndActivate(dm_name, table)) { LOG(ERROR) << "Failed to populate default-key device " << dm_name; return false; } if (!dm.WaitForDevice(dm_name, 20s, crypto_blkdev)) { LOG(ERROR) << "Failed to wait for default-key device " << dm_name; return false; } } else if (!dm.CreateDevice(dm_name, table, crypto_blkdev, 5s)) { LOG(ERROR) << "Could not create default-key device " << dm_name; return false; } return true; } static const CryptoType& lookup_cipher(const std::string& cipher_name) { if (cipher_name.empty()) return supported_crypto_types[0]; for (size_t i = 0; i < array_length(supported_crypto_types); i++) { if (cipher_name == supported_crypto_types[i].get_config_name()) { return supported_crypto_types[i]; } } return invalid_crypto_type; } static bool parse_options(const std::string& options_string, CryptoOptions* options) { auto parts = android::base::Split(options_string, ":"); if (parts.size() < 1 || parts.size() > 2) { LOG(ERROR) << "Invalid metadata encryption option: " << options_string; return false; } std::string cipher_name = parts[0]; options->cipher = lookup_cipher(cipher_name); if (options->cipher.get_kernel_name() == nullptr) { LOG(ERROR) << "No metadata cipher named " << cipher_name << " found"; return false; } if (parts.size() == 2) { if (parts[1] == "wrappedkey_v0") { options->use_hw_wrapped_key = true; } else { LOG(ERROR) << "Invalid metadata encryption flag: " << parts[1]; return false; } } return true; } bool fscrypt_mount_metadata_encrypted(const std::string& blk_device, const std::string& mount_point, bool needs_encrypt, bool should_format, const std::string& fs_type, const std::string& zoned_device) { LOG(DEBUG) << "fscrypt_mount_metadata_encrypted: " << mount_point << " encrypt: " << needs_encrypt << " format: " << should_format << " with " << fs_type << " block device: " << blk_device << " and zoned device: " << zoned_device; auto encrypted_state = android::base::GetProperty("ro.crypto.state", ""); if (encrypted_state != "" && encrypted_state != "encrypted") { LOG(ERROR) << "fscrypt_mount_metadata_encrypted got unexpected starting state: " << encrypted_state; return false; } auto data_rec = GetEntryForMountPoint(&fstab_default, mount_point); if (!data_rec) { LOG(ERROR) << "Failed to get data_rec for " << mount_point; return false; } unsigned int options_format_version = android::base::GetUintProperty( "ro.crypto.dm_default_key.options_format.version", (GetFirstApiLevel() <= __ANDROID_API_Q__ ? 1 : 2)); CryptoOptions options; if (options_format_version == 1) { if (!data_rec->metadata_encryption_options.empty()) { LOG(ERROR) << "metadata_encryption options cannot be set in legacy mode"; return false; } options.cipher = legacy_aes_256_xts; options.use_legacy_options_format = true; options.set_dun = android::base::GetBoolProperty("ro.crypto.set_dun", false); if (!options.set_dun && data_rec->fs_mgr_flags.checkpoint_blk) { LOG(ERROR) << "Block checkpoints and metadata encryption require ro.crypto.set_dun option"; return false; } } else if (options_format_version == 2) { if (!parse_options(data_rec->metadata_encryption_options, &options)) return false; } else { LOG(ERROR) << "Unknown options_format_version: " << options_format_version; return false; } auto default_metadata_key_dir = data_rec->metadata_key_dir; if (!zoned_device.empty()) { default_metadata_key_dir = default_metadata_key_dir + "/default"; } auto gen = needs_encrypt ? makeGen(options) : neverGen(); KeyBuffer key; if (!read_key(default_metadata_key_dir, gen, true, &key)) { LOG(ERROR) << "read_key failed in mountFstab"; return false; } std::string crypto_blkdev; uint64_t nr_sec; if (!create_crypto_blk_dev(kDmNameUserdata, blk_device, key, options, &crypto_blkdev, &nr_sec)) { LOG(ERROR) << "create_crypto_blk_dev failed in mountFstab"; return false; } // create dm-default-key for zoned device std::string crypto_zoned_blkdev; if (!zoned_device.empty()) { auto zoned_metadata_key_dir = data_rec->metadata_key_dir + "/zoned"; if (!read_key(zoned_metadata_key_dir, gen, false, &key)) { LOG(ERROR) << "read_key failed with zoned device: " << zoned_device; return false; } if (!create_crypto_blk_dev(kDmNameUserdataZoned, zoned_device, key, options, &crypto_zoned_blkdev, &nr_sec)) { LOG(ERROR) << "fscrypt_mount_metadata_encrypted: failed with zoned device: " << zoned_device; return false; } } if (needs_encrypt) { if (should_format) { status_t error; if (fs_type == "ext4") { error = ext4::Format(crypto_blkdev, 0, mount_point); } else if (fs_type == "f2fs") { error = f2fs::Format(crypto_blkdev, crypto_zoned_blkdev); } else { LOG(ERROR) << "Unknown filesystem type: " << fs_type; return false; } if (error != 0) { LOG(ERROR) << "Format of " << crypto_blkdev << " for " << mount_point << " failed (err=" << error << ")."; return false; } LOG(DEBUG) << "Format of " << crypto_blkdev << " for " << mount_point << " succeeded."; } else { if (!zoned_device.empty()) { LOG(ERROR) << "encrypt_inplace cannot support zoned device; should format it."; return false; } if (!encrypt_inplace(crypto_blkdev, blk_device, nr_sec)) { LOG(ERROR) << "encrypt_inplace failed in mountFstab"; return false; } } } LOG(DEBUG) << "Mounting metadata-encrypted filesystem:" << mount_point; mount_via_fs_mgr(mount_point.c_str(), crypto_blkdev.c_str(), needs_encrypt); // Record that there's at least one fstab entry with metadata encryption if (!android::base::SetProperty("ro.crypto.metadata.enabled", "true")) { LOG(WARNING) << "failed to set ro.crypto.metadata.enabled"; // This isn't fatal } return true; } static bool get_volume_options(CryptoOptions* options) { return parse_options(android::base::GetProperty("ro.crypto.volume.metadata.encryption", ""), options); } bool defaultkey_volume_keygen(KeyGeneration* gen) { CryptoOptions options; if (!get_volume_options(&options)) return false; *gen = makeGen(options); return true; } bool defaultkey_setup_ext_volume(const std::string& label, const std::string& blk_device, const KeyBuffer& key, std::string* out_crypto_blkdev) { LOG(DEBUG) << "defaultkey_setup_ext_volume: " << label << " " << blk_device; CryptoOptions options; if (!get_volume_options(&options)) return false; uint64_t nr_sec; return create_crypto_blk_dev(label, blk_device, key, options, out_crypto_blkdev, &nr_sec); } bool destroy_dsu_metadata_key(const std::string& dsu_slot) { LOG(DEBUG) << "destroy_dsu_metadata_key: " << dsu_slot; const auto dsu_metadata_key_dir = android::gsi::GetDsuMetadataKeyDir(dsu_slot); if (!pathExists(dsu_metadata_key_dir)) { LOG(DEBUG) << "DSU metadata_key_dir doesn't exist, nothing to remove: " << dsu_metadata_key_dir; return true; } // Ensure that the DSU key directory is different from the host OS'. // Under normal circumstances, this should never happen, but handle it just in case. if (auto data_rec = GetEntryForMountPoint(&fstab_default, "/data")) { if (dsu_metadata_key_dir == data_rec->metadata_key_dir) { LOG(ERROR) << "DSU metadata_key_dir is same as host OS: " << dsu_metadata_key_dir; return false; } } bool ok = true; for (auto suffix : {"/key", "/tmp"}) { const auto key_path = dsu_metadata_key_dir + suffix; if (pathExists(key_path)) { LOG(DEBUG) << "Destroy key: " << key_path; if (!android::vold::destroyKey(key_path)) { LOG(ERROR) << "Failed to destroyKey(): " << key_path; ok = false; } } } if (!ok) { return false; } LOG(DEBUG) << "Remove DSU metadata_key_dir: " << dsu_metadata_key_dir; // DeleteDirContentsAndDir() already logged any error, so don't log repeatedly. return android::vold::DeleteDirContentsAndDir(dsu_metadata_key_dir) == android::OK; } } // namespace vold } // namespace android