fd5eb260c4
vold currently uses the first fstab entry for moun point /data . However, if there are multiple fstab entries for /data and the first one isn't the entry actually being used, checkpoint may fail. Test: boot a device with ext4 entry placed after f2fs Bug: 293313353 Change-Id: Id374c622c53fd61047d62743555234d36bd038ec
805 lines
30 KiB
C++
805 lines
30 KiB
C++
/*
|
|
* Copyright (C) 2018 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#define LOG_TAG "Checkpoint"
|
|
#include "Checkpoint.h"
|
|
#include "FsCrypt.h"
|
|
#include "KeyStorage.h"
|
|
#include "VoldUtil.h"
|
|
#include "VolumeManager.h"
|
|
|
|
#include <fstream>
|
|
#include <list>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <thread>
|
|
#include <vector>
|
|
|
|
#include <BootControlClient.h>
|
|
#include <android-base/file.h>
|
|
#include <android-base/logging.h>
|
|
#include <android-base/parseint.h>
|
|
#include <android-base/properties.h>
|
|
#include <android-base/unique_fd.h>
|
|
#include <cutils/android_reboot.h>
|
|
#include <fcntl.h>
|
|
#include <fs_mgr.h>
|
|
#include <linux/fs.h>
|
|
#include <mntent.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/statvfs.h>
|
|
#include <unistd.h>
|
|
|
|
using android::base::GetBoolProperty;
|
|
using android::base::GetUintProperty;
|
|
using android::base::SetProperty;
|
|
using android::binder::Status;
|
|
using android::fs_mgr::Fstab;
|
|
using android::fs_mgr::ReadFstabFromFile;
|
|
using android::hal::BootControlClient;
|
|
|
|
namespace android {
|
|
namespace vold {
|
|
|
|
namespace {
|
|
const std::string kMetadataCPFile = "/metadata/vold/checkpoint";
|
|
|
|
binder::Status error(const std::string& msg) {
|
|
PLOG(ERROR) << msg;
|
|
return binder::Status::fromServiceSpecificError(errno, String8(msg.c_str()));
|
|
}
|
|
|
|
binder::Status error(int error, const std::string& msg) {
|
|
LOG(ERROR) << msg;
|
|
return binder::Status::fromServiceSpecificError(error, String8(msg.c_str()));
|
|
}
|
|
|
|
bool setBowState(std::string const& block_device, std::string const& state) {
|
|
std::string bow_device = fs_mgr_find_bow_device(block_device);
|
|
if (bow_device.empty()) return false;
|
|
|
|
if (!android::base::WriteStringToFile(state, bow_device + "/bow/state")) {
|
|
PLOG(ERROR) << "Failed to write to file " << bow_device + "/bow/state";
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Do any work that was deferred until the userdata filesystem checkpoint was
|
|
// committed. This work involves the deletion of resources that aren't covered
|
|
// by the userdata filesystem checkpoint, e.g. Keystore keys.
|
|
void DoCheckpointCommittedWork() {
|
|
// Take the crypt lock to provide synchronization with the Binder calls that
|
|
// operate on key directories.
|
|
std::lock_guard<std::mutex> lock(VolumeManager::Instance()->getCryptLock());
|
|
|
|
DeferredCommitKeystoreKeys();
|
|
fscrypt_deferred_fixate_ce_keys();
|
|
}
|
|
|
|
} // namespace
|
|
|
|
Status cp_supportsCheckpoint(bool& result) {
|
|
result = false;
|
|
|
|
for (const auto& entry : fstab_default) {
|
|
if (entry.fs_mgr_flags.checkpoint_blk || entry.fs_mgr_flags.checkpoint_fs) {
|
|
result = true;
|
|
return Status::ok();
|
|
}
|
|
}
|
|
return Status::ok();
|
|
}
|
|
|
|
Status cp_supportsBlockCheckpoint(bool& result) {
|
|
result = false;
|
|
|
|
for (const auto& entry : fstab_default) {
|
|
if (entry.fs_mgr_flags.checkpoint_blk) {
|
|
result = true;
|
|
return Status::ok();
|
|
}
|
|
}
|
|
return Status::ok();
|
|
}
|
|
|
|
Status cp_supportsFileCheckpoint(bool& result) {
|
|
result = false;
|
|
|
|
for (const auto& entry : fstab_default) {
|
|
if (entry.fs_mgr_flags.checkpoint_fs) {
|
|
result = true;
|
|
return Status::ok();
|
|
}
|
|
}
|
|
return Status::ok();
|
|
}
|
|
|
|
Status cp_startCheckpoint(int retry) {
|
|
bool result;
|
|
if (!cp_supportsCheckpoint(result).isOk() || !result)
|
|
return error(ENOTSUP, "Checkpoints not supported");
|
|
|
|
if (retry < -1) return error(EINVAL, "Retry count must be more than -1");
|
|
std::string content = std::to_string(retry + 1);
|
|
if (retry == -1) {
|
|
auto module = BootControlClient::WaitForService();
|
|
if (module) {
|
|
std::string suffix = module->GetSuffix(module->GetCurrentSlot());
|
|
if (!suffix.empty()) content += " " + suffix;
|
|
}
|
|
}
|
|
if (!android::base::WriteStringToFile(content, kMetadataCPFile))
|
|
return error("Failed to write checkpoint file");
|
|
return Status::ok();
|
|
}
|
|
|
|
namespace {
|
|
|
|
volatile bool isCheckpointing = false;
|
|
volatile bool isBow = true;
|
|
|
|
volatile bool needsCheckpointWasCalled = false;
|
|
|
|
// Protects isCheckpointing, needsCheckpointWasCalled and code that makes decisions based on status
|
|
// of isCheckpointing
|
|
std::mutex isCheckpointingLock;
|
|
}
|
|
|
|
Status cp_commitChanges() {
|
|
std::lock_guard<std::mutex> lock(isCheckpointingLock);
|
|
|
|
if (!isCheckpointing) {
|
|
return Status::ok();
|
|
}
|
|
if (android::base::GetProperty("persist.vold.dont_commit_checkpoint", "0") == "1") {
|
|
LOG(WARNING)
|
|
<< "NOT COMMITTING CHECKPOINT BECAUSE persist.vold.dont_commit_checkpoint IS 1";
|
|
return Status::ok();
|
|
}
|
|
auto module = BootControlClient::WaitForService();
|
|
if (module) {
|
|
auto cr = module->MarkBootSuccessful();
|
|
if (!cr.success)
|
|
return error(EINVAL, "Error marking booted successfully: " + std::string(cr.errMsg));
|
|
LOG(INFO) << "Marked slot as booted successfully.";
|
|
// Clears the warm reset flag for next reboot.
|
|
if (!SetProperty("ota.warm_reset", "0")) {
|
|
LOG(WARNING) << "Failed to reset the warm reset flag";
|
|
}
|
|
} else {
|
|
LOG(ERROR) << "Failed to get BootControl HAL, not marking slot as successful.";
|
|
}
|
|
// Must take action for list of mounted checkpointed things here
|
|
// To do this, we walk the list of mounted file systems.
|
|
// But we also need to get the matching fstab entries to see
|
|
// the original flags
|
|
std::string err_str;
|
|
|
|
Fstab mounts;
|
|
if (!ReadFstabFromFile("/proc/mounts", &mounts)) {
|
|
return error(EINVAL, "Failed to get /proc/mounts");
|
|
}
|
|
|
|
// Walk mounted file systems
|
|
for (const auto& mount_rec : mounts) {
|
|
const auto fstab_rec =
|
|
GetEntryForMountPoint(&fstab_default, mount_rec.mount_point, mount_rec.fs_type);
|
|
if (!fstab_rec) continue;
|
|
|
|
if (fstab_rec->fs_mgr_flags.checkpoint_fs) {
|
|
if (fstab_rec->fs_type == "f2fs") {
|
|
std::string options = mount_rec.fs_options + ",checkpoint=enable";
|
|
if (mount(mount_rec.blk_device.c_str(), mount_rec.mount_point.c_str(), "none",
|
|
MS_REMOUNT | fstab_rec->flags, options.c_str())) {
|
|
return error(EINVAL, "Failed to remount");
|
|
}
|
|
}
|
|
} else if (fstab_rec->fs_mgr_flags.checkpoint_blk && isBow) {
|
|
if (!setBowState(mount_rec.blk_device, "2"))
|
|
return error(EINVAL, "Failed to set bow state");
|
|
}
|
|
}
|
|
SetProperty("vold.checkpoint_committed", "1");
|
|
LOG(INFO) << "Checkpoint has been committed.";
|
|
isCheckpointing = false;
|
|
if (!android::base::RemoveFileIfExists(kMetadataCPFile, &err_str))
|
|
return error(err_str.c_str());
|
|
|
|
std::thread(DoCheckpointCommittedWork).detach();
|
|
return Status::ok();
|
|
}
|
|
|
|
namespace {
|
|
void abort_metadata_file() {
|
|
std::string oldContent, newContent;
|
|
int retry = 0;
|
|
struct stat st;
|
|
int result = stat(kMetadataCPFile.c_str(), &st);
|
|
|
|
// If the file doesn't exist, we aren't managing a checkpoint retry counter
|
|
if (result != 0) return;
|
|
if (!android::base::ReadFileToString(kMetadataCPFile, &oldContent)) {
|
|
PLOG(ERROR) << "Failed to read checkpoint file";
|
|
return;
|
|
}
|
|
std::string retryContent = oldContent.substr(0, oldContent.find_first_of(" "));
|
|
|
|
if (!android::base::ParseInt(retryContent, &retry)) {
|
|
PLOG(ERROR) << "Could not parse retry count";
|
|
return;
|
|
}
|
|
if (retry > 0) {
|
|
newContent = "0";
|
|
if (!android::base::WriteStringToFile(newContent, kMetadataCPFile))
|
|
PLOG(ERROR) << "Could not write checkpoint file";
|
|
}
|
|
}
|
|
} // namespace
|
|
|
|
void cp_abortChanges(const std::string& message, bool retry) {
|
|
if (!cp_needsCheckpoint()) return;
|
|
if (!retry) abort_metadata_file();
|
|
android_reboot(ANDROID_RB_RESTART2, 0, message.c_str());
|
|
}
|
|
|
|
bool cp_needsRollback() {
|
|
std::string content;
|
|
bool ret;
|
|
|
|
ret = android::base::ReadFileToString(kMetadataCPFile, &content);
|
|
if (ret) {
|
|
if (content == "0") return true;
|
|
if (content.substr(0, 3) == "-1 ") {
|
|
std::string oldSuffix = content.substr(3);
|
|
auto module = BootControlClient::WaitForService();
|
|
std::string newSuffix;
|
|
|
|
if (module) {
|
|
newSuffix = module->GetSuffix(module->GetCurrentSlot());
|
|
if (oldSuffix == newSuffix) return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool cp_needsCheckpoint() {
|
|
std::lock_guard<std::mutex> lock(isCheckpointingLock);
|
|
|
|
// Make sure we only return true during boot. See b/138952436 for discussion
|
|
if (needsCheckpointWasCalled) return isCheckpointing;
|
|
needsCheckpointWasCalled = true;
|
|
|
|
bool ret;
|
|
std::string content;
|
|
auto module = BootControlClient::WaitForService();
|
|
|
|
if (isCheckpointing) return isCheckpointing;
|
|
// In case of INVALID slot or other failures, we do not perform checkpoint.
|
|
if (module && !module->IsSlotMarkedSuccessful(module->GetCurrentSlot()).value_or(true)) {
|
|
isCheckpointing = true;
|
|
return true;
|
|
}
|
|
ret = android::base::ReadFileToString(kMetadataCPFile, &content);
|
|
if (ret) {
|
|
ret = content != "0";
|
|
isCheckpointing = ret;
|
|
return ret;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool cp_isCheckpointing() {
|
|
return isCheckpointing;
|
|
}
|
|
|
|
namespace {
|
|
const std::string kSleepTimeProp = "ro.sys.cp_msleeptime";
|
|
const uint32_t msleeptime_default = 1000; // 1 s
|
|
const uint32_t max_msleeptime = 3600000; // 1 h
|
|
|
|
const std::string kMinFreeBytesProp = "ro.sys.cp_min_free_bytes";
|
|
const uint64_t min_free_bytes_default = 100 * (1 << 20); // 100 MiB
|
|
|
|
const std::string kCommitOnFullProp = "ro.sys.cp_commit_on_full";
|
|
const bool commit_on_full_default = true;
|
|
|
|
static void cp_healthDaemon(std::string mnt_pnt, std::string blk_device, bool is_fs_cp) {
|
|
struct statvfs data;
|
|
uint32_t msleeptime = GetUintProperty(kSleepTimeProp, msleeptime_default, max_msleeptime);
|
|
uint64_t min_free_bytes =
|
|
GetUintProperty(kMinFreeBytesProp, min_free_bytes_default, (uint64_t)-1);
|
|
bool commit_on_full = GetBoolProperty(kCommitOnFullProp, commit_on_full_default);
|
|
|
|
struct timespec req;
|
|
req.tv_sec = msleeptime / 1000;
|
|
msleeptime %= 1000;
|
|
req.tv_nsec = msleeptime * 1000000;
|
|
while (isCheckpointing) {
|
|
uint64_t free_bytes = 0;
|
|
if (is_fs_cp) {
|
|
statvfs(mnt_pnt.c_str(), &data);
|
|
free_bytes = ((uint64_t) data.f_bavail) * data.f_frsize;
|
|
} else {
|
|
std::string bow_device = fs_mgr_find_bow_device(blk_device);
|
|
if (!bow_device.empty()) {
|
|
std::string content;
|
|
if (android::base::ReadFileToString(bow_device + "/bow/free", &content)) {
|
|
free_bytes = std::strtoull(content.c_str(), NULL, 10);
|
|
}
|
|
}
|
|
}
|
|
if (free_bytes < min_free_bytes) {
|
|
if (commit_on_full) {
|
|
LOG(INFO) << "Low space for checkpointing. Commiting changes";
|
|
cp_commitChanges();
|
|
break;
|
|
} else {
|
|
LOG(INFO) << "Low space for checkpointing. Rebooting";
|
|
cp_abortChanges("checkpoint,low_space", false);
|
|
break;
|
|
}
|
|
}
|
|
nanosleep(&req, NULL);
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
Status cp_prepareCheckpoint() {
|
|
// Log to notify CTS - see b/137924328 for context
|
|
LOG(INFO) << "cp_prepareCheckpoint called";
|
|
std::lock_guard<std::mutex> lock(isCheckpointingLock);
|
|
if (!isCheckpointing) {
|
|
return Status::ok();
|
|
}
|
|
|
|
Fstab mounts;
|
|
if (!ReadFstabFromFile("/proc/mounts", &mounts)) {
|
|
return error(EINVAL, "Failed to get /proc/mounts");
|
|
}
|
|
|
|
for (const auto& mount_rec : mounts) {
|
|
const auto fstab_rec = GetEntryForMountPoint(&fstab_default, mount_rec.mount_point);
|
|
if (!fstab_rec) continue;
|
|
|
|
if (fstab_rec->fs_mgr_flags.checkpoint_blk) {
|
|
android::base::unique_fd fd(
|
|
TEMP_FAILURE_RETRY(open(mount_rec.mount_point.c_str(), O_RDONLY | O_CLOEXEC)));
|
|
if (fd == -1) {
|
|
PLOG(ERROR) << "Failed to open mount point" << mount_rec.mount_point;
|
|
continue;
|
|
}
|
|
|
|
struct fstrim_range range = {};
|
|
range.len = ULLONG_MAX;
|
|
nsecs_t start = systemTime(SYSTEM_TIME_BOOTTIME);
|
|
if (ioctl(fd, FITRIM, &range)) {
|
|
PLOG(ERROR) << "Failed to trim " << mount_rec.mount_point;
|
|
continue;
|
|
}
|
|
nsecs_t time = systemTime(SYSTEM_TIME_BOOTTIME) - start;
|
|
LOG(INFO) << "Trimmed " << range.len << " bytes on " << mount_rec.mount_point << " in "
|
|
<< nanoseconds_to_milliseconds(time) << "ms for checkpoint";
|
|
|
|
isBow &= setBowState(mount_rec.blk_device, "1");
|
|
}
|
|
if (fstab_rec->fs_mgr_flags.checkpoint_blk || fstab_rec->fs_mgr_flags.checkpoint_fs) {
|
|
std::thread(cp_healthDaemon, std::string(mount_rec.mount_point),
|
|
std::string(mount_rec.blk_device),
|
|
fstab_rec->fs_mgr_flags.checkpoint_fs == 1)
|
|
.detach();
|
|
}
|
|
}
|
|
return Status::ok();
|
|
}
|
|
|
|
namespace {
|
|
const int kSectorSize = 512;
|
|
|
|
typedef uint64_t sector_t;
|
|
|
|
struct log_entry {
|
|
sector_t source; // in sectors of size kSectorSize
|
|
sector_t dest; // in sectors of size kSectorSize
|
|
uint32_t size; // in bytes
|
|
uint32_t checksum;
|
|
} __attribute__((packed));
|
|
|
|
struct log_sector_v1_0 {
|
|
uint32_t magic;
|
|
uint16_t header_version;
|
|
uint16_t header_size;
|
|
uint32_t block_size;
|
|
uint32_t count;
|
|
uint32_t sequence;
|
|
uint64_t sector0;
|
|
} __attribute__((packed));
|
|
|
|
// MAGIC is BOW in ascii
|
|
const int kMagic = 0x00574f42;
|
|
// Partially restored MAGIC is WOB in ascii
|
|
const int kPartialRestoreMagic = 0x00424f57;
|
|
|
|
void crc32(const void* data, size_t n_bytes, uint32_t* crc) {
|
|
static uint32_t table[0x100] = {
|
|
0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F, 0xE963A535,
|
|
0x9E6495A3, 0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD,
|
|
0xE7B82D07, 0x90BF1D91, 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE, 0x1ADAD47D,
|
|
0x6DDDE4EB, 0xF4D4B551, 0x83D385C7, 0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC,
|
|
0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5, 0x3B6E20C8, 0x4C69105E, 0xD56041E4,
|
|
0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B, 0x35B5A8FA, 0x42B2986C,
|
|
0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59, 0x26D930AC,
|
|
0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F,
|
|
0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, 0x2F6F7C87, 0x58684C11, 0xC1611DAB,
|
|
0xB6662D3D,
|
|
|
|
0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5,
|
|
0xE8B8D433, 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D,
|
|
0x91646C97, 0xE6635C01, 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, 0x6C0695ED,
|
|
0x1B01A57B, 0x8208F4C1, 0xF50FC457, 0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C,
|
|
0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65, 0x4DB26158, 0x3AB551CE, 0xA3BC0074,
|
|
0xD4BB30E2, 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB, 0x4369E96A, 0x346ED9FC,
|
|
0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9, 0x5005713C,
|
|
0x270241AA, 0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F,
|
|
0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81, 0xB7BD5C3B,
|
|
0xC0BA6CAD,
|
|
|
|
0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A, 0xEAD54739, 0x9DD277AF, 0x04DB2615,
|
|
0x73DC1683, 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D,
|
|
0x0A00AE27, 0x7D079EB1, 0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D,
|
|
0x806567CB, 0x196C3671, 0x6E6B06E7, 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC,
|
|
0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5, 0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4,
|
|
0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B, 0xD80D2BDA, 0xAF0A1B4C,
|
|
0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79, 0xCB61B38C,
|
|
0xBC66831A, 0x256FD2A0, 0x5268E236, 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F,
|
|
0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B,
|
|
0x5BDEAE1D,
|
|
|
|
0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F, 0x72076785,
|
|
0x05005713, 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, 0x92D28E9B, 0xE5D5BE0D,
|
|
0x7CDCEFB7, 0x0BDBDF21, 0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E, 0x81BE16CD,
|
|
0xF6B9265B, 0x6FB077E1, 0x18B74777, 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C,
|
|
0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45, 0xA00AE278, 0xD70DD2EE, 0x4E048354,
|
|
0x3903B3C2, 0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB, 0xAED16A4A, 0xD9D65ADC,
|
|
0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9, 0xBDBDF21C,
|
|
0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF,
|
|
0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94, 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B,
|
|
0x2D02EF8D};
|
|
|
|
for (size_t i = 0; i < n_bytes; ++i) {
|
|
*crc ^= ((uint8_t*)data)[i];
|
|
*crc = table[(uint8_t)*crc] ^ *crc >> 8;
|
|
}
|
|
}
|
|
|
|
// A map of relocations.
|
|
// The map must be initialized so that relocations[0] = 0
|
|
// During restore, we replay the log records in reverse, copying from dest to
|
|
// source
|
|
// To validate, we must be able to read the 'dest' sectors as though they had
|
|
// been copied but without actually copying. This map represents how the sectors
|
|
// would have been moved. To read a sector s, find the index <= s and read
|
|
// relocations[index] + s - index
|
|
typedef std::map<sector_t, sector_t> Relocations;
|
|
|
|
void relocate(Relocations& relocations, sector_t dest, sector_t source, int count) {
|
|
// Find first one we're equal to or greater than
|
|
auto s = --relocations.upper_bound(source);
|
|
|
|
// Take slice
|
|
Relocations slice;
|
|
slice[dest] = source - s->first + s->second;
|
|
++s;
|
|
|
|
// Add rest of elements
|
|
for (; s != relocations.end() && s->first < source + count; ++s)
|
|
slice[dest - source + s->first] = s->second;
|
|
|
|
// Split range at end of dest
|
|
auto dest_end = --relocations.upper_bound(dest + count);
|
|
relocations[dest + count] = dest + count - dest_end->first + dest_end->second;
|
|
|
|
// Remove all elements in [dest, dest + count)
|
|
relocations.erase(relocations.lower_bound(dest), relocations.lower_bound(dest + count));
|
|
|
|
// Add new elements
|
|
relocations.insert(slice.begin(), slice.end());
|
|
}
|
|
|
|
// A map of sectors that have been written to.
|
|
// The final entry must always be False.
|
|
// When we restart the restore after an interruption, we must take care that
|
|
// when we copy from dest to source, that the block we copy to was not
|
|
// previously copied from.
|
|
// i e. A->B C->A; If we replay this sequence, we end up copying C->B
|
|
// We must save our partial result whenever we finish a page, or when we copy
|
|
// to a location that was copied from earlier (our source is an earlier dest)
|
|
typedef std::map<sector_t, bool> Used_Sectors;
|
|
|
|
bool checkCollision(Used_Sectors& used_sectors, sector_t start, sector_t end) {
|
|
auto second_overlap = used_sectors.upper_bound(start);
|
|
auto first_overlap = --second_overlap;
|
|
|
|
if (first_overlap->second) {
|
|
return true;
|
|
} else if (second_overlap != used_sectors.end() && second_overlap->first < end) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void markUsed(Used_Sectors& used_sectors, sector_t start, sector_t end) {
|
|
auto start_pos = used_sectors.insert_or_assign(start, true).first;
|
|
auto end_pos = used_sectors.insert_or_assign(end, false).first;
|
|
|
|
if (start_pos == used_sectors.begin() || !std::prev(start_pos)->second) {
|
|
start_pos++;
|
|
}
|
|
if (std::next(end_pos) != used_sectors.end() && !std::next(end_pos)->second) {
|
|
end_pos++;
|
|
}
|
|
if (start_pos->first < end_pos->first) {
|
|
used_sectors.erase(start_pos, end_pos);
|
|
}
|
|
}
|
|
|
|
// Restores the given log_entry's data from dest -> source
|
|
// If that entry is a log sector, set the magic to kPartialRestoreMagic and flush.
|
|
void restoreSector(int device_fd, Used_Sectors& used_sectors, std::vector<char>& ls_buffer,
|
|
log_entry* le, std::vector<char>& buffer) {
|
|
log_sector_v1_0& ls = *reinterpret_cast<log_sector_v1_0*>(&ls_buffer[0]);
|
|
uint32_t index = le - ((log_entry*)&ls_buffer[ls.header_size]);
|
|
int count = (le->size - 1) / kSectorSize + 1;
|
|
|
|
if (checkCollision(used_sectors, le->source, le->source + count)) {
|
|
fsync(device_fd);
|
|
lseek64(device_fd, 0, SEEK_SET);
|
|
ls.count = index + 1;
|
|
ls.magic = kPartialRestoreMagic;
|
|
write(device_fd, &ls_buffer[0], ls.block_size);
|
|
fsync(device_fd);
|
|
used_sectors.clear();
|
|
used_sectors[0] = false;
|
|
}
|
|
|
|
markUsed(used_sectors, le->dest, le->dest + count);
|
|
|
|
if (index == 0 && ls.sequence != 0) {
|
|
log_sector_v1_0* next = reinterpret_cast<log_sector_v1_0*>(&buffer[0]);
|
|
if (next->magic == kMagic) {
|
|
next->magic = kPartialRestoreMagic;
|
|
}
|
|
}
|
|
|
|
lseek64(device_fd, le->source * kSectorSize, SEEK_SET);
|
|
write(device_fd, &buffer[0], le->size);
|
|
|
|
if (index == 0) {
|
|
fsync(device_fd);
|
|
}
|
|
}
|
|
|
|
// Read from the device
|
|
// If we are validating, the read occurs as though the relocations had happened
|
|
// returns the amount asked for or an empty buffer on error. Partial reads are considered a failure
|
|
std::vector<char> relocatedRead(int device_fd, Relocations const& relocations, bool validating,
|
|
sector_t sector, uint32_t size, uint32_t block_size) {
|
|
if (!validating) {
|
|
std::vector<char> buffer(size);
|
|
off64_t offset = sector * kSectorSize;
|
|
if (lseek64(device_fd, offset, SEEK_SET) != offset) {
|
|
return std::vector<char>();
|
|
}
|
|
if (read(device_fd, &buffer[0], size) != static_cast<ssize_t>(size)) {
|
|
return std::vector<char>();
|
|
}
|
|
return buffer;
|
|
}
|
|
|
|
std::vector<char> buffer(size);
|
|
for (uint32_t i = 0; i < size; i += block_size, sector += block_size / kSectorSize) {
|
|
auto relocation = --relocations.upper_bound(sector);
|
|
off64_t offset = (sector + relocation->second - relocation->first) * kSectorSize;
|
|
if (lseek64(device_fd, offset, SEEK_SET) != offset) {
|
|
return std::vector<char>();
|
|
}
|
|
if (read(device_fd, &buffer[i], block_size) != static_cast<ssize_t>(block_size)) {
|
|
return std::vector<char>();
|
|
}
|
|
}
|
|
|
|
return buffer;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
Status cp_restoreCheckpoint(const std::string& blockDevice, int restore_limit) {
|
|
bool validating = true;
|
|
std::string action = "Validating";
|
|
int restore_count = 0;
|
|
|
|
for (;;) {
|
|
Relocations relocations;
|
|
relocations[0] = 0;
|
|
Status status = Status::ok();
|
|
|
|
LOG(INFO) << action << " checkpoint on " << blockDevice;
|
|
base::unique_fd device_fd(open(blockDevice.c_str(), O_RDWR | O_CLOEXEC));
|
|
if (device_fd < 0) return error("Cannot open " + blockDevice);
|
|
|
|
log_sector_v1_0 original_ls;
|
|
if (read(device_fd, reinterpret_cast<char*>(&original_ls), sizeof(original_ls)) !=
|
|
sizeof(original_ls)) {
|
|
return error(EINVAL, "Cannot read sector");
|
|
}
|
|
if (original_ls.magic == kPartialRestoreMagic) {
|
|
validating = false;
|
|
action = "Restoring";
|
|
} else if (original_ls.magic != kMagic) {
|
|
return error(EINVAL, "No magic");
|
|
}
|
|
|
|
if (original_ls.block_size < sizeof(log_sector_v1_0)) {
|
|
return error(EINVAL, "Block size is invalid");
|
|
}
|
|
|
|
LOG(INFO) << action << " " << original_ls.sequence << " log sectors";
|
|
|
|
for (int sequence = original_ls.sequence; sequence >= 0 && status.isOk(); sequence--) {
|
|
auto ls_buffer = relocatedRead(device_fd, relocations, validating, 0,
|
|
original_ls.block_size, original_ls.block_size);
|
|
if (ls_buffer.size() != original_ls.block_size) {
|
|
status = error(EINVAL, "Failed to read log sector");
|
|
break;
|
|
}
|
|
log_sector_v1_0& ls = *reinterpret_cast<log_sector_v1_0*>(&ls_buffer[0]);
|
|
|
|
Used_Sectors used_sectors;
|
|
used_sectors[0] = false;
|
|
|
|
if (ls.magic != kMagic && (ls.magic != kPartialRestoreMagic || validating)) {
|
|
status = error(EINVAL, "No magic");
|
|
break;
|
|
}
|
|
|
|
if (ls.block_size != original_ls.block_size) {
|
|
status = error(EINVAL, "Block size mismatch");
|
|
break;
|
|
}
|
|
|
|
if ((int)ls.sequence != sequence) {
|
|
status = error(EINVAL, "Expecting log sector " + std::to_string(sequence) +
|
|
" but got " + std::to_string(ls.sequence));
|
|
break;
|
|
}
|
|
|
|
if (ls.header_size < sizeof(log_sector_v1_0) || ls.header_size > ls.block_size) {
|
|
status = error(EINVAL, "Log sector header size is invalid");
|
|
break;
|
|
}
|
|
if (ls.count < 1 || ls.count > (ls.block_size - ls.header_size) / sizeof(log_entry)) {
|
|
status = error(EINVAL, "Log sector count is invalid");
|
|
break;
|
|
}
|
|
LOG(INFO) << action << " from log sector " << ls.sequence;
|
|
for (log_entry* le =
|
|
reinterpret_cast<log_entry*>(&ls_buffer[ls.header_size]) + ls.count - 1;
|
|
le >= reinterpret_cast<log_entry*>(&ls_buffer[ls.header_size]); --le) {
|
|
// This is very noisy - limit to DEBUG only
|
|
LOG(VERBOSE) << action << " " << le->size << " bytes from sector " << le->dest
|
|
<< " to " << le->source << " with checksum " << std::hex
|
|
<< le->checksum;
|
|
|
|
if (ls.block_size > UINT_MAX - le->size || le->size < ls.block_size) {
|
|
status = error(EINVAL, "log entry is invalid");
|
|
break;
|
|
}
|
|
auto buffer = relocatedRead(device_fd, relocations, validating, le->dest, le->size,
|
|
ls.block_size);
|
|
if (buffer.size() != le->size) {
|
|
status = error(EINVAL, "Failed to read sector");
|
|
break;
|
|
}
|
|
uint32_t checksum = le->source / (ls.block_size / kSectorSize);
|
|
for (size_t i = 0; i < le->size; i += ls.block_size) {
|
|
crc32(&buffer[i], ls.block_size, &checksum);
|
|
}
|
|
|
|
if (le->checksum && checksum != le->checksum) {
|
|
status = error(EINVAL, "Checksums don't match");
|
|
break;
|
|
}
|
|
|
|
if (validating) {
|
|
relocate(relocations, le->source, le->dest, (le->size - 1) / kSectorSize + 1);
|
|
} else {
|
|
restoreSector(device_fd, used_sectors, ls_buffer, le, buffer);
|
|
restore_count++;
|
|
if (restore_limit && restore_count >= restore_limit) {
|
|
status = error(EAGAIN, "Hit the test limit");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!status.isOk()) {
|
|
if (!validating) {
|
|
LOG(ERROR) << "Checkpoint restore failed even though checkpoint validation passed";
|
|
return status;
|
|
}
|
|
|
|
LOG(WARNING) << "Checkpoint validation failed - attempting to roll forward";
|
|
auto buffer = relocatedRead(device_fd, relocations, false, original_ls.sector0,
|
|
original_ls.block_size, original_ls.block_size);
|
|
if (buffer.size() != original_ls.block_size) {
|
|
return error(EINVAL, "Failed to read original sector");
|
|
}
|
|
|
|
if (lseek64(device_fd, 0, SEEK_SET) != 0) {
|
|
return error(EINVAL, "Failed to seek to sector 0");
|
|
}
|
|
if (write(device_fd, &buffer[0], original_ls.block_size) !=
|
|
static_cast<ssize_t>(original_ls.block_size)) {
|
|
return error(EINVAL, "Failed to write original sector");
|
|
}
|
|
return Status::ok();
|
|
}
|
|
|
|
if (!validating) break;
|
|
|
|
validating = false;
|
|
action = "Restoring";
|
|
}
|
|
|
|
return Status::ok();
|
|
}
|
|
|
|
Status cp_markBootAttempt() {
|
|
std::string oldContent, newContent;
|
|
int retry = 0;
|
|
struct stat st;
|
|
int result = stat(kMetadataCPFile.c_str(), &st);
|
|
|
|
// If the file doesn't exist, we aren't managing a checkpoint retry counter
|
|
if (result != 0) return Status::ok();
|
|
if (!android::base::ReadFileToString(kMetadataCPFile, &oldContent))
|
|
return error("Failed to read checkpoint file");
|
|
std::string retryContent = oldContent.substr(0, oldContent.find_first_of(" "));
|
|
|
|
if (!android::base::ParseInt(retryContent, &retry))
|
|
return error(EINVAL, "Could not parse retry count");
|
|
if (retry > 0) {
|
|
retry--;
|
|
|
|
newContent = std::to_string(retry);
|
|
if (!android::base::WriteStringToFile(newContent, kMetadataCPFile))
|
|
return error("Could not write checkpoint file");
|
|
}
|
|
return Status::ok();
|
|
}
|
|
|
|
void cp_resetCheckpoint() {
|
|
std::lock_guard<std::mutex> lock(isCheckpointingLock);
|
|
needsCheckpointWasCalled = false;
|
|
}
|
|
|
|
} // namespace vold
|
|
} // namespace android
|