3dfb094cb2
To prevent keys from being compromised if an attacker acquires read access to kernel memory, some inline encryption hardware supports protecting the keys in hardware without software having access to or the ability to set the plaintext keys. Instead, software only sees "wrapped keys", which may differ on every boot. 'wrappedkey_v0' fileencryption flag is used to denote that the device supports inline encryption hardware that supports this feature. On such devices keymaster is used to generate keys with STORAGE_KEY tag and export a per-boot ephemerally wrapped storage key to install it in the kernel. The wrapped key framework in the linux kernel ensures the wrapped key is provided to the inline encryption hardware where it is unwrapped and the file contents key is derived to encrypt contents without revealing the plaintext key in the clear. Test: FBE validation with Fscrypt v2 + inline crypt + wrapped key changes kernel. Bug: 147733587 Change-Id: I1f0de61b56534ec1df9baef075acb74bacd00758
337 lines
13 KiB
C++
337 lines
13 KiB
C++
/*
|
|
* Copyright (C) 2016 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "KeyUtil.h"
|
|
|
|
#include <iomanip>
|
|
#include <sstream>
|
|
#include <string>
|
|
|
|
#include <fcntl.h>
|
|
#include <linux/fscrypt.h>
|
|
#include <openssl/sha.h>
|
|
#include <sys/ioctl.h>
|
|
|
|
#include <android-base/file.h>
|
|
#include <android-base/logging.h>
|
|
#include <keyutils.h>
|
|
|
|
#include <fscrypt_uapi.h>
|
|
#include "KeyStorage.h"
|
|
#include "Utils.h"
|
|
|
|
namespace android {
|
|
namespace vold {
|
|
|
|
bool randomKey(KeyBuffer* key) {
|
|
*key = KeyBuffer(FSCRYPT_MAX_KEY_SIZE);
|
|
if (ReadRandomBytes(key->size(), key->data()) != 0) {
|
|
// TODO status_t plays badly with PLOG, fix it.
|
|
LOG(ERROR) << "Random read failed";
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool generateStorageKey(const EncryptionOptions& options, KeyBuffer* key) {
|
|
if (options.use_hw_wrapped_key) {
|
|
return generateWrappedStorageKey(key);
|
|
}
|
|
return randomKey(key);
|
|
}
|
|
|
|
// Return true if the kernel supports the ioctls to add/remove fscrypt keys
|
|
// directly to/from the filesystem.
|
|
bool isFsKeyringSupported(void) {
|
|
static bool initialized = false;
|
|
static bool supported;
|
|
|
|
if (!initialized) {
|
|
android::base::unique_fd fd(open("/data", O_RDONLY | O_DIRECTORY | O_CLOEXEC));
|
|
|
|
// FS_IOC_ADD_ENCRYPTION_KEY with a NULL argument will fail with ENOTTY
|
|
// if the ioctl isn't supported. Otherwise it will fail with another
|
|
// error code such as EFAULT.
|
|
errno = 0;
|
|
(void)ioctl(fd, FS_IOC_ADD_ENCRYPTION_KEY, NULL);
|
|
if (errno == ENOTTY) {
|
|
LOG(INFO) << "Kernel doesn't support FS_IOC_ADD_ENCRYPTION_KEY. Falling back to "
|
|
"session keyring";
|
|
supported = false;
|
|
} else {
|
|
if (errno != EFAULT) {
|
|
PLOG(WARNING) << "Unexpected error from FS_IOC_ADD_ENCRYPTION_KEY";
|
|
}
|
|
LOG(DEBUG) << "Detected support for FS_IOC_ADD_ENCRYPTION_KEY";
|
|
supported = true;
|
|
}
|
|
// There's no need to check for FS_IOC_REMOVE_ENCRYPTION_KEY, since it's
|
|
// guaranteed to be available if FS_IOC_ADD_ENCRYPTION_KEY is. There's
|
|
// also no need to check for support on external volumes separately from
|
|
// /data, since either the kernel supports the ioctls on all
|
|
// fscrypt-capable filesystems or it doesn't.
|
|
|
|
initialized = true;
|
|
}
|
|
return supported;
|
|
}
|
|
|
|
// Get raw keyref - used to make keyname and to pass to ioctl
|
|
static std::string generateKeyRef(const uint8_t* key, int length) {
|
|
SHA512_CTX c;
|
|
|
|
SHA512_Init(&c);
|
|
SHA512_Update(&c, key, length);
|
|
unsigned char key_ref1[SHA512_DIGEST_LENGTH];
|
|
SHA512_Final(key_ref1, &c);
|
|
|
|
SHA512_Init(&c);
|
|
SHA512_Update(&c, key_ref1, SHA512_DIGEST_LENGTH);
|
|
unsigned char key_ref2[SHA512_DIGEST_LENGTH];
|
|
SHA512_Final(key_ref2, &c);
|
|
|
|
static_assert(FSCRYPT_KEY_DESCRIPTOR_SIZE <= SHA512_DIGEST_LENGTH,
|
|
"Hash too short for descriptor");
|
|
return std::string((char*)key_ref2, FSCRYPT_KEY_DESCRIPTOR_SIZE);
|
|
}
|
|
|
|
static bool fillKey(const KeyBuffer& key, fscrypt_key* fs_key) {
|
|
if (key.size() != FSCRYPT_MAX_KEY_SIZE) {
|
|
LOG(ERROR) << "Wrong size key " << key.size();
|
|
return false;
|
|
}
|
|
static_assert(FSCRYPT_MAX_KEY_SIZE == sizeof(fs_key->raw), "Mismatch of max key sizes");
|
|
fs_key->mode = 0; // unused by kernel
|
|
memcpy(fs_key->raw, key.data(), key.size());
|
|
fs_key->size = key.size();
|
|
return true;
|
|
}
|
|
|
|
static char const* const NAME_PREFIXES[] = {"ext4", "f2fs", "fscrypt", nullptr};
|
|
|
|
static std::string keyrefstring(const std::string& raw_ref) {
|
|
std::ostringstream o;
|
|
for (unsigned char i : raw_ref) {
|
|
o << std::hex << std::setw(2) << std::setfill('0') << (int)i;
|
|
}
|
|
return o.str();
|
|
}
|
|
|
|
static std::string buildLegacyKeyName(const std::string& prefix, const std::string& raw_ref) {
|
|
return prefix + ":" + keyrefstring(raw_ref);
|
|
}
|
|
|
|
// Get the ID of the keyring we store all fscrypt keys in when the kernel is too
|
|
// old to support FS_IOC_ADD_ENCRYPTION_KEY and FS_IOC_REMOVE_ENCRYPTION_KEY.
|
|
static bool fscryptKeyring(key_serial_t* device_keyring) {
|
|
*device_keyring = keyctl_search(KEY_SPEC_SESSION_KEYRING, "keyring", "fscrypt", 0);
|
|
if (*device_keyring == -1) {
|
|
PLOG(ERROR) << "Unable to find device keyring";
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Add an encryption key to the legacy global session keyring.
|
|
static bool installKeyLegacy(const KeyBuffer& key, const std::string& raw_ref) {
|
|
// Place fscrypt_key into automatically zeroing buffer.
|
|
KeyBuffer fsKeyBuffer(sizeof(fscrypt_key));
|
|
fscrypt_key& fs_key = *reinterpret_cast<fscrypt_key*>(fsKeyBuffer.data());
|
|
|
|
if (!fillKey(key, &fs_key)) return false;
|
|
key_serial_t device_keyring;
|
|
if (!fscryptKeyring(&device_keyring)) return false;
|
|
for (char const* const* name_prefix = NAME_PREFIXES; *name_prefix != nullptr; name_prefix++) {
|
|
auto ref = buildLegacyKeyName(*name_prefix, raw_ref);
|
|
key_serial_t key_id =
|
|
add_key("logon", ref.c_str(), (void*)&fs_key, sizeof(fs_key), device_keyring);
|
|
if (key_id == -1) {
|
|
PLOG(ERROR) << "Failed to insert key into keyring " << device_keyring;
|
|
return false;
|
|
}
|
|
LOG(DEBUG) << "Added key " << key_id << " (" << ref << ") to keyring " << device_keyring
|
|
<< " in process " << getpid();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Build a struct fscrypt_key_specifier for use in the key management ioctls.
|
|
static bool buildKeySpecifier(fscrypt_key_specifier* spec, const EncryptionPolicy& policy) {
|
|
switch (policy.options.version) {
|
|
case 1:
|
|
if (policy.key_raw_ref.size() != FSCRYPT_KEY_DESCRIPTOR_SIZE) {
|
|
LOG(ERROR) << "Invalid key specifier size for v1 encryption policy: "
|
|
<< policy.key_raw_ref.size();
|
|
return false;
|
|
}
|
|
spec->type = FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR;
|
|
memcpy(spec->u.descriptor, policy.key_raw_ref.c_str(), FSCRYPT_KEY_DESCRIPTOR_SIZE);
|
|
return true;
|
|
case 2:
|
|
if (policy.key_raw_ref.size() != FSCRYPT_KEY_IDENTIFIER_SIZE) {
|
|
LOG(ERROR) << "Invalid key specifier size for v2 encryption policy: "
|
|
<< policy.key_raw_ref.size();
|
|
return false;
|
|
}
|
|
spec->type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
|
|
memcpy(spec->u.identifier, policy.key_raw_ref.c_str(), FSCRYPT_KEY_IDENTIFIER_SIZE);
|
|
return true;
|
|
default:
|
|
LOG(ERROR) << "Invalid encryption policy version: " << policy.options.version;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool installKey(const std::string& mountpoint, const EncryptionOptions& options,
|
|
const KeyBuffer& key, EncryptionPolicy* policy) {
|
|
policy->options = options;
|
|
// Put the fscrypt_add_key_arg in an automatically-zeroing buffer, since we
|
|
// have to copy the raw key into it.
|
|
KeyBuffer arg_buf(sizeof(struct fscrypt_add_key_arg) + key.size(), 0);
|
|
struct fscrypt_add_key_arg* arg = (struct fscrypt_add_key_arg*)arg_buf.data();
|
|
|
|
// Initialize the "key specifier", which is like a name for the key.
|
|
switch (options.version) {
|
|
case 1:
|
|
// A key for a v1 policy is specified by an arbitrary 8-byte
|
|
// "descriptor", which must be provided by userspace. We use the
|
|
// first 8 bytes from the double SHA-512 of the key itself.
|
|
policy->key_raw_ref = generateKeyRef((const uint8_t*)key.data(), key.size());
|
|
if (!isFsKeyringSupported()) {
|
|
return installKeyLegacy(key, policy->key_raw_ref);
|
|
}
|
|
if (!buildKeySpecifier(&arg->key_spec, *policy)) {
|
|
return false;
|
|
}
|
|
break;
|
|
case 2:
|
|
// A key for a v2 policy is specified by an 16-byte "identifier",
|
|
// which is a cryptographic hash of the key itself which the kernel
|
|
// computes and returns. Any user-provided value is ignored; we
|
|
// just need to set the specifier type to indicate that we're adding
|
|
// this type of key.
|
|
arg->key_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
|
|
break;
|
|
default:
|
|
LOG(ERROR) << "Invalid encryption policy version: " << options.version;
|
|
return false;
|
|
}
|
|
|
|
if (options.use_hw_wrapped_key) arg->flags |= FSCRYPT_ADD_KEY_FLAG_WRAPPED;
|
|
// Provide the raw key.
|
|
arg->raw_size = key.size();
|
|
memcpy(arg->raw, key.data(), key.size());
|
|
|
|
android::base::unique_fd fd(open(mountpoint.c_str(), O_RDONLY | O_DIRECTORY | O_CLOEXEC));
|
|
if (fd == -1) {
|
|
PLOG(ERROR) << "Failed to open " << mountpoint << " to install key";
|
|
return false;
|
|
}
|
|
|
|
if (ioctl(fd, FS_IOC_ADD_ENCRYPTION_KEY, arg) != 0) {
|
|
PLOG(ERROR) << "Failed to install fscrypt key to " << mountpoint;
|
|
return false;
|
|
}
|
|
|
|
if (arg->key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
|
|
// Retrieve the key identifier that the kernel computed.
|
|
policy->key_raw_ref =
|
|
std::string((char*)arg->key_spec.u.identifier, FSCRYPT_KEY_IDENTIFIER_SIZE);
|
|
}
|
|
LOG(DEBUG) << "Installed fscrypt key with ref " << keyrefstring(policy->key_raw_ref) << " to "
|
|
<< mountpoint;
|
|
return true;
|
|
}
|
|
|
|
// Remove an encryption key from the legacy global session keyring.
|
|
static bool evictKeyLegacy(const std::string& raw_ref) {
|
|
key_serial_t device_keyring;
|
|
if (!fscryptKeyring(&device_keyring)) return false;
|
|
bool success = true;
|
|
for (char const* const* name_prefix = NAME_PREFIXES; *name_prefix != nullptr; name_prefix++) {
|
|
auto ref = buildLegacyKeyName(*name_prefix, raw_ref);
|
|
auto key_serial = keyctl_search(device_keyring, "logon", ref.c_str(), 0);
|
|
|
|
// Unlink the key from the keyring. Prefer unlinking to revoking or
|
|
// invalidating, since unlinking is actually no less secure currently, and
|
|
// it avoids bugs in certain kernel versions where the keyring key is
|
|
// referenced from places it shouldn't be.
|
|
if (keyctl_unlink(key_serial, device_keyring) != 0) {
|
|
PLOG(ERROR) << "Failed to unlink key with serial " << key_serial << " ref " << ref;
|
|
success = false;
|
|
} else {
|
|
LOG(DEBUG) << "Unlinked key with serial " << key_serial << " ref " << ref;
|
|
}
|
|
}
|
|
return success;
|
|
}
|
|
|
|
bool evictKey(const std::string& mountpoint, const EncryptionPolicy& policy) {
|
|
if (policy.options.version == 1 && !isFsKeyringSupported()) {
|
|
return evictKeyLegacy(policy.key_raw_ref);
|
|
}
|
|
|
|
android::base::unique_fd fd(open(mountpoint.c_str(), O_RDONLY | O_DIRECTORY | O_CLOEXEC));
|
|
if (fd == -1) {
|
|
PLOG(ERROR) << "Failed to open " << mountpoint << " to evict key";
|
|
return false;
|
|
}
|
|
|
|
struct fscrypt_remove_key_arg arg;
|
|
memset(&arg, 0, sizeof(arg));
|
|
|
|
if (!buildKeySpecifier(&arg.key_spec, policy)) {
|
|
return false;
|
|
}
|
|
|
|
std::string ref = keyrefstring(policy.key_raw_ref);
|
|
|
|
if (ioctl(fd, FS_IOC_REMOVE_ENCRYPTION_KEY, &arg) != 0) {
|
|
PLOG(ERROR) << "Failed to evict fscrypt key with ref " << ref << " from " << mountpoint;
|
|
return false;
|
|
}
|
|
|
|
LOG(DEBUG) << "Evicted fscrypt key with ref " << ref << " from " << mountpoint;
|
|
if (arg.removal_status_flags & FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS) {
|
|
// Should never happen because keys are only added/removed as root.
|
|
LOG(ERROR) << "Unexpected case: key with ref " << ref << " is still added by other users!";
|
|
} else if (arg.removal_status_flags & FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY) {
|
|
LOG(ERROR) << "Files still open after removing key with ref " << ref
|
|
<< ". These files were not locked!";
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool retrieveKey(bool create_if_absent, const KeyAuthentication& key_authentication,
|
|
const std::string& key_path, const std::string& tmp_path,
|
|
const EncryptionOptions& options, KeyBuffer* key, bool keepOld) {
|
|
if (pathExists(key_path)) {
|
|
LOG(DEBUG) << "Key exists, using: " << key_path;
|
|
if (!retrieveKey(key_path, key_authentication, key, keepOld)) return false;
|
|
} else {
|
|
if (!create_if_absent) {
|
|
LOG(ERROR) << "No key found in " << key_path;
|
|
return false;
|
|
}
|
|
LOG(INFO) << "Creating new key in " << key_path;
|
|
if (!generateStorageKey(options, key)) return false;
|
|
if (!storeKeyAtomically(key_path, tmp_path, key_authentication, *key)) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace vold
|
|
} // namespace android
|