3bd36d5e5f
Bug: 21606650 Change-Id: I3486ad394d563135c5171a1d4785f7a27eeea3ae
3633 lines
112 KiB
C
3633 lines
112 KiB
C
/*
|
|
* Copyright (C) 2010 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
/* TO DO:
|
|
* 1. Perhaps keep several copies of the encrypted key, in case something
|
|
* goes horribly wrong?
|
|
*
|
|
*/
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/wait.h>
|
|
#include <sys/stat.h>
|
|
#include <ctype.h>
|
|
#include <fcntl.h>
|
|
#include <inttypes.h>
|
|
#include <unistd.h>
|
|
#include <stdio.h>
|
|
#include <sys/ioctl.h>
|
|
#include <linux/dm-ioctl.h>
|
|
#include <libgen.h>
|
|
#include <stdlib.h>
|
|
#include <sys/param.h>
|
|
#include <string.h>
|
|
#include <sys/mount.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/sha.h>
|
|
#include <errno.h>
|
|
#include <ext4.h>
|
|
#include <linux/kdev_t.h>
|
|
#include <fs_mgr.h>
|
|
#include <time.h>
|
|
#include <math.h>
|
|
#include "cryptfs.h"
|
|
#define LOG_TAG "Cryptfs"
|
|
#include "cutils/log.h"
|
|
#include "cutils/properties.h"
|
|
#include "cutils/android_reboot.h"
|
|
#include "hardware_legacy/power.h"
|
|
#include <logwrap/logwrap.h>
|
|
#include "VolumeManager.h"
|
|
#include "VoldUtil.h"
|
|
#include "crypto_scrypt.h"
|
|
#include "Ext4Crypt.h"
|
|
#include "ext4_crypt_init_extensions.h"
|
|
#include "ext4_utils.h"
|
|
#include "f2fs_sparseblock.h"
|
|
#include "CheckBattery.h"
|
|
#include "Process.h"
|
|
|
|
#include <hardware/keymaster0.h>
|
|
|
|
#define UNUSED __attribute__((unused))
|
|
|
|
#define UNUSED __attribute__((unused))
|
|
|
|
#ifdef CONFIG_HW_DISK_ENCRYPTION
|
|
#include "cryptfs_hw.h"
|
|
#endif
|
|
|
|
#define DM_CRYPT_BUF_SIZE 4096
|
|
|
|
#define HASH_COUNT 2000
|
|
#define KEY_LEN_BYTES 16
|
|
#define IV_LEN_BYTES 16
|
|
|
|
#define KEY_IN_FOOTER "footer"
|
|
|
|
#define DEFAULT_PASSWORD "default_password"
|
|
|
|
#define EXT4_FS 1
|
|
#define F2FS_FS 2
|
|
|
|
#define TABLE_LOAD_RETRIES 10
|
|
|
|
#define RSA_KEY_SIZE 2048
|
|
#define RSA_KEY_SIZE_BYTES (RSA_KEY_SIZE / 8)
|
|
#define RSA_EXPONENT 0x10001
|
|
|
|
#define RETRY_MOUNT_ATTEMPTS 10
|
|
#define RETRY_MOUNT_DELAY_SECONDS 1
|
|
|
|
char *me = "cryptfs";
|
|
|
|
static unsigned char saved_master_key[KEY_LEN_BYTES];
|
|
static char *saved_mount_point;
|
|
static int master_key_saved = 0;
|
|
static struct crypt_persist_data *persist_data = NULL;
|
|
|
|
static int keymaster_init(keymaster0_device_t **keymaster_dev)
|
|
{
|
|
int rc;
|
|
|
|
const hw_module_t* mod;
|
|
rc = hw_get_module_by_class(KEYSTORE_HARDWARE_MODULE_ID, NULL, &mod);
|
|
if (rc) {
|
|
ALOGE("could not find any keystore module");
|
|
goto out;
|
|
}
|
|
|
|
rc = keymaster0_open(mod, keymaster_dev);
|
|
if (rc) {
|
|
ALOGE("could not open keymaster device in %s (%s)",
|
|
KEYSTORE_HARDWARE_MODULE_ID, strerror(-rc));
|
|
goto out;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out:
|
|
*keymaster_dev = NULL;
|
|
return rc;
|
|
}
|
|
|
|
/* Should we use keymaster? */
|
|
static int keymaster_check_compatibility()
|
|
{
|
|
keymaster0_device_t *keymaster_dev = 0;
|
|
int rc = 0;
|
|
|
|
if (keymaster_init(&keymaster_dev)) {
|
|
SLOGE("Failed to init keymaster");
|
|
rc = -1;
|
|
goto out;
|
|
}
|
|
|
|
SLOGI("keymaster version is %d", keymaster_dev->common.module->module_api_version);
|
|
|
|
if (keymaster_dev->common.module->module_api_version
|
|
< KEYMASTER_MODULE_API_VERSION_0_3) {
|
|
rc = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (!(keymaster_dev->flags & KEYMASTER_SOFTWARE_ONLY) &&
|
|
(keymaster_dev->flags & KEYMASTER_BLOBS_ARE_STANDALONE)) {
|
|
rc = 1;
|
|
}
|
|
|
|
out:
|
|
keymaster0_close(keymaster_dev);
|
|
return rc;
|
|
}
|
|
|
|
/* Create a new keymaster key and store it in this footer */
|
|
static int keymaster_create_key(struct crypt_mnt_ftr *ftr)
|
|
{
|
|
uint8_t* key = 0;
|
|
keymaster0_device_t *keymaster_dev = 0;
|
|
|
|
if (keymaster_init(&keymaster_dev)) {
|
|
SLOGE("Failed to init keymaster");
|
|
return -1;
|
|
}
|
|
|
|
int rc = 0;
|
|
|
|
keymaster_rsa_keygen_params_t params;
|
|
memset(¶ms, '\0', sizeof(params));
|
|
params.public_exponent = RSA_EXPONENT;
|
|
params.modulus_size = RSA_KEY_SIZE;
|
|
|
|
size_t key_size;
|
|
if (keymaster_dev->generate_keypair(keymaster_dev, TYPE_RSA, ¶ms,
|
|
&key, &key_size)) {
|
|
SLOGE("Failed to generate keypair");
|
|
rc = -1;
|
|
goto out;
|
|
}
|
|
|
|
if (key_size > KEYMASTER_BLOB_SIZE) {
|
|
SLOGE("Keymaster key too large for crypto footer");
|
|
rc = -1;
|
|
goto out;
|
|
}
|
|
|
|
memcpy(ftr->keymaster_blob, key, key_size);
|
|
ftr->keymaster_blob_size = key_size;
|
|
|
|
out:
|
|
keymaster0_close(keymaster_dev);
|
|
free(key);
|
|
return rc;
|
|
}
|
|
|
|
/* This signs the given object using the keymaster key. */
|
|
static int keymaster_sign_object(struct crypt_mnt_ftr *ftr,
|
|
const unsigned char *object,
|
|
const size_t object_size,
|
|
unsigned char **signature,
|
|
size_t *signature_size)
|
|
{
|
|
int rc = 0;
|
|
keymaster0_device_t *keymaster_dev = 0;
|
|
if (keymaster_init(&keymaster_dev)) {
|
|
SLOGE("Failed to init keymaster");
|
|
return -1;
|
|
}
|
|
|
|
/* We currently set the digest type to DIGEST_NONE because it's the
|
|
* only supported value for keymaster. A similar issue exists with
|
|
* PADDING_NONE. Long term both of these should likely change.
|
|
*/
|
|
keymaster_rsa_sign_params_t params;
|
|
params.digest_type = DIGEST_NONE;
|
|
params.padding_type = PADDING_NONE;
|
|
|
|
unsigned char to_sign[RSA_KEY_SIZE_BYTES];
|
|
size_t to_sign_size = sizeof(to_sign);
|
|
memset(to_sign, 0, RSA_KEY_SIZE_BYTES);
|
|
|
|
// To sign a message with RSA, the message must satisfy two
|
|
// constraints:
|
|
//
|
|
// 1. The message, when interpreted as a big-endian numeric value, must
|
|
// be strictly less than the public modulus of the RSA key. Note
|
|
// that because the most significant bit of the public modulus is
|
|
// guaranteed to be 1 (else it's an (n-1)-bit key, not an n-bit
|
|
// key), an n-bit message with most significant bit 0 always
|
|
// satisfies this requirement.
|
|
//
|
|
// 2. The message must have the same length in bits as the public
|
|
// modulus of the RSA key. This requirement isn't mathematically
|
|
// necessary, but is necessary to ensure consistency in
|
|
// implementations.
|
|
switch (ftr->kdf_type) {
|
|
case KDF_SCRYPT_KEYMASTER:
|
|
// This ensures the most significant byte of the signed message
|
|
// is zero. We could have zero-padded to the left instead, but
|
|
// this approach is slightly more robust against changes in
|
|
// object size. However, it's still broken (but not unusably
|
|
// so) because we really should be using a proper RSA padding
|
|
// function, such as OAEP.
|
|
//
|
|
// TODO(paullawrence): When keymaster 0.4 is available, change
|
|
// this to use the padding options it provides.
|
|
memcpy(to_sign + 1, object, min(RSA_KEY_SIZE_BYTES - 1, object_size));
|
|
SLOGI("Signing safely-padded object");
|
|
break;
|
|
default:
|
|
SLOGE("Unknown KDF type %d", ftr->kdf_type);
|
|
return -1;
|
|
}
|
|
|
|
rc = keymaster_dev->sign_data(keymaster_dev,
|
|
¶ms,
|
|
ftr->keymaster_blob,
|
|
ftr->keymaster_blob_size,
|
|
to_sign,
|
|
to_sign_size,
|
|
signature,
|
|
signature_size);
|
|
|
|
keymaster0_close(keymaster_dev);
|
|
return rc;
|
|
}
|
|
|
|
/* Store password when userdata is successfully decrypted and mounted.
|
|
* Cleared by cryptfs_clear_password
|
|
*
|
|
* To avoid a double prompt at boot, we need to store the CryptKeeper
|
|
* password and pass it to KeyGuard, which uses it to unlock KeyStore.
|
|
* Since the entire framework is torn down and rebuilt after encryption,
|
|
* we have to use a daemon or similar to store the password. Since vold
|
|
* is secured against IPC except from system processes, it seems a reasonable
|
|
* place to store this.
|
|
*
|
|
* password should be cleared once it has been used.
|
|
*
|
|
* password is aged out after password_max_age_seconds seconds.
|
|
*/
|
|
static char* password = 0;
|
|
static int password_expiry_time = 0;
|
|
static const int password_max_age_seconds = 60;
|
|
|
|
extern struct fstab *fstab;
|
|
|
|
enum RebootType {reboot, recovery, shutdown};
|
|
static void cryptfs_reboot(enum RebootType rt)
|
|
{
|
|
switch(rt) {
|
|
case reboot:
|
|
property_set(ANDROID_RB_PROPERTY, "reboot");
|
|
break;
|
|
|
|
case recovery:
|
|
property_set(ANDROID_RB_PROPERTY, "reboot,recovery");
|
|
break;
|
|
|
|
case shutdown:
|
|
property_set(ANDROID_RB_PROPERTY, "shutdown");
|
|
break;
|
|
}
|
|
|
|
sleep(20);
|
|
|
|
/* Shouldn't get here, reboot should happen before sleep times out */
|
|
return;
|
|
}
|
|
|
|
static void ioctl_init(struct dm_ioctl *io, size_t dataSize, const char *name, unsigned flags)
|
|
{
|
|
memset(io, 0, dataSize);
|
|
io->data_size = dataSize;
|
|
io->data_start = sizeof(struct dm_ioctl);
|
|
io->version[0] = 4;
|
|
io->version[1] = 0;
|
|
io->version[2] = 0;
|
|
io->flags = flags;
|
|
if (name) {
|
|
strlcpy(io->name, name, sizeof(io->name));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Gets the default device scrypt parameters for key derivation time tuning.
|
|
* The parameters should lead to about one second derivation time for the
|
|
* given device.
|
|
*/
|
|
static void get_device_scrypt_params(struct crypt_mnt_ftr *ftr) {
|
|
const int default_params[] = SCRYPT_DEFAULTS;
|
|
int params[] = SCRYPT_DEFAULTS;
|
|
char paramstr[PROPERTY_VALUE_MAX];
|
|
char *token;
|
|
char *saveptr;
|
|
int i;
|
|
|
|
property_get(SCRYPT_PROP, paramstr, "");
|
|
if (paramstr[0] != '\0') {
|
|
/*
|
|
* The token we're looking for should be three integers separated by
|
|
* colons (e.g., "12:8:1"). Scan the property to make sure it matches.
|
|
*/
|
|
for (i = 0, token = strtok_r(paramstr, ":", &saveptr);
|
|
token != NULL && i < 3;
|
|
i++, token = strtok_r(NULL, ":", &saveptr)) {
|
|
char *endptr;
|
|
params[i] = strtol(token, &endptr, 10);
|
|
|
|
/*
|
|
* Check that there was a valid number and it's 8-bit. If not,
|
|
* break out and the end check will take the default values.
|
|
*/
|
|
if ((*token == '\0') || (*endptr != '\0') || params[i] < 0 || params[i] > 255) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If there were not enough tokens or a token was malformed (not an
|
|
* integer), it will end up here and the default parameters can be
|
|
* taken.
|
|
*/
|
|
if ((i != 3) || (token != NULL)) {
|
|
SLOGW("bad scrypt parameters '%s' should be like '12:8:1'; using defaults", paramstr);
|
|
memcpy(params, default_params, sizeof(params));
|
|
}
|
|
}
|
|
|
|
ftr->N_factor = params[0];
|
|
ftr->r_factor = params[1];
|
|
ftr->p_factor = params[2];
|
|
}
|
|
|
|
static unsigned int get_fs_size(char *dev)
|
|
{
|
|
int fd, block_size;
|
|
struct ext4_super_block sb;
|
|
off64_t len;
|
|
|
|
if ((fd = open(dev, O_RDONLY|O_CLOEXEC)) < 0) {
|
|
SLOGE("Cannot open device to get filesystem size ");
|
|
return 0;
|
|
}
|
|
|
|
if (lseek64(fd, 1024, SEEK_SET) < 0) {
|
|
SLOGE("Cannot seek to superblock");
|
|
return 0;
|
|
}
|
|
|
|
if (read(fd, &sb, sizeof(sb)) != sizeof(sb)) {
|
|
SLOGE("Cannot read superblock");
|
|
return 0;
|
|
}
|
|
|
|
close(fd);
|
|
|
|
if (le32_to_cpu(sb.s_magic) != EXT4_SUPER_MAGIC) {
|
|
SLOGE("Not a valid ext4 superblock");
|
|
return 0;
|
|
}
|
|
block_size = 1024 << sb.s_log_block_size;
|
|
/* compute length in bytes */
|
|
len = ( ((off64_t)sb.s_blocks_count_hi << 32) + sb.s_blocks_count_lo) * block_size;
|
|
|
|
/* return length in sectors */
|
|
return (unsigned int) (len / 512);
|
|
}
|
|
|
|
static int get_crypt_ftr_info(char **metadata_fname, off64_t *off)
|
|
{
|
|
static int cached_data = 0;
|
|
static off64_t cached_off = 0;
|
|
static char cached_metadata_fname[PROPERTY_VALUE_MAX] = "";
|
|
int fd;
|
|
char key_loc[PROPERTY_VALUE_MAX];
|
|
char real_blkdev[PROPERTY_VALUE_MAX];
|
|
int rc = -1;
|
|
|
|
if (!cached_data) {
|
|
fs_mgr_get_crypt_info(fstab, key_loc, real_blkdev, sizeof(key_loc));
|
|
|
|
if (!strcmp(key_loc, KEY_IN_FOOTER)) {
|
|
if ( (fd = open(real_blkdev, O_RDWR|O_CLOEXEC)) < 0) {
|
|
SLOGE("Cannot open real block device %s\n", real_blkdev);
|
|
return -1;
|
|
}
|
|
|
|
unsigned long nr_sec = 0;
|
|
get_blkdev_size(fd, &nr_sec);
|
|
if (nr_sec != 0) {
|
|
/* If it's an encrypted Android partition, the last 16 Kbytes contain the
|
|
* encryption info footer and key, and plenty of bytes to spare for future
|
|
* growth.
|
|
*/
|
|
strlcpy(cached_metadata_fname, real_blkdev, sizeof(cached_metadata_fname));
|
|
cached_off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET;
|
|
cached_data = 1;
|
|
} else {
|
|
SLOGE("Cannot get size of block device %s\n", real_blkdev);
|
|
}
|
|
close(fd);
|
|
} else {
|
|
strlcpy(cached_metadata_fname, key_loc, sizeof(cached_metadata_fname));
|
|
cached_off = 0;
|
|
cached_data = 1;
|
|
}
|
|
}
|
|
|
|
if (cached_data) {
|
|
if (metadata_fname) {
|
|
*metadata_fname = cached_metadata_fname;
|
|
}
|
|
if (off) {
|
|
*off = cached_off;
|
|
}
|
|
rc = 0;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* key or salt can be NULL, in which case just skip writing that value. Useful to
|
|
* update the failed mount count but not change the key.
|
|
*/
|
|
static int put_crypt_ftr_and_key(struct crypt_mnt_ftr *crypt_ftr)
|
|
{
|
|
int fd;
|
|
unsigned int cnt;
|
|
/* starting_off is set to the SEEK_SET offset
|
|
* where the crypto structure starts
|
|
*/
|
|
off64_t starting_off;
|
|
int rc = -1;
|
|
char *fname = NULL;
|
|
struct stat statbuf;
|
|
|
|
if (get_crypt_ftr_info(&fname, &starting_off)) {
|
|
SLOGE("Unable to get crypt_ftr_info\n");
|
|
return -1;
|
|
}
|
|
if (fname[0] != '/') {
|
|
SLOGE("Unexpected value for crypto key location\n");
|
|
return -1;
|
|
}
|
|
if ( (fd = open(fname, O_RDWR | O_CREAT|O_CLOEXEC, 0600)) < 0) {
|
|
SLOGE("Cannot open footer file %s for put\n", fname);
|
|
return -1;
|
|
}
|
|
|
|
/* Seek to the start of the crypt footer */
|
|
if (lseek64(fd, starting_off, SEEK_SET) == -1) {
|
|
SLOGE("Cannot seek to real block device footer\n");
|
|
goto errout;
|
|
}
|
|
|
|
if ((cnt = write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) {
|
|
SLOGE("Cannot write real block device footer\n");
|
|
goto errout;
|
|
}
|
|
|
|
fstat(fd, &statbuf);
|
|
/* If the keys are kept on a raw block device, do not try to truncate it. */
|
|
if (S_ISREG(statbuf.st_mode)) {
|
|
if (ftruncate(fd, 0x4000)) {
|
|
SLOGE("Cannot set footer file size\n");
|
|
goto errout;
|
|
}
|
|
}
|
|
|
|
/* Success! */
|
|
rc = 0;
|
|
|
|
errout:
|
|
close(fd);
|
|
return rc;
|
|
|
|
}
|
|
|
|
static inline int unix_read(int fd, void* buff, int len)
|
|
{
|
|
return TEMP_FAILURE_RETRY(read(fd, buff, len));
|
|
}
|
|
|
|
static inline int unix_write(int fd, const void* buff, int len)
|
|
{
|
|
return TEMP_FAILURE_RETRY(write(fd, buff, len));
|
|
}
|
|
|
|
static void init_empty_persist_data(struct crypt_persist_data *pdata, int len)
|
|
{
|
|
memset(pdata, 0, len);
|
|
pdata->persist_magic = PERSIST_DATA_MAGIC;
|
|
pdata->persist_valid_entries = 0;
|
|
}
|
|
|
|
/* A routine to update the passed in crypt_ftr to the lastest version.
|
|
* fd is open read/write on the device that holds the crypto footer and persistent
|
|
* data, crypt_ftr is a pointer to the struct to be updated, and offset is the
|
|
* absolute offset to the start of the crypt_mnt_ftr on the passed in fd.
|
|
*/
|
|
static void upgrade_crypt_ftr(int fd, struct crypt_mnt_ftr *crypt_ftr, off64_t offset)
|
|
{
|
|
int orig_major = crypt_ftr->major_version;
|
|
int orig_minor = crypt_ftr->minor_version;
|
|
|
|
if ((crypt_ftr->major_version == 1) && (crypt_ftr->minor_version == 0)) {
|
|
struct crypt_persist_data *pdata;
|
|
off64_t pdata_offset = offset + CRYPT_FOOTER_TO_PERSIST_OFFSET;
|
|
|
|
SLOGW("upgrading crypto footer to 1.1");
|
|
|
|
pdata = malloc(CRYPT_PERSIST_DATA_SIZE);
|
|
if (pdata == NULL) {
|
|
SLOGE("Cannot allocate persisent data\n");
|
|
return;
|
|
}
|
|
memset(pdata, 0, CRYPT_PERSIST_DATA_SIZE);
|
|
|
|
/* Need to initialize the persistent data area */
|
|
if (lseek64(fd, pdata_offset, SEEK_SET) == -1) {
|
|
SLOGE("Cannot seek to persisent data offset\n");
|
|
free(pdata);
|
|
return;
|
|
}
|
|
/* Write all zeros to the first copy, making it invalid */
|
|
unix_write(fd, pdata, CRYPT_PERSIST_DATA_SIZE);
|
|
|
|
/* Write a valid but empty structure to the second copy */
|
|
init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE);
|
|
unix_write(fd, pdata, CRYPT_PERSIST_DATA_SIZE);
|
|
|
|
/* Update the footer */
|
|
crypt_ftr->persist_data_size = CRYPT_PERSIST_DATA_SIZE;
|
|
crypt_ftr->persist_data_offset[0] = pdata_offset;
|
|
crypt_ftr->persist_data_offset[1] = pdata_offset + CRYPT_PERSIST_DATA_SIZE;
|
|
crypt_ftr->minor_version = 1;
|
|
free(pdata);
|
|
}
|
|
|
|
if ((crypt_ftr->major_version == 1) && (crypt_ftr->minor_version == 1)) {
|
|
SLOGW("upgrading crypto footer to 1.2");
|
|
/* But keep the old kdf_type.
|
|
* It will get updated later to KDF_SCRYPT after the password has been verified.
|
|
*/
|
|
crypt_ftr->kdf_type = KDF_PBKDF2;
|
|
get_device_scrypt_params(crypt_ftr);
|
|
crypt_ftr->minor_version = 2;
|
|
}
|
|
|
|
if ((crypt_ftr->major_version == 1) && (crypt_ftr->minor_version == 2)) {
|
|
SLOGW("upgrading crypto footer to 1.3");
|
|
crypt_ftr->crypt_type = CRYPT_TYPE_PASSWORD;
|
|
crypt_ftr->minor_version = 3;
|
|
}
|
|
|
|
if ((orig_major != crypt_ftr->major_version) || (orig_minor != crypt_ftr->minor_version)) {
|
|
if (lseek64(fd, offset, SEEK_SET) == -1) {
|
|
SLOGE("Cannot seek to crypt footer\n");
|
|
return;
|
|
}
|
|
unix_write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr));
|
|
}
|
|
}
|
|
|
|
|
|
static int get_crypt_ftr_and_key(struct crypt_mnt_ftr *crypt_ftr)
|
|
{
|
|
int fd;
|
|
unsigned int cnt;
|
|
off64_t starting_off;
|
|
int rc = -1;
|
|
char *fname = NULL;
|
|
struct stat statbuf;
|
|
|
|
if (get_crypt_ftr_info(&fname, &starting_off)) {
|
|
SLOGE("Unable to get crypt_ftr_info\n");
|
|
return -1;
|
|
}
|
|
if (fname[0] != '/') {
|
|
SLOGE("Unexpected value for crypto key location\n");
|
|
return -1;
|
|
}
|
|
if ( (fd = open(fname, O_RDWR|O_CLOEXEC)) < 0) {
|
|
SLOGE("Cannot open footer file %s for get\n", fname);
|
|
return -1;
|
|
}
|
|
|
|
/* Make sure it's 16 Kbytes in length */
|
|
fstat(fd, &statbuf);
|
|
if (S_ISREG(statbuf.st_mode) && (statbuf.st_size != 0x4000)) {
|
|
SLOGE("footer file %s is not the expected size!\n", fname);
|
|
goto errout;
|
|
}
|
|
|
|
/* Seek to the start of the crypt footer */
|
|
if (lseek64(fd, starting_off, SEEK_SET) == -1) {
|
|
SLOGE("Cannot seek to real block device footer\n");
|
|
goto errout;
|
|
}
|
|
|
|
if ( (cnt = read(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) {
|
|
SLOGE("Cannot read real block device footer\n");
|
|
goto errout;
|
|
}
|
|
|
|
if (crypt_ftr->magic != CRYPT_MNT_MAGIC) {
|
|
SLOGE("Bad magic for real block device %s\n", fname);
|
|
goto errout;
|
|
}
|
|
|
|
if (crypt_ftr->major_version != CURRENT_MAJOR_VERSION) {
|
|
SLOGE("Cannot understand major version %d real block device footer; expected %d\n",
|
|
crypt_ftr->major_version, CURRENT_MAJOR_VERSION);
|
|
goto errout;
|
|
}
|
|
|
|
if (crypt_ftr->minor_version > CURRENT_MINOR_VERSION) {
|
|
SLOGW("Warning: crypto footer minor version %d, expected <= %d, continuing...\n",
|
|
crypt_ftr->minor_version, CURRENT_MINOR_VERSION);
|
|
}
|
|
|
|
/* If this is a verion 1.0 crypt_ftr, make it a 1.1 crypt footer, and update the
|
|
* copy on disk before returning.
|
|
*/
|
|
if (crypt_ftr->minor_version < CURRENT_MINOR_VERSION) {
|
|
upgrade_crypt_ftr(fd, crypt_ftr, starting_off);
|
|
}
|
|
|
|
/* Success! */
|
|
rc = 0;
|
|
|
|
errout:
|
|
close(fd);
|
|
return rc;
|
|
}
|
|
|
|
static int validate_persistent_data_storage(struct crypt_mnt_ftr *crypt_ftr)
|
|
{
|
|
if (crypt_ftr->persist_data_offset[0] + crypt_ftr->persist_data_size >
|
|
crypt_ftr->persist_data_offset[1]) {
|
|
SLOGE("Crypt_ftr persist data regions overlap");
|
|
return -1;
|
|
}
|
|
|
|
if (crypt_ftr->persist_data_offset[0] >= crypt_ftr->persist_data_offset[1]) {
|
|
SLOGE("Crypt_ftr persist data region 0 starts after region 1");
|
|
return -1;
|
|
}
|
|
|
|
if (((crypt_ftr->persist_data_offset[1] + crypt_ftr->persist_data_size) -
|
|
(crypt_ftr->persist_data_offset[0] - CRYPT_FOOTER_TO_PERSIST_OFFSET)) >
|
|
CRYPT_FOOTER_OFFSET) {
|
|
SLOGE("Persistent data extends past crypto footer");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int load_persistent_data(void)
|
|
{
|
|
struct crypt_mnt_ftr crypt_ftr;
|
|
struct crypt_persist_data *pdata = NULL;
|
|
char encrypted_state[PROPERTY_VALUE_MAX];
|
|
char *fname;
|
|
int found = 0;
|
|
int fd;
|
|
int ret;
|
|
int i;
|
|
|
|
if (persist_data) {
|
|
/* Nothing to do, we've already loaded or initialized it */
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* If not encrypted, just allocate an empty table and initialize it */
|
|
property_get("ro.crypto.state", encrypted_state, "");
|
|
if (strcmp(encrypted_state, "encrypted") ) {
|
|
pdata = malloc(CRYPT_PERSIST_DATA_SIZE);
|
|
if (pdata) {
|
|
init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE);
|
|
persist_data = pdata;
|
|
return 0;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
if(get_crypt_ftr_and_key(&crypt_ftr)) {
|
|
return -1;
|
|
}
|
|
|
|
if ((crypt_ftr.major_version < 1)
|
|
|| (crypt_ftr.major_version == 1 && crypt_ftr.minor_version < 1)) {
|
|
SLOGE("Crypt_ftr version doesn't support persistent data");
|
|
return -1;
|
|
}
|
|
|
|
if (get_crypt_ftr_info(&fname, NULL)) {
|
|
return -1;
|
|
}
|
|
|
|
ret = validate_persistent_data_storage(&crypt_ftr);
|
|
if (ret) {
|
|
return -1;
|
|
}
|
|
|
|
fd = open(fname, O_RDONLY|O_CLOEXEC);
|
|
if (fd < 0) {
|
|
SLOGE("Cannot open %s metadata file", fname);
|
|
return -1;
|
|
}
|
|
|
|
if (persist_data == NULL) {
|
|
pdata = malloc(crypt_ftr.persist_data_size);
|
|
if (pdata == NULL) {
|
|
SLOGE("Cannot allocate memory for persistent data");
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
if (lseek64(fd, crypt_ftr.persist_data_offset[i], SEEK_SET) < 0) {
|
|
SLOGE("Cannot seek to read persistent data on %s", fname);
|
|
goto err2;
|
|
}
|
|
if (unix_read(fd, pdata, crypt_ftr.persist_data_size) < 0){
|
|
SLOGE("Error reading persistent data on iteration %d", i);
|
|
goto err2;
|
|
}
|
|
if (pdata->persist_magic == PERSIST_DATA_MAGIC) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found) {
|
|
SLOGI("Could not find valid persistent data, creating");
|
|
init_empty_persist_data(pdata, crypt_ftr.persist_data_size);
|
|
}
|
|
|
|
/* Success */
|
|
persist_data = pdata;
|
|
close(fd);
|
|
return 0;
|
|
|
|
err2:
|
|
free(pdata);
|
|
|
|
err:
|
|
close(fd);
|
|
return -1;
|
|
}
|
|
|
|
static int save_persistent_data(void)
|
|
{
|
|
struct crypt_mnt_ftr crypt_ftr;
|
|
struct crypt_persist_data *pdata;
|
|
char *fname;
|
|
off64_t write_offset;
|
|
off64_t erase_offset;
|
|
int fd;
|
|
int ret;
|
|
|
|
if (persist_data == NULL) {
|
|
SLOGE("No persistent data to save");
|
|
return -1;
|
|
}
|
|
|
|
if(get_crypt_ftr_and_key(&crypt_ftr)) {
|
|
return -1;
|
|
}
|
|
|
|
if ((crypt_ftr.major_version < 1)
|
|
|| (crypt_ftr.major_version == 1 && crypt_ftr.minor_version < 1)) {
|
|
SLOGE("Crypt_ftr version doesn't support persistent data");
|
|
return -1;
|
|
}
|
|
|
|
ret = validate_persistent_data_storage(&crypt_ftr);
|
|
if (ret) {
|
|
return -1;
|
|
}
|
|
|
|
if (get_crypt_ftr_info(&fname, NULL)) {
|
|
return -1;
|
|
}
|
|
|
|
fd = open(fname, O_RDWR|O_CLOEXEC);
|
|
if (fd < 0) {
|
|
SLOGE("Cannot open %s metadata file", fname);
|
|
return -1;
|
|
}
|
|
|
|
pdata = malloc(crypt_ftr.persist_data_size);
|
|
if (pdata == NULL) {
|
|
SLOGE("Cannot allocate persistant data");
|
|
goto err;
|
|
}
|
|
|
|
if (lseek64(fd, crypt_ftr.persist_data_offset[0], SEEK_SET) < 0) {
|
|
SLOGE("Cannot seek to read persistent data on %s", fname);
|
|
goto err2;
|
|
}
|
|
|
|
if (unix_read(fd, pdata, crypt_ftr.persist_data_size) < 0) {
|
|
SLOGE("Error reading persistent data before save");
|
|
goto err2;
|
|
}
|
|
|
|
if (pdata->persist_magic == PERSIST_DATA_MAGIC) {
|
|
/* The first copy is the curent valid copy, so write to
|
|
* the second copy and erase this one */
|
|
write_offset = crypt_ftr.persist_data_offset[1];
|
|
erase_offset = crypt_ftr.persist_data_offset[0];
|
|
} else {
|
|
/* The second copy must be the valid copy, so write to
|
|
* the first copy, and erase the second */
|
|
write_offset = crypt_ftr.persist_data_offset[0];
|
|
erase_offset = crypt_ftr.persist_data_offset[1];
|
|
}
|
|
|
|
/* Write the new copy first, if successful, then erase the old copy */
|
|
if (lseek64(fd, write_offset, SEEK_SET) < 0) {
|
|
SLOGE("Cannot seek to write persistent data");
|
|
goto err2;
|
|
}
|
|
if (unix_write(fd, persist_data, crypt_ftr.persist_data_size) ==
|
|
(int) crypt_ftr.persist_data_size) {
|
|
if (lseek64(fd, erase_offset, SEEK_SET) < 0) {
|
|
SLOGE("Cannot seek to erase previous persistent data");
|
|
goto err2;
|
|
}
|
|
fsync(fd);
|
|
memset(pdata, 0, crypt_ftr.persist_data_size);
|
|
if (unix_write(fd, pdata, crypt_ftr.persist_data_size) !=
|
|
(int) crypt_ftr.persist_data_size) {
|
|
SLOGE("Cannot write to erase previous persistent data");
|
|
goto err2;
|
|
}
|
|
fsync(fd);
|
|
} else {
|
|
SLOGE("Cannot write to save persistent data");
|
|
goto err2;
|
|
}
|
|
|
|
/* Success */
|
|
free(pdata);
|
|
close(fd);
|
|
return 0;
|
|
|
|
err2:
|
|
free(pdata);
|
|
err:
|
|
close(fd);
|
|
return -1;
|
|
}
|
|
|
|
/* Convert a binary key of specified length into an ascii hex string equivalent,
|
|
* without the leading 0x and with null termination
|
|
*/
|
|
static void convert_key_to_hex_ascii(const unsigned char *master_key,
|
|
unsigned int keysize, char *master_key_ascii) {
|
|
unsigned int i, a;
|
|
unsigned char nibble;
|
|
|
|
for (i=0, a=0; i<keysize; i++, a+=2) {
|
|
/* For each byte, write out two ascii hex digits */
|
|
nibble = (master_key[i] >> 4) & 0xf;
|
|
master_key_ascii[a] = nibble + (nibble > 9 ? 0x37 : 0x30);
|
|
|
|
nibble = master_key[i] & 0xf;
|
|
master_key_ascii[a+1] = nibble + (nibble > 9 ? 0x37 : 0x30);
|
|
}
|
|
|
|
/* Add the null termination */
|
|
master_key_ascii[a] = '\0';
|
|
|
|
}
|
|
|
|
static int load_crypto_mapping_table(struct crypt_mnt_ftr *crypt_ftr,
|
|
const unsigned char *master_key, const char *real_blk_name,
|
|
const char *name, int fd, const char *extra_params) {
|
|
_Alignas(struct dm_ioctl) char buffer[DM_CRYPT_BUF_SIZE];
|
|
struct dm_ioctl *io;
|
|
struct dm_target_spec *tgt;
|
|
char *crypt_params;
|
|
char master_key_ascii[129]; /* Large enough to hold 512 bit key and null */
|
|
int i;
|
|
|
|
io = (struct dm_ioctl *) buffer;
|
|
|
|
/* Load the mapping table for this device */
|
|
tgt = (struct dm_target_spec *) &buffer[sizeof(struct dm_ioctl)];
|
|
|
|
ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
|
|
io->target_count = 1;
|
|
tgt->status = 0;
|
|
tgt->sector_start = 0;
|
|
tgt->length = crypt_ftr->fs_size;
|
|
#ifdef CONFIG_HW_DISK_ENCRYPTION
|
|
if (!strcmp((char *)crypt_ftr->crypto_type_name, "aes-xts")) {
|
|
strlcpy(tgt->target_type, "req-crypt", DM_MAX_TYPE_NAME);
|
|
}
|
|
else {
|
|
strlcpy(tgt->target_type, "crypt", DM_MAX_TYPE_NAME);
|
|
}
|
|
#else
|
|
strlcpy(tgt->target_type, "crypt", DM_MAX_TYPE_NAME);
|
|
#endif
|
|
|
|
crypt_params = buffer + sizeof(struct dm_ioctl) + sizeof(struct dm_target_spec);
|
|
convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii);
|
|
sprintf(crypt_params, "%s %s 0 %s 0 %s", crypt_ftr->crypto_type_name,
|
|
master_key_ascii, real_blk_name, extra_params);
|
|
crypt_params += strlen(crypt_params) + 1;
|
|
crypt_params = (char *) (((unsigned long)crypt_params + 7) & ~8); /* Align to an 8 byte boundary */
|
|
tgt->next = crypt_params - buffer;
|
|
|
|
for (i = 0; i < TABLE_LOAD_RETRIES; i++) {
|
|
if (! ioctl(fd, DM_TABLE_LOAD, io)) {
|
|
break;
|
|
}
|
|
usleep(500000);
|
|
}
|
|
|
|
if (i == TABLE_LOAD_RETRIES) {
|
|
/* We failed to load the table, return an error */
|
|
return -1;
|
|
} else {
|
|
return i + 1;
|
|
}
|
|
}
|
|
|
|
|
|
static int get_dm_crypt_version(int fd, const char *name, int *version)
|
|
{
|
|
char buffer[DM_CRYPT_BUF_SIZE];
|
|
struct dm_ioctl *io;
|
|
struct dm_target_versions *v;
|
|
|
|
io = (struct dm_ioctl *) buffer;
|
|
|
|
ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
|
|
|
|
if (ioctl(fd, DM_LIST_VERSIONS, io)) {
|
|
return -1;
|
|
}
|
|
|
|
/* Iterate over the returned versions, looking for name of "crypt".
|
|
* When found, get and return the version.
|
|
*/
|
|
v = (struct dm_target_versions *) &buffer[sizeof(struct dm_ioctl)];
|
|
while (v->next) {
|
|
#ifdef CONFIG_HW_DISK_ENCRYPTION
|
|
if (! strcmp(v->name, "crypt") || ! strcmp(v->name, "req-crypt")) {
|
|
#else
|
|
if (! strcmp(v->name, "crypt")) {
|
|
#endif
|
|
/* We found the crypt driver, return the version, and get out */
|
|
version[0] = v->version[0];
|
|
version[1] = v->version[1];
|
|
version[2] = v->version[2];
|
|
return 0;
|
|
}
|
|
v = (struct dm_target_versions *)(((char *)v) + v->next);
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int create_crypto_blk_dev(struct crypt_mnt_ftr *crypt_ftr,
|
|
const unsigned char *master_key, const char *real_blk_name,
|
|
char *crypto_blk_name, const char *name) {
|
|
char buffer[DM_CRYPT_BUF_SIZE];
|
|
struct dm_ioctl *io;
|
|
unsigned int minor;
|
|
int fd=0;
|
|
int retval = -1;
|
|
int version[3];
|
|
char *extra_params;
|
|
int load_count;
|
|
|
|
if ((fd = open("/dev/device-mapper", O_RDWR|O_CLOEXEC)) < 0 ) {
|
|
SLOGE("Cannot open device-mapper\n");
|
|
goto errout;
|
|
}
|
|
|
|
io = (struct dm_ioctl *) buffer;
|
|
|
|
ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
|
|
if (ioctl(fd, DM_DEV_CREATE, io)) {
|
|
SLOGE("Cannot create dm-crypt device\n");
|
|
goto errout;
|
|
}
|
|
|
|
/* Get the device status, in particular, the name of it's device file */
|
|
ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
|
|
if (ioctl(fd, DM_DEV_STATUS, io)) {
|
|
SLOGE("Cannot retrieve dm-crypt device status\n");
|
|
goto errout;
|
|
}
|
|
minor = (io->dev & 0xff) | ((io->dev >> 12) & 0xfff00);
|
|
snprintf(crypto_blk_name, MAXPATHLEN, "/dev/block/dm-%u", minor);
|
|
|
|
extra_params = "";
|
|
if (! get_dm_crypt_version(fd, name, version)) {
|
|
/* Support for allow_discards was added in version 1.11.0 */
|
|
if ((version[0] >= 2) ||
|
|
((version[0] == 1) && (version[1] >= 11))) {
|
|
extra_params = "1 allow_discards";
|
|
SLOGI("Enabling support for allow_discards in dmcrypt.\n");
|
|
}
|
|
}
|
|
|
|
load_count = load_crypto_mapping_table(crypt_ftr, master_key, real_blk_name, name,
|
|
fd, extra_params);
|
|
if (load_count < 0) {
|
|
SLOGE("Cannot load dm-crypt mapping table.\n");
|
|
goto errout;
|
|
} else if (load_count > 1) {
|
|
SLOGI("Took %d tries to load dmcrypt table.\n", load_count);
|
|
}
|
|
|
|
/* Resume this device to activate it */
|
|
ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
|
|
|
|
if (ioctl(fd, DM_DEV_SUSPEND, io)) {
|
|
SLOGE("Cannot resume the dm-crypt device\n");
|
|
goto errout;
|
|
}
|
|
|
|
/* We made it here with no errors. Woot! */
|
|
retval = 0;
|
|
|
|
errout:
|
|
close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */
|
|
|
|
return retval;
|
|
}
|
|
|
|
static int delete_crypto_blk_dev(char *name)
|
|
{
|
|
int fd;
|
|
char buffer[DM_CRYPT_BUF_SIZE];
|
|
struct dm_ioctl *io;
|
|
int retval = -1;
|
|
|
|
if ((fd = open("/dev/device-mapper", O_RDWR|O_CLOEXEC)) < 0 ) {
|
|
SLOGE("Cannot open device-mapper\n");
|
|
goto errout;
|
|
}
|
|
|
|
io = (struct dm_ioctl *) buffer;
|
|
|
|
ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
|
|
if (ioctl(fd, DM_DEV_REMOVE, io)) {
|
|
SLOGE("Cannot remove dm-crypt device\n");
|
|
goto errout;
|
|
}
|
|
|
|
/* We made it here with no errors. Woot! */
|
|
retval = 0;
|
|
|
|
errout:
|
|
close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
static int pbkdf2(const char *passwd, const unsigned char *salt,
|
|
unsigned char *ikey, void *params UNUSED)
|
|
{
|
|
SLOGI("Using pbkdf2 for cryptfs KDF");
|
|
|
|
/* Turn the password into a key and IV that can decrypt the master key */
|
|
PKCS5_PBKDF2_HMAC_SHA1(passwd, strlen(passwd),
|
|
salt, SALT_LEN,
|
|
HASH_COUNT, KEY_LEN_BYTES+IV_LEN_BYTES, ikey);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int scrypt(const char *passwd, const unsigned char *salt,
|
|
unsigned char *ikey, void *params)
|
|
{
|
|
SLOGI("Using scrypt for cryptfs KDF");
|
|
|
|
struct crypt_mnt_ftr *ftr = (struct crypt_mnt_ftr *) params;
|
|
|
|
int N = 1 << ftr->N_factor;
|
|
int r = 1 << ftr->r_factor;
|
|
int p = 1 << ftr->p_factor;
|
|
|
|
/* Turn the password into a key and IV that can decrypt the master key */
|
|
unsigned int keysize;
|
|
crypto_scrypt((const uint8_t*)passwd, strlen(passwd),
|
|
salt, SALT_LEN, N, r, p, ikey,
|
|
KEY_LEN_BYTES + IV_LEN_BYTES);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int scrypt_keymaster(const char *passwd, const unsigned char *salt,
|
|
unsigned char *ikey, void *params)
|
|
{
|
|
SLOGI("Using scrypt with keymaster for cryptfs KDF");
|
|
|
|
int rc;
|
|
size_t signature_size;
|
|
unsigned char* signature;
|
|
struct crypt_mnt_ftr *ftr = (struct crypt_mnt_ftr *) params;
|
|
|
|
int N = 1 << ftr->N_factor;
|
|
int r = 1 << ftr->r_factor;
|
|
int p = 1 << ftr->p_factor;
|
|
|
|
rc = crypto_scrypt((const uint8_t*)passwd, strlen(passwd),
|
|
salt, SALT_LEN, N, r, p, ikey,
|
|
KEY_LEN_BYTES + IV_LEN_BYTES);
|
|
|
|
if (rc) {
|
|
SLOGE("scrypt failed");
|
|
return -1;
|
|
}
|
|
|
|
if (keymaster_sign_object(ftr, ikey, KEY_LEN_BYTES + IV_LEN_BYTES,
|
|
&signature, &signature_size)) {
|
|
SLOGE("Signing failed");
|
|
return -1;
|
|
}
|
|
|
|
rc = crypto_scrypt(signature, signature_size, salt, SALT_LEN,
|
|
N, r, p, ikey, KEY_LEN_BYTES + IV_LEN_BYTES);
|
|
free(signature);
|
|
|
|
if (rc) {
|
|
SLOGE("scrypt failed");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int encrypt_master_key(const char *passwd, const unsigned char *salt,
|
|
const unsigned char *decrypted_master_key,
|
|
unsigned char *encrypted_master_key,
|
|
struct crypt_mnt_ftr *crypt_ftr)
|
|
{
|
|
unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */
|
|
EVP_CIPHER_CTX e_ctx;
|
|
int encrypted_len, final_len;
|
|
int rc = 0;
|
|
|
|
/* Turn the password into an intermediate key and IV that can decrypt the master key */
|
|
get_device_scrypt_params(crypt_ftr);
|
|
|
|
switch (crypt_ftr->kdf_type) {
|
|
case KDF_SCRYPT_KEYMASTER:
|
|
if (keymaster_create_key(crypt_ftr)) {
|
|
SLOGE("keymaster_create_key failed");
|
|
return -1;
|
|
}
|
|
|
|
if (scrypt_keymaster(passwd, salt, ikey, crypt_ftr)) {
|
|
SLOGE("scrypt failed");
|
|
return -1;
|
|
}
|
|
break;
|
|
|
|
case KDF_SCRYPT:
|
|
if (scrypt(passwd, salt, ikey, crypt_ftr)) {
|
|
SLOGE("scrypt failed");
|
|
return -1;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
SLOGE("Invalid kdf_type");
|
|
return -1;
|
|
}
|
|
|
|
/* Initialize the decryption engine */
|
|
EVP_CIPHER_CTX_init(&e_ctx);
|
|
if (! EVP_EncryptInit_ex(&e_ctx, EVP_aes_128_cbc(), NULL, ikey, ikey+KEY_LEN_BYTES)) {
|
|
SLOGE("EVP_EncryptInit failed\n");
|
|
return -1;
|
|
}
|
|
EVP_CIPHER_CTX_set_padding(&e_ctx, 0); /* Turn off padding as our data is block aligned */
|
|
|
|
/* Encrypt the master key */
|
|
if (! EVP_EncryptUpdate(&e_ctx, encrypted_master_key, &encrypted_len,
|
|
decrypted_master_key, KEY_LEN_BYTES)) {
|
|
SLOGE("EVP_EncryptUpdate failed\n");
|
|
return -1;
|
|
}
|
|
if (! EVP_EncryptFinal_ex(&e_ctx, encrypted_master_key + encrypted_len, &final_len)) {
|
|
SLOGE("EVP_EncryptFinal failed\n");
|
|
return -1;
|
|
}
|
|
|
|
if (encrypted_len + final_len != KEY_LEN_BYTES) {
|
|
SLOGE("EVP_Encryption length check failed with %d, %d bytes\n", encrypted_len, final_len);
|
|
return -1;
|
|
}
|
|
|
|
/* Store the scrypt of the intermediate key, so we can validate if it's a
|
|
password error or mount error when things go wrong.
|
|
Note there's no need to check for errors, since if this is incorrect, we
|
|
simply won't wipe userdata, which is the correct default behavior
|
|
*/
|
|
int N = 1 << crypt_ftr->N_factor;
|
|
int r = 1 << crypt_ftr->r_factor;
|
|
int p = 1 << crypt_ftr->p_factor;
|
|
|
|
rc = crypto_scrypt(ikey, KEY_LEN_BYTES,
|
|
crypt_ftr->salt, sizeof(crypt_ftr->salt), N, r, p,
|
|
crypt_ftr->scrypted_intermediate_key,
|
|
sizeof(crypt_ftr->scrypted_intermediate_key));
|
|
|
|
if (rc) {
|
|
SLOGE("encrypt_master_key: crypto_scrypt failed");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int decrypt_master_key_aux(const char *passwd, unsigned char *salt,
|
|
unsigned char *encrypted_master_key,
|
|
unsigned char *decrypted_master_key,
|
|
kdf_func kdf, void *kdf_params,
|
|
unsigned char** intermediate_key,
|
|
size_t* intermediate_key_size)
|
|
{
|
|
unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */
|
|
EVP_CIPHER_CTX d_ctx;
|
|
int decrypted_len, final_len;
|
|
|
|
/* Turn the password into an intermediate key and IV that can decrypt the
|
|
master key */
|
|
if (kdf(passwd, salt, ikey, kdf_params)) {
|
|
SLOGE("kdf failed");
|
|
return -1;
|
|
}
|
|
|
|
/* Initialize the decryption engine */
|
|
EVP_CIPHER_CTX_init(&d_ctx);
|
|
if (! EVP_DecryptInit_ex(&d_ctx, EVP_aes_128_cbc(), NULL, ikey, ikey+KEY_LEN_BYTES)) {
|
|
return -1;
|
|
}
|
|
EVP_CIPHER_CTX_set_padding(&d_ctx, 0); /* Turn off padding as our data is block aligned */
|
|
/* Decrypt the master key */
|
|
if (! EVP_DecryptUpdate(&d_ctx, decrypted_master_key, &decrypted_len,
|
|
encrypted_master_key, KEY_LEN_BYTES)) {
|
|
return -1;
|
|
}
|
|
if (! EVP_DecryptFinal_ex(&d_ctx, decrypted_master_key + decrypted_len, &final_len)) {
|
|
return -1;
|
|
}
|
|
|
|
if (decrypted_len + final_len != KEY_LEN_BYTES) {
|
|
return -1;
|
|
}
|
|
|
|
/* Copy intermediate key if needed by params */
|
|
if (intermediate_key && intermediate_key_size) {
|
|
*intermediate_key = (unsigned char*) malloc(KEY_LEN_BYTES);
|
|
if (intermediate_key) {
|
|
memcpy(*intermediate_key, ikey, KEY_LEN_BYTES);
|
|
*intermediate_key_size = KEY_LEN_BYTES;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void get_kdf_func(struct crypt_mnt_ftr *ftr, kdf_func *kdf, void** kdf_params)
|
|
{
|
|
if (ftr->kdf_type == KDF_SCRYPT_KEYMASTER) {
|
|
*kdf = scrypt_keymaster;
|
|
*kdf_params = ftr;
|
|
} else if (ftr->kdf_type == KDF_SCRYPT) {
|
|
*kdf = scrypt;
|
|
*kdf_params = ftr;
|
|
} else {
|
|
*kdf = pbkdf2;
|
|
*kdf_params = NULL;
|
|
}
|
|
}
|
|
|
|
static int decrypt_master_key(const char *passwd, unsigned char *decrypted_master_key,
|
|
struct crypt_mnt_ftr *crypt_ftr,
|
|
unsigned char** intermediate_key,
|
|
size_t* intermediate_key_size)
|
|
{
|
|
kdf_func kdf;
|
|
void *kdf_params;
|
|
int ret;
|
|
|
|
get_kdf_func(crypt_ftr, &kdf, &kdf_params);
|
|
ret = decrypt_master_key_aux(passwd, crypt_ftr->salt, crypt_ftr->master_key,
|
|
decrypted_master_key, kdf, kdf_params,
|
|
intermediate_key, intermediate_key_size);
|
|
if (ret != 0) {
|
|
SLOGW("failure decrypting master key");
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int create_encrypted_random_key(char *passwd, unsigned char *master_key, unsigned char *salt,
|
|
struct crypt_mnt_ftr *crypt_ftr) {
|
|
int fd;
|
|
unsigned char key_buf[KEY_LEN_BYTES];
|
|
|
|
/* Get some random bits for a key */
|
|
fd = open("/dev/urandom", O_RDONLY|O_CLOEXEC);
|
|
read(fd, key_buf, sizeof(key_buf));
|
|
read(fd, salt, SALT_LEN);
|
|
close(fd);
|
|
|
|
/* Now encrypt it with the password */
|
|
return encrypt_master_key(passwd, salt, key_buf, master_key, crypt_ftr);
|
|
}
|
|
|
|
int wait_and_unmount(const char *mountpoint, bool kill)
|
|
{
|
|
int i, err, rc;
|
|
#define WAIT_UNMOUNT_COUNT 20
|
|
|
|
/* Now umount the tmpfs filesystem */
|
|
for (i=0; i<WAIT_UNMOUNT_COUNT; i++) {
|
|
if (umount(mountpoint) == 0) {
|
|
break;
|
|
}
|
|
|
|
if (errno == EINVAL) {
|
|
/* EINVAL is returned if the directory is not a mountpoint,
|
|
* i.e. there is no filesystem mounted there. So just get out.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
err = errno;
|
|
|
|
/* If allowed, be increasingly aggressive before the last two retries */
|
|
if (kill) {
|
|
if (i == (WAIT_UNMOUNT_COUNT - 3)) {
|
|
SLOGW("sending SIGHUP to processes with open files\n");
|
|
vold_killProcessesWithOpenFiles(mountpoint, SIGTERM);
|
|
} else if (i == (WAIT_UNMOUNT_COUNT - 2)) {
|
|
SLOGW("sending SIGKILL to processes with open files\n");
|
|
vold_killProcessesWithOpenFiles(mountpoint, SIGKILL);
|
|
}
|
|
}
|
|
|
|
sleep(1);
|
|
}
|
|
|
|
if (i < WAIT_UNMOUNT_COUNT) {
|
|
SLOGD("unmounting %s succeeded\n", mountpoint);
|
|
rc = 0;
|
|
} else {
|
|
vold_killProcessesWithOpenFiles(mountpoint, 0);
|
|
SLOGE("unmounting %s failed: %s\n", mountpoint, strerror(err));
|
|
rc = -1;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
#define DATA_PREP_TIMEOUT 200
|
|
static int prep_data_fs(void)
|
|
{
|
|
int i;
|
|
|
|
/* Do the prep of the /data filesystem */
|
|
property_set("vold.post_fs_data_done", "0");
|
|
property_set("vold.decrypt", "trigger_post_fs_data");
|
|
SLOGD("Just triggered post_fs_data\n");
|
|
|
|
/* Wait a max of 50 seconds, hopefully it takes much less */
|
|
for (i=0; i<DATA_PREP_TIMEOUT; i++) {
|
|
char p[PROPERTY_VALUE_MAX];
|
|
|
|
property_get("vold.post_fs_data_done", p, "0");
|
|
if (*p == '1') {
|
|
break;
|
|
} else {
|
|
usleep(250000);
|
|
}
|
|
}
|
|
if (i == DATA_PREP_TIMEOUT) {
|
|
/* Ugh, we failed to prep /data in time. Bail. */
|
|
SLOGE("post_fs_data timed out!\n");
|
|
return -1;
|
|
} else {
|
|
SLOGD("post_fs_data done\n");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void cryptfs_set_corrupt()
|
|
{
|
|
// Mark the footer as bad
|
|
struct crypt_mnt_ftr crypt_ftr;
|
|
if (get_crypt_ftr_and_key(&crypt_ftr)) {
|
|
SLOGE("Failed to get crypto footer - panic");
|
|
return;
|
|
}
|
|
|
|
crypt_ftr.flags |= CRYPT_DATA_CORRUPT;
|
|
if (put_crypt_ftr_and_key(&crypt_ftr)) {
|
|
SLOGE("Failed to set crypto footer - panic");
|
|
return;
|
|
}
|
|
}
|
|
|
|
static void cryptfs_trigger_restart_min_framework()
|
|
{
|
|
if (fs_mgr_do_tmpfs_mount(DATA_MNT_POINT)) {
|
|
SLOGE("Failed to mount tmpfs on data - panic");
|
|
return;
|
|
}
|
|
|
|
if (property_set("vold.decrypt", "trigger_post_fs_data")) {
|
|
SLOGE("Failed to trigger post fs data - panic");
|
|
return;
|
|
}
|
|
|
|
if (property_set("vold.decrypt", "trigger_restart_min_framework")) {
|
|
SLOGE("Failed to trigger restart min framework - panic");
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* returns < 0 on failure */
|
|
static int cryptfs_restart_internal(int restart_main)
|
|
{
|
|
char crypto_blkdev[MAXPATHLEN];
|
|
int rc = -1;
|
|
static int restart_successful = 0;
|
|
|
|
/* Validate that it's OK to call this routine */
|
|
if (! master_key_saved) {
|
|
SLOGE("Encrypted filesystem not validated, aborting");
|
|
return -1;
|
|
}
|
|
|
|
if (restart_successful) {
|
|
SLOGE("System already restarted with encrypted disk, aborting");
|
|
return -1;
|
|
}
|
|
|
|
if (restart_main) {
|
|
/* Here is where we shut down the framework. The init scripts
|
|
* start all services in one of three classes: core, main or late_start.
|
|
* On boot, we start core and main. Now, we stop main, but not core,
|
|
* as core includes vold and a few other really important things that
|
|
* we need to keep running. Once main has stopped, we should be able
|
|
* to umount the tmpfs /data, then mount the encrypted /data.
|
|
* We then restart the class main, and also the class late_start.
|
|
* At the moment, I've only put a few things in late_start that I know
|
|
* are not needed to bring up the framework, and that also cause problems
|
|
* with unmounting the tmpfs /data, but I hope to add add more services
|
|
* to the late_start class as we optimize this to decrease the delay
|
|
* till the user is asked for the password to the filesystem.
|
|
*/
|
|
|
|
/* The init files are setup to stop the class main when vold.decrypt is
|
|
* set to trigger_reset_main.
|
|
*/
|
|
property_set("vold.decrypt", "trigger_reset_main");
|
|
SLOGD("Just asked init to shut down class main\n");
|
|
|
|
/* Ugh, shutting down the framework is not synchronous, so until it
|
|
* can be fixed, this horrible hack will wait a moment for it all to
|
|
* shut down before proceeding. Without it, some devices cannot
|
|
* restart the graphics services.
|
|
*/
|
|
sleep(2);
|
|
}
|
|
|
|
/* Now that the framework is shutdown, we should be able to umount()
|
|
* the tmpfs filesystem, and mount the real one.
|
|
*/
|
|
|
|
property_get("ro.crypto.fs_crypto_blkdev", crypto_blkdev, "");
|
|
if (strlen(crypto_blkdev) == 0) {
|
|
SLOGE("fs_crypto_blkdev not set\n");
|
|
return -1;
|
|
}
|
|
|
|
if (! (rc = wait_and_unmount(DATA_MNT_POINT, true)) ) {
|
|
/* If ro.crypto.readonly is set to 1, mount the decrypted
|
|
* filesystem readonly. This is used when /data is mounted by
|
|
* recovery mode.
|
|
*/
|
|
char ro_prop[PROPERTY_VALUE_MAX];
|
|
property_get("ro.crypto.readonly", ro_prop, "");
|
|
if (strlen(ro_prop) > 0 && atoi(ro_prop)) {
|
|
struct fstab_rec* rec = fs_mgr_get_entry_for_mount_point(fstab, DATA_MNT_POINT);
|
|
rec->flags |= MS_RDONLY;
|
|
}
|
|
|
|
/* If that succeeded, then mount the decrypted filesystem */
|
|
int retries = RETRY_MOUNT_ATTEMPTS;
|
|
int mount_rc;
|
|
while ((mount_rc = fs_mgr_do_mount(fstab, DATA_MNT_POINT,
|
|
crypto_blkdev, 0))
|
|
!= 0) {
|
|
if (mount_rc == FS_MGR_DOMNT_BUSY) {
|
|
/* TODO: invoke something similar to
|
|
Process::killProcessWithOpenFiles(DATA_MNT_POINT,
|
|
retries > RETRY_MOUNT_ATTEMPT/2 ? 1 : 2 ) */
|
|
SLOGI("Failed to mount %s because it is busy - waiting",
|
|
crypto_blkdev);
|
|
if (--retries) {
|
|
sleep(RETRY_MOUNT_DELAY_SECONDS);
|
|
} else {
|
|
/* Let's hope that a reboot clears away whatever is keeping
|
|
the mount busy */
|
|
cryptfs_reboot(reboot);
|
|
}
|
|
} else {
|
|
SLOGE("Failed to mount decrypted data");
|
|
cryptfs_set_corrupt();
|
|
cryptfs_trigger_restart_min_framework();
|
|
SLOGI("Started framework to offer wipe");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
property_set("vold.decrypt", "trigger_load_persist_props");
|
|
/* Create necessary paths on /data */
|
|
if (prep_data_fs()) {
|
|
return -1;
|
|
}
|
|
|
|
/* startup service classes main and late_start */
|
|
property_set("vold.decrypt", "trigger_restart_framework");
|
|
SLOGD("Just triggered restart_framework\n");
|
|
|
|
/* Give it a few moments to get started */
|
|
sleep(1);
|
|
}
|
|
|
|
if (rc == 0) {
|
|
restart_successful = 1;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
int cryptfs_restart(void)
|
|
{
|
|
SLOGI("cryptfs_restart");
|
|
if (e4crypt_crypto_complete(DATA_MNT_POINT) == 0) {
|
|
struct fstab_rec* rec;
|
|
int rc;
|
|
|
|
if (e4crypt_restart(DATA_MNT_POINT)) {
|
|
SLOGE("Can't unmount e4crypt temp volume\n");
|
|
return -1;
|
|
}
|
|
|
|
rec = fs_mgr_get_entry_for_mount_point(fstab, DATA_MNT_POINT);
|
|
if (!rec) {
|
|
SLOGE("Can't get fstab record for %s\n", DATA_MNT_POINT);
|
|
return -1;
|
|
}
|
|
|
|
rc = fs_mgr_do_mount(fstab, DATA_MNT_POINT, rec->blk_device, 0);
|
|
if (rc) {
|
|
SLOGE("Can't mount %s\n", DATA_MNT_POINT);
|
|
return rc;
|
|
}
|
|
|
|
property_set("vold.decrypt", "trigger_restart_framework");
|
|
return 0;
|
|
}
|
|
|
|
/* Call internal implementation forcing a restart of main service group */
|
|
return cryptfs_restart_internal(1);
|
|
}
|
|
|
|
static int do_crypto_complete(char *mount_point)
|
|
{
|
|
struct crypt_mnt_ftr crypt_ftr;
|
|
char encrypted_state[PROPERTY_VALUE_MAX];
|
|
char key_loc[PROPERTY_VALUE_MAX];
|
|
|
|
property_get("ro.crypto.state", encrypted_state, "");
|
|
if (strcmp(encrypted_state, "encrypted") ) {
|
|
SLOGE("not running with encryption, aborting");
|
|
return CRYPTO_COMPLETE_NOT_ENCRYPTED;
|
|
}
|
|
|
|
if (e4crypt_crypto_complete(mount_point) == 0) {
|
|
return CRYPTO_COMPLETE_ENCRYPTED;
|
|
}
|
|
|
|
if (get_crypt_ftr_and_key(&crypt_ftr)) {
|
|
fs_mgr_get_crypt_info(fstab, key_loc, 0, sizeof(key_loc));
|
|
|
|
/*
|
|
* Only report this error if key_loc is a file and it exists.
|
|
* If the device was never encrypted, and /data is not mountable for
|
|
* some reason, returning 1 should prevent the UI from presenting the
|
|
* a "enter password" screen, or worse, a "press button to wipe the
|
|
* device" screen.
|
|
*/
|
|
if ((key_loc[0] == '/') && (access("key_loc", F_OK) == -1)) {
|
|
SLOGE("master key file does not exist, aborting");
|
|
return CRYPTO_COMPLETE_NOT_ENCRYPTED;
|
|
} else {
|
|
SLOGE("Error getting crypt footer and key\n");
|
|
return CRYPTO_COMPLETE_BAD_METADATA;
|
|
}
|
|
}
|
|
|
|
// Test for possible error flags
|
|
if (crypt_ftr.flags & CRYPT_ENCRYPTION_IN_PROGRESS){
|
|
SLOGE("Encryption process is partway completed\n");
|
|
return CRYPTO_COMPLETE_PARTIAL;
|
|
}
|
|
|
|
if (crypt_ftr.flags & CRYPT_INCONSISTENT_STATE){
|
|
SLOGE("Encryption process was interrupted but cannot continue\n");
|
|
return CRYPTO_COMPLETE_INCONSISTENT;
|
|
}
|
|
|
|
if (crypt_ftr.flags & CRYPT_DATA_CORRUPT){
|
|
SLOGE("Encryption is successful but data is corrupt\n");
|
|
return CRYPTO_COMPLETE_CORRUPT;
|
|
}
|
|
|
|
/* We passed the test! We shall diminish, and return to the west */
|
|
return CRYPTO_COMPLETE_ENCRYPTED;
|
|
}
|
|
|
|
static int test_mount_encrypted_fs(struct crypt_mnt_ftr* crypt_ftr,
|
|
char *passwd, char *mount_point, char *label)
|
|
{
|
|
/* Allocate enough space for a 256 bit key, but we may use less */
|
|
unsigned char decrypted_master_key[32];
|
|
char crypto_blkdev[MAXPATHLEN];
|
|
char real_blkdev[MAXPATHLEN];
|
|
char tmp_mount_point[64];
|
|
unsigned int orig_failed_decrypt_count;
|
|
int rc;
|
|
int use_keymaster = 0;
|
|
int upgrade = 0;
|
|
unsigned char* intermediate_key = 0;
|
|
size_t intermediate_key_size = 0;
|
|
|
|
SLOGD("crypt_ftr->fs_size = %lld\n", crypt_ftr->fs_size);
|
|
orig_failed_decrypt_count = crypt_ftr->failed_decrypt_count;
|
|
|
|
if (! (crypt_ftr->flags & CRYPT_MNT_KEY_UNENCRYPTED) ) {
|
|
if (decrypt_master_key(passwd, decrypted_master_key, crypt_ftr,
|
|
&intermediate_key, &intermediate_key_size)) {
|
|
SLOGE("Failed to decrypt master key\n");
|
|
rc = -1;
|
|
goto errout;
|
|
}
|
|
}
|
|
|
|
fs_mgr_get_crypt_info(fstab, 0, real_blkdev, sizeof(real_blkdev));
|
|
|
|
#ifdef CONFIG_HW_DISK_ENCRYPTION
|
|
if (!strcmp((char *)crypt_ftr->crypto_type_name, "aes-xts")) {
|
|
if(!set_hw_device_encryption_key(passwd, (char*) crypt_ftr->crypto_type_name)) {
|
|
SLOGE("Hardware encryption key does not match");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Create crypto block device - all (non fatal) code paths
|
|
// need it
|
|
if (create_crypto_blk_dev(crypt_ftr, decrypted_master_key,
|
|
real_blkdev, crypto_blkdev, label)) {
|
|
SLOGE("Error creating decrypted block device\n");
|
|
rc = -1;
|
|
goto errout;
|
|
}
|
|
|
|
/* Work out if the problem is the password or the data */
|
|
unsigned char scrypted_intermediate_key[sizeof(crypt_ftr->
|
|
scrypted_intermediate_key)];
|
|
int N = 1 << crypt_ftr->N_factor;
|
|
int r = 1 << crypt_ftr->r_factor;
|
|
int p = 1 << crypt_ftr->p_factor;
|
|
|
|
rc = crypto_scrypt(intermediate_key, intermediate_key_size,
|
|
crypt_ftr->salt, sizeof(crypt_ftr->salt),
|
|
N, r, p, scrypted_intermediate_key,
|
|
sizeof(scrypted_intermediate_key));
|
|
|
|
// Does the key match the crypto footer?
|
|
if (rc == 0 && memcmp(scrypted_intermediate_key,
|
|
crypt_ftr->scrypted_intermediate_key,
|
|
sizeof(scrypted_intermediate_key)) == 0) {
|
|
SLOGI("Password matches");
|
|
rc = 0;
|
|
} else {
|
|
/* Try mounting the file system anyway, just in case the problem's with
|
|
* the footer, not the key. */
|
|
sprintf(tmp_mount_point, "%s/tmp_mnt", mount_point);
|
|
mkdir(tmp_mount_point, 0755);
|
|
if (fs_mgr_do_mount(fstab, DATA_MNT_POINT, crypto_blkdev, tmp_mount_point)) {
|
|
SLOGE("Error temp mounting decrypted block device\n");
|
|
delete_crypto_blk_dev(label);
|
|
|
|
rc = ++crypt_ftr->failed_decrypt_count;
|
|
put_crypt_ftr_and_key(crypt_ftr);
|
|
} else {
|
|
/* Success! */
|
|
SLOGI("Password did not match but decrypted drive mounted - continue");
|
|
umount(tmp_mount_point);
|
|
rc = 0;
|
|
}
|
|
}
|
|
|
|
if (rc == 0) {
|
|
crypt_ftr->failed_decrypt_count = 0;
|
|
if (orig_failed_decrypt_count != 0) {
|
|
put_crypt_ftr_and_key(crypt_ftr);
|
|
}
|
|
|
|
/* Save the name of the crypto block device
|
|
* so we can mount it when restarting the framework. */
|
|
property_set("ro.crypto.fs_crypto_blkdev", crypto_blkdev);
|
|
|
|
/* Also save a the master key so we can reencrypted the key
|
|
* the key when we want to change the password on it. */
|
|
memcpy(saved_master_key, decrypted_master_key, KEY_LEN_BYTES);
|
|
saved_mount_point = strdup(mount_point);
|
|
master_key_saved = 1;
|
|
SLOGD("%s(): Master key saved\n", __FUNCTION__);
|
|
rc = 0;
|
|
|
|
// Upgrade if we're not using the latest KDF.
|
|
use_keymaster = keymaster_check_compatibility();
|
|
if (crypt_ftr->kdf_type == KDF_SCRYPT_KEYMASTER) {
|
|
// Don't allow downgrade
|
|
} else if (use_keymaster == 1 && crypt_ftr->kdf_type != KDF_SCRYPT_KEYMASTER) {
|
|
crypt_ftr->kdf_type = KDF_SCRYPT_KEYMASTER;
|
|
upgrade = 1;
|
|
} else if (use_keymaster == 0 && crypt_ftr->kdf_type != KDF_SCRYPT) {
|
|
crypt_ftr->kdf_type = KDF_SCRYPT;
|
|
upgrade = 1;
|
|
}
|
|
|
|
if (upgrade) {
|
|
rc = encrypt_master_key(passwd, crypt_ftr->salt, saved_master_key,
|
|
crypt_ftr->master_key, crypt_ftr);
|
|
if (!rc) {
|
|
rc = put_crypt_ftr_and_key(crypt_ftr);
|
|
}
|
|
SLOGD("Key Derivation Function upgrade: rc=%d\n", rc);
|
|
|
|
// Do not fail even if upgrade failed - machine is bootable
|
|
// Note that if this code is ever hit, there is a *serious* problem
|
|
// since KDFs should never fail. You *must* fix the kdf before
|
|
// proceeding!
|
|
if (rc) {
|
|
SLOGW("Upgrade failed with error %d,"
|
|
" but continuing with previous state",
|
|
rc);
|
|
rc = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
errout:
|
|
if (intermediate_key) {
|
|
memset(intermediate_key, 0, intermediate_key_size);
|
|
free(intermediate_key);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Called by vold when it's asked to mount an encrypted external
|
|
* storage volume. The incoming partition has no crypto header/footer,
|
|
* as any metadata is been stored in a separate, small partition.
|
|
*
|
|
* out_crypto_blkdev must be MAXPATHLEN.
|
|
*/
|
|
int cryptfs_setup_ext_volume(const char* label, const char* real_blkdev,
|
|
const unsigned char* key, int keysize, char* out_crypto_blkdev) {
|
|
int fd = open(real_blkdev, O_RDONLY|O_CLOEXEC);
|
|
if (fd == -1) {
|
|
SLOGE("Failed to open %s: %s", real_blkdev, strerror(errno));
|
|
return -1;
|
|
}
|
|
|
|
unsigned long nr_sec = 0;
|
|
get_blkdev_size(fd, &nr_sec);
|
|
close(fd);
|
|
|
|
if (nr_sec == 0) {
|
|
SLOGE("Failed to get size of %s: %s", real_blkdev, strerror(errno));
|
|
return -1;
|
|
}
|
|
|
|
struct crypt_mnt_ftr ext_crypt_ftr;
|
|
memset(&ext_crypt_ftr, 0, sizeof(ext_crypt_ftr));
|
|
ext_crypt_ftr.fs_size = nr_sec;
|
|
ext_crypt_ftr.keysize = keysize;
|
|
strcpy((char*) ext_crypt_ftr.crypto_type_name, "aes-cbc-essiv:sha256");
|
|
|
|
return create_crypto_blk_dev(&ext_crypt_ftr, key, real_blkdev,
|
|
out_crypto_blkdev, label);
|
|
}
|
|
|
|
/*
|
|
* Called by vold when it's asked to unmount an encrypted external
|
|
* storage volume.
|
|
*/
|
|
int cryptfs_revert_ext_volume(const char* label) {
|
|
return delete_crypto_blk_dev((char*) label);
|
|
}
|
|
|
|
int cryptfs_crypto_complete(void)
|
|
{
|
|
return do_crypto_complete("/data");
|
|
}
|
|
|
|
int check_unmounted_and_get_ftr(struct crypt_mnt_ftr* crypt_ftr)
|
|
{
|
|
char encrypted_state[PROPERTY_VALUE_MAX];
|
|
property_get("ro.crypto.state", encrypted_state, "");
|
|
if ( master_key_saved || strcmp(encrypted_state, "encrypted") ) {
|
|
SLOGE("encrypted fs already validated or not running with encryption,"
|
|
" aborting");
|
|
return -1;
|
|
}
|
|
|
|
if (get_crypt_ftr_and_key(crypt_ftr)) {
|
|
SLOGE("Error getting crypt footer and key");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int cryptfs_check_passwd(char *passwd)
|
|
{
|
|
SLOGI("cryptfs_check_passwd");
|
|
if (e4crypt_crypto_complete(DATA_MNT_POINT) == 0) {
|
|
return e4crypt_check_passwd(DATA_MNT_POINT, passwd);
|
|
}
|
|
|
|
struct crypt_mnt_ftr crypt_ftr;
|
|
int rc;
|
|
|
|
rc = check_unmounted_and_get_ftr(&crypt_ftr);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = test_mount_encrypted_fs(&crypt_ftr, passwd,
|
|
DATA_MNT_POINT, "userdata");
|
|
|
|
if (rc == 0 && crypt_ftr.crypt_type != CRYPT_TYPE_DEFAULT) {
|
|
cryptfs_clear_password();
|
|
password = strdup(passwd);
|
|
struct timespec now;
|
|
clock_gettime(CLOCK_BOOTTIME, &now);
|
|
password_expiry_time = now.tv_sec + password_max_age_seconds;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
int cryptfs_verify_passwd(char *passwd)
|
|
{
|
|
struct crypt_mnt_ftr crypt_ftr;
|
|
/* Allocate enough space for a 256 bit key, but we may use less */
|
|
unsigned char decrypted_master_key[32];
|
|
char encrypted_state[PROPERTY_VALUE_MAX];
|
|
int rc;
|
|
|
|
property_get("ro.crypto.state", encrypted_state, "");
|
|
if (strcmp(encrypted_state, "encrypted") ) {
|
|
SLOGE("device not encrypted, aborting");
|
|
return -2;
|
|
}
|
|
|
|
if (!master_key_saved) {
|
|
SLOGE("encrypted fs not yet mounted, aborting");
|
|
return -1;
|
|
}
|
|
|
|
if (!saved_mount_point) {
|
|
SLOGE("encrypted fs failed to save mount point, aborting");
|
|
return -1;
|
|
}
|
|
|
|
if (get_crypt_ftr_and_key(&crypt_ftr)) {
|
|
SLOGE("Error getting crypt footer and key\n");
|
|
return -1;
|
|
}
|
|
|
|
if (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) {
|
|
/* If the device has no password, then just say the password is valid */
|
|
rc = 0;
|
|
} else {
|
|
decrypt_master_key(passwd, decrypted_master_key, &crypt_ftr, 0, 0);
|
|
if (!memcmp(decrypted_master_key, saved_master_key, crypt_ftr.keysize)) {
|
|
/* They match, the password is correct */
|
|
rc = 0;
|
|
} else {
|
|
/* If incorrect, sleep for a bit to prevent dictionary attacks */
|
|
sleep(1);
|
|
rc = 1;
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Initialize a crypt_mnt_ftr structure. The keysize is
|
|
* defaulted to 16 bytes, and the filesystem size to 0.
|
|
* Presumably, at a minimum, the caller will update the
|
|
* filesystem size and crypto_type_name after calling this function.
|
|
*/
|
|
static int cryptfs_init_crypt_mnt_ftr(struct crypt_mnt_ftr *ftr)
|
|
{
|
|
off64_t off;
|
|
|
|
memset(ftr, 0, sizeof(struct crypt_mnt_ftr));
|
|
ftr->magic = CRYPT_MNT_MAGIC;
|
|
ftr->major_version = CURRENT_MAJOR_VERSION;
|
|
ftr->minor_version = CURRENT_MINOR_VERSION;
|
|
ftr->ftr_size = sizeof(struct crypt_mnt_ftr);
|
|
ftr->keysize = KEY_LEN_BYTES;
|
|
|
|
switch (keymaster_check_compatibility()) {
|
|
case 1:
|
|
ftr->kdf_type = KDF_SCRYPT_KEYMASTER;
|
|
break;
|
|
|
|
case 0:
|
|
ftr->kdf_type = KDF_SCRYPT;
|
|
break;
|
|
|
|
default:
|
|
SLOGE("keymaster_check_compatibility failed");
|
|
return -1;
|
|
}
|
|
|
|
get_device_scrypt_params(ftr);
|
|
|
|
ftr->persist_data_size = CRYPT_PERSIST_DATA_SIZE;
|
|
if (get_crypt_ftr_info(NULL, &off) == 0) {
|
|
ftr->persist_data_offset[0] = off + CRYPT_FOOTER_TO_PERSIST_OFFSET;
|
|
ftr->persist_data_offset[1] = off + CRYPT_FOOTER_TO_PERSIST_OFFSET +
|
|
ftr->persist_data_size;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cryptfs_enable_wipe(char *crypto_blkdev, off64_t size, int type)
|
|
{
|
|
const char *args[10];
|
|
char size_str[32]; /* Must be large enough to hold a %lld and null byte */
|
|
int num_args;
|
|
int status;
|
|
int tmp;
|
|
int rc = -1;
|
|
|
|
if (type == EXT4_FS) {
|
|
args[0] = "/system/bin/make_ext4fs";
|
|
args[1] = "-a";
|
|
args[2] = "/data";
|
|
args[3] = "-l";
|
|
snprintf(size_str, sizeof(size_str), "%" PRId64, size * 512);
|
|
args[4] = size_str;
|
|
args[5] = crypto_blkdev;
|
|
num_args = 6;
|
|
SLOGI("Making empty filesystem with command %s %s %s %s %s %s\n",
|
|
args[0], args[1], args[2], args[3], args[4], args[5]);
|
|
} else if (type == F2FS_FS) {
|
|
args[0] = "/system/bin/mkfs.f2fs";
|
|
args[1] = "-t";
|
|
args[2] = "-d1";
|
|
args[3] = crypto_blkdev;
|
|
snprintf(size_str, sizeof(size_str), "%" PRId64, size);
|
|
args[4] = size_str;
|
|
num_args = 5;
|
|
SLOGI("Making empty filesystem with command %s %s %s %s %s\n",
|
|
args[0], args[1], args[2], args[3], args[4]);
|
|
} else {
|
|
SLOGE("cryptfs_enable_wipe(): unknown filesystem type %d\n", type);
|
|
return -1;
|
|
}
|
|
|
|
tmp = android_fork_execvp(num_args, (char **)args, &status, false, true);
|
|
|
|
if (tmp != 0) {
|
|
SLOGE("Error creating empty filesystem on %s due to logwrap error\n", crypto_blkdev);
|
|
} else {
|
|
if (WIFEXITED(status)) {
|
|
if (WEXITSTATUS(status)) {
|
|
SLOGE("Error creating filesystem on %s, exit status %d ",
|
|
crypto_blkdev, WEXITSTATUS(status));
|
|
} else {
|
|
SLOGD("Successfully created filesystem on %s\n", crypto_blkdev);
|
|
rc = 0;
|
|
}
|
|
} else {
|
|
SLOGE("Error creating filesystem on %s, did not exit normally\n", crypto_blkdev);
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
#define CRYPT_INPLACE_BUFSIZE 4096
|
|
#define CRYPT_SECTORS_PER_BUFSIZE (CRYPT_INPLACE_BUFSIZE / CRYPT_SECTOR_SIZE)
|
|
#define CRYPT_SECTOR_SIZE 512
|
|
|
|
/* aligned 32K writes tends to make flash happy.
|
|
* SD card association recommends it.
|
|
*/
|
|
#ifndef CONFIG_HW_DISK_ENCRYPTION
|
|
#define BLOCKS_AT_A_TIME 8
|
|
#else
|
|
#define BLOCKS_AT_A_TIME 1024
|
|
#endif
|
|
|
|
struct encryptGroupsData
|
|
{
|
|
int realfd;
|
|
int cryptofd;
|
|
off64_t numblocks;
|
|
off64_t one_pct, cur_pct, new_pct;
|
|
off64_t blocks_already_done, tot_numblocks;
|
|
off64_t used_blocks_already_done, tot_used_blocks;
|
|
char* real_blkdev, * crypto_blkdev;
|
|
int count;
|
|
off64_t offset;
|
|
char* buffer;
|
|
off64_t last_written_sector;
|
|
int completed;
|
|
time_t time_started;
|
|
int remaining_time;
|
|
};
|
|
|
|
static void update_progress(struct encryptGroupsData* data, int is_used)
|
|
{
|
|
data->blocks_already_done++;
|
|
|
|
if (is_used) {
|
|
data->used_blocks_already_done++;
|
|
}
|
|
if (data->tot_used_blocks) {
|
|
data->new_pct = data->used_blocks_already_done / data->one_pct;
|
|
} else {
|
|
data->new_pct = data->blocks_already_done / data->one_pct;
|
|
}
|
|
|
|
if (data->new_pct > data->cur_pct) {
|
|
char buf[8];
|
|
data->cur_pct = data->new_pct;
|
|
snprintf(buf, sizeof(buf), "%" PRId64, data->cur_pct);
|
|
property_set("vold.encrypt_progress", buf);
|
|
}
|
|
|
|
if (data->cur_pct >= 5) {
|
|
struct timespec time_now;
|
|
if (clock_gettime(CLOCK_MONOTONIC, &time_now)) {
|
|
SLOGW("Error getting time");
|
|
} else {
|
|
double elapsed_time = difftime(time_now.tv_sec, data->time_started);
|
|
off64_t remaining_blocks = data->tot_used_blocks
|
|
- data->used_blocks_already_done;
|
|
int remaining_time = (int)(elapsed_time * remaining_blocks
|
|
/ data->used_blocks_already_done);
|
|
|
|
// Change time only if not yet set, lower, or a lot higher for
|
|
// best user experience
|
|
if (data->remaining_time == -1
|
|
|| remaining_time < data->remaining_time
|
|
|| remaining_time > data->remaining_time + 60) {
|
|
char buf[8];
|
|
snprintf(buf, sizeof(buf), "%d", remaining_time);
|
|
property_set("vold.encrypt_time_remaining", buf);
|
|
data->remaining_time = remaining_time;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void log_progress(struct encryptGroupsData const* data, bool completed)
|
|
{
|
|
// Precondition - if completed data = 0 else data != 0
|
|
|
|
// Track progress so we can skip logging blocks
|
|
static off64_t offset = -1;
|
|
|
|
// Need to close existing 'Encrypting from' log?
|
|
if (completed || (offset != -1 && data->offset != offset)) {
|
|
SLOGI("Encrypted to sector %" PRId64,
|
|
offset / info.block_size * CRYPT_SECTOR_SIZE);
|
|
offset = -1;
|
|
}
|
|
|
|
// Need to start new 'Encrypting from' log?
|
|
if (!completed && offset != data->offset) {
|
|
SLOGI("Encrypting from sector %" PRId64,
|
|
data->offset / info.block_size * CRYPT_SECTOR_SIZE);
|
|
}
|
|
|
|
// Update offset
|
|
if (!completed) {
|
|
offset = data->offset + (off64_t)data->count * info.block_size;
|
|
}
|
|
}
|
|
|
|
static int flush_outstanding_data(struct encryptGroupsData* data)
|
|
{
|
|
if (data->count == 0) {
|
|
return 0;
|
|
}
|
|
|
|
SLOGV("Copying %d blocks at offset %" PRIx64, data->count, data->offset);
|
|
|
|
if (pread64(data->realfd, data->buffer,
|
|
info.block_size * data->count, data->offset)
|
|
<= 0) {
|
|
SLOGE("Error reading real_blkdev %s for inplace encrypt",
|
|
data->real_blkdev);
|
|
return -1;
|
|
}
|
|
|
|
if (pwrite64(data->cryptofd, data->buffer,
|
|
info.block_size * data->count, data->offset)
|
|
<= 0) {
|
|
SLOGE("Error writing crypto_blkdev %s for inplace encrypt",
|
|
data->crypto_blkdev);
|
|
return -1;
|
|
} else {
|
|
log_progress(data, false);
|
|
}
|
|
|
|
data->count = 0;
|
|
data->last_written_sector = (data->offset + data->count)
|
|
/ info.block_size * CRYPT_SECTOR_SIZE - 1;
|
|
return 0;
|
|
}
|
|
|
|
static int encrypt_groups(struct encryptGroupsData* data)
|
|
{
|
|
unsigned int i;
|
|
u8 *block_bitmap = 0;
|
|
unsigned int block;
|
|
off64_t ret;
|
|
int rc = -1;
|
|
|
|
data->buffer = malloc(info.block_size * BLOCKS_AT_A_TIME);
|
|
if (!data->buffer) {
|
|
SLOGE("Failed to allocate crypto buffer");
|
|
goto errout;
|
|
}
|
|
|
|
block_bitmap = malloc(info.block_size);
|
|
if (!block_bitmap) {
|
|
SLOGE("failed to allocate block bitmap");
|
|
goto errout;
|
|
}
|
|
|
|
for (i = 0; i < aux_info.groups; ++i) {
|
|
SLOGI("Encrypting group %d", i);
|
|
|
|
u32 first_block = aux_info.first_data_block + i * info.blocks_per_group;
|
|
u32 block_count = min(info.blocks_per_group,
|
|
aux_info.len_blocks - first_block);
|
|
|
|
off64_t offset = (u64)info.block_size
|
|
* aux_info.bg_desc[i].bg_block_bitmap;
|
|
|
|
ret = pread64(data->realfd, block_bitmap, info.block_size, offset);
|
|
if (ret != (int)info.block_size) {
|
|
SLOGE("failed to read all of block group bitmap %d", i);
|
|
goto errout;
|
|
}
|
|
|
|
offset = (u64)info.block_size * first_block;
|
|
|
|
data->count = 0;
|
|
|
|
for (block = 0; block < block_count; block++) {
|
|
int used = bitmap_get_bit(block_bitmap, block);
|
|
update_progress(data, used);
|
|
if (used) {
|
|
if (data->count == 0) {
|
|
data->offset = offset;
|
|
}
|
|
data->count++;
|
|
} else {
|
|
if (flush_outstanding_data(data)) {
|
|
goto errout;
|
|
}
|
|
}
|
|
|
|
offset += info.block_size;
|
|
|
|
/* Write data if we are aligned or buffer size reached */
|
|
if (offset % (info.block_size * BLOCKS_AT_A_TIME) == 0
|
|
|| data->count == BLOCKS_AT_A_TIME) {
|
|
if (flush_outstanding_data(data)) {
|
|
goto errout;
|
|
}
|
|
}
|
|
|
|
if (!is_battery_ok_to_continue()) {
|
|
SLOGE("Stopping encryption due to low battery");
|
|
rc = 0;
|
|
goto errout;
|
|
}
|
|
|
|
}
|
|
if (flush_outstanding_data(data)) {
|
|
goto errout;
|
|
}
|
|
}
|
|
|
|
data->completed = 1;
|
|
rc = 0;
|
|
|
|
errout:
|
|
log_progress(0, true);
|
|
free(data->buffer);
|
|
free(block_bitmap);
|
|
return rc;
|
|
}
|
|
|
|
static int cryptfs_enable_inplace_ext4(char *crypto_blkdev,
|
|
char *real_blkdev,
|
|
off64_t size,
|
|
off64_t *size_already_done,
|
|
off64_t tot_size,
|
|
off64_t previously_encrypted_upto)
|
|
{
|
|
u32 i;
|
|
struct encryptGroupsData data;
|
|
int rc; // Can't initialize without causing warning -Wclobbered
|
|
|
|
if (previously_encrypted_upto > *size_already_done) {
|
|
SLOGD("Not fast encrypting since resuming part way through");
|
|
return -1;
|
|
}
|
|
|
|
memset(&data, 0, sizeof(data));
|
|
data.real_blkdev = real_blkdev;
|
|
data.crypto_blkdev = crypto_blkdev;
|
|
|
|
if ( (data.realfd = open(real_blkdev, O_RDWR|O_CLOEXEC)) < 0) {
|
|
SLOGE("Error opening real_blkdev %s for inplace encrypt. err=%d(%s)\n",
|
|
real_blkdev, errno, strerror(errno));
|
|
rc = -1;
|
|
goto errout;
|
|
}
|
|
|
|
if ( (data.cryptofd = open(crypto_blkdev, O_WRONLY|O_CLOEXEC)) < 0) {
|
|
SLOGE("Error opening crypto_blkdev %s for ext4 inplace encrypt. err=%d(%s)\n",
|
|
crypto_blkdev, errno, strerror(errno));
|
|
rc = ENABLE_INPLACE_ERR_DEV;
|
|
goto errout;
|
|
}
|
|
|
|
if (setjmp(setjmp_env)) {
|
|
SLOGE("Reading ext4 extent caused an exception\n");
|
|
rc = -1;
|
|
goto errout;
|
|
}
|
|
|
|
if (read_ext(data.realfd, 0) != 0) {
|
|
SLOGE("Failed to read ext4 extent\n");
|
|
rc = -1;
|
|
goto errout;
|
|
}
|
|
|
|
data.numblocks = size / CRYPT_SECTORS_PER_BUFSIZE;
|
|
data.tot_numblocks = tot_size / CRYPT_SECTORS_PER_BUFSIZE;
|
|
data.blocks_already_done = *size_already_done / CRYPT_SECTORS_PER_BUFSIZE;
|
|
|
|
SLOGI("Encrypting ext4 filesystem in place...");
|
|
|
|
data.tot_used_blocks = data.numblocks;
|
|
for (i = 0; i < aux_info.groups; ++i) {
|
|
data.tot_used_blocks -= aux_info.bg_desc[i].bg_free_blocks_count;
|
|
}
|
|
|
|
data.one_pct = data.tot_used_blocks / 100;
|
|
data.cur_pct = 0;
|
|
|
|
struct timespec time_started = {0};
|
|
if (clock_gettime(CLOCK_MONOTONIC, &time_started)) {
|
|
SLOGW("Error getting time at start");
|
|
// Note - continue anyway - we'll run with 0
|
|
}
|
|
data.time_started = time_started.tv_sec;
|
|
data.remaining_time = -1;
|
|
|
|
rc = encrypt_groups(&data);
|
|
if (rc) {
|
|
SLOGE("Error encrypting groups");
|
|
goto errout;
|
|
}
|
|
|
|
*size_already_done += data.completed ? size : data.last_written_sector;
|
|
rc = 0;
|
|
|
|
errout:
|
|
close(data.realfd);
|
|
close(data.cryptofd);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void log_progress_f2fs(u64 block, bool completed)
|
|
{
|
|
// Precondition - if completed data = 0 else data != 0
|
|
|
|
// Track progress so we can skip logging blocks
|
|
static u64 last_block = (u64)-1;
|
|
|
|
// Need to close existing 'Encrypting from' log?
|
|
if (completed || (last_block != (u64)-1 && block != last_block + 1)) {
|
|
SLOGI("Encrypted to block %" PRId64, last_block);
|
|
last_block = -1;
|
|
}
|
|
|
|
// Need to start new 'Encrypting from' log?
|
|
if (!completed && (last_block == (u64)-1 || block != last_block + 1)) {
|
|
SLOGI("Encrypting from block %" PRId64, block);
|
|
}
|
|
|
|
// Update offset
|
|
if (!completed) {
|
|
last_block = block;
|
|
}
|
|
}
|
|
|
|
static int encrypt_one_block_f2fs(u64 pos, void *data)
|
|
{
|
|
struct encryptGroupsData *priv_dat = (struct encryptGroupsData *)data;
|
|
|
|
priv_dat->blocks_already_done = pos - 1;
|
|
update_progress(priv_dat, 1);
|
|
|
|
off64_t offset = pos * CRYPT_INPLACE_BUFSIZE;
|
|
|
|
if (pread64(priv_dat->realfd, priv_dat->buffer, CRYPT_INPLACE_BUFSIZE, offset) <= 0) {
|
|
SLOGE("Error reading real_blkdev %s for f2fs inplace encrypt", priv_dat->crypto_blkdev);
|
|
return -1;
|
|
}
|
|
|
|
if (pwrite64(priv_dat->cryptofd, priv_dat->buffer, CRYPT_INPLACE_BUFSIZE, offset) <= 0) {
|
|
SLOGE("Error writing crypto_blkdev %s for f2fs inplace encrypt", priv_dat->crypto_blkdev);
|
|
return -1;
|
|
} else {
|
|
log_progress_f2fs(pos, false);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cryptfs_enable_inplace_f2fs(char *crypto_blkdev,
|
|
char *real_blkdev,
|
|
off64_t size,
|
|
off64_t *size_already_done,
|
|
off64_t tot_size,
|
|
off64_t previously_encrypted_upto)
|
|
{
|
|
struct encryptGroupsData data;
|
|
struct f2fs_info *f2fs_info = NULL;
|
|
int rc = ENABLE_INPLACE_ERR_OTHER;
|
|
if (previously_encrypted_upto > *size_already_done) {
|
|
SLOGD("Not fast encrypting since resuming part way through");
|
|
return ENABLE_INPLACE_ERR_OTHER;
|
|
}
|
|
memset(&data, 0, sizeof(data));
|
|
data.real_blkdev = real_blkdev;
|
|
data.crypto_blkdev = crypto_blkdev;
|
|
data.realfd = -1;
|
|
data.cryptofd = -1;
|
|
if ( (data.realfd = open64(real_blkdev, O_RDWR|O_CLOEXEC)) < 0) {
|
|
SLOGE("Error opening real_blkdev %s for f2fs inplace encrypt\n",
|
|
real_blkdev);
|
|
goto errout;
|
|
}
|
|
if ( (data.cryptofd = open64(crypto_blkdev, O_WRONLY|O_CLOEXEC)) < 0) {
|
|
SLOGE("Error opening crypto_blkdev %s for f2fs inplace encrypt. err=%d(%s)\n",
|
|
crypto_blkdev, errno, strerror(errno));
|
|
rc = ENABLE_INPLACE_ERR_DEV;
|
|
goto errout;
|
|
}
|
|
|
|
f2fs_info = generate_f2fs_info(data.realfd);
|
|
if (!f2fs_info)
|
|
goto errout;
|
|
|
|
data.numblocks = size / CRYPT_SECTORS_PER_BUFSIZE;
|
|
data.tot_numblocks = tot_size / CRYPT_SECTORS_PER_BUFSIZE;
|
|
data.blocks_already_done = *size_already_done / CRYPT_SECTORS_PER_BUFSIZE;
|
|
|
|
data.tot_used_blocks = get_num_blocks_used(f2fs_info);
|
|
|
|
data.one_pct = data.tot_used_blocks / 100;
|
|
data.cur_pct = 0;
|
|
data.time_started = time(NULL);
|
|
data.remaining_time = -1;
|
|
|
|
data.buffer = malloc(f2fs_info->block_size);
|
|
if (!data.buffer) {
|
|
SLOGE("Failed to allocate crypto buffer");
|
|
goto errout;
|
|
}
|
|
|
|
data.count = 0;
|
|
|
|
/* Currently, this either runs to completion, or hits a nonrecoverable error */
|
|
rc = run_on_used_blocks(data.blocks_already_done, f2fs_info, &encrypt_one_block_f2fs, &data);
|
|
|
|
if (rc) {
|
|
SLOGE("Error in running over f2fs blocks");
|
|
rc = ENABLE_INPLACE_ERR_OTHER;
|
|
goto errout;
|
|
}
|
|
|
|
*size_already_done += size;
|
|
rc = 0;
|
|
|
|
errout:
|
|
if (rc)
|
|
SLOGE("Failed to encrypt f2fs filesystem on %s", real_blkdev);
|
|
|
|
log_progress_f2fs(0, true);
|
|
free(f2fs_info);
|
|
free(data.buffer);
|
|
close(data.realfd);
|
|
close(data.cryptofd);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int cryptfs_enable_inplace_full(char *crypto_blkdev, char *real_blkdev,
|
|
off64_t size, off64_t *size_already_done,
|
|
off64_t tot_size,
|
|
off64_t previously_encrypted_upto)
|
|
{
|
|
int realfd, cryptofd;
|
|
char *buf[CRYPT_INPLACE_BUFSIZE];
|
|
int rc = ENABLE_INPLACE_ERR_OTHER;
|
|
off64_t numblocks, i, remainder;
|
|
off64_t one_pct, cur_pct, new_pct;
|
|
off64_t blocks_already_done, tot_numblocks;
|
|
|
|
if ( (realfd = open(real_blkdev, O_RDONLY|O_CLOEXEC)) < 0) {
|
|
SLOGE("Error opening real_blkdev %s for inplace encrypt\n", real_blkdev);
|
|
return ENABLE_INPLACE_ERR_OTHER;
|
|
}
|
|
|
|
if ( (cryptofd = open(crypto_blkdev, O_WRONLY|O_CLOEXEC)) < 0) {
|
|
SLOGE("Error opening crypto_blkdev %s for inplace encrypt. err=%d(%s)\n",
|
|
crypto_blkdev, errno, strerror(errno));
|
|
close(realfd);
|
|
return ENABLE_INPLACE_ERR_DEV;
|
|
}
|
|
|
|
/* This is pretty much a simple loop of reading 4K, and writing 4K.
|
|
* The size passed in is the number of 512 byte sectors in the filesystem.
|
|
* So compute the number of whole 4K blocks we should read/write,
|
|
* and the remainder.
|
|
*/
|
|
numblocks = size / CRYPT_SECTORS_PER_BUFSIZE;
|
|
remainder = size % CRYPT_SECTORS_PER_BUFSIZE;
|
|
tot_numblocks = tot_size / CRYPT_SECTORS_PER_BUFSIZE;
|
|
blocks_already_done = *size_already_done / CRYPT_SECTORS_PER_BUFSIZE;
|
|
|
|
SLOGE("Encrypting filesystem in place...");
|
|
|
|
i = previously_encrypted_upto + 1 - *size_already_done;
|
|
|
|
if (lseek64(realfd, i * CRYPT_SECTOR_SIZE, SEEK_SET) < 0) {
|
|
SLOGE("Cannot seek to previously encrypted point on %s", real_blkdev);
|
|
goto errout;
|
|
}
|
|
|
|
if (lseek64(cryptofd, i * CRYPT_SECTOR_SIZE, SEEK_SET) < 0) {
|
|
SLOGE("Cannot seek to previously encrypted point on %s", crypto_blkdev);
|
|
goto errout;
|
|
}
|
|
|
|
for (;i < size && i % CRYPT_SECTORS_PER_BUFSIZE != 0; ++i) {
|
|
if (unix_read(realfd, buf, CRYPT_SECTOR_SIZE) <= 0) {
|
|
SLOGE("Error reading initial sectors from real_blkdev %s for "
|
|
"inplace encrypt\n", crypto_blkdev);
|
|
goto errout;
|
|
}
|
|
if (unix_write(cryptofd, buf, CRYPT_SECTOR_SIZE) <= 0) {
|
|
SLOGE("Error writing initial sectors to crypto_blkdev %s for "
|
|
"inplace encrypt\n", crypto_blkdev);
|
|
goto errout;
|
|
} else {
|
|
SLOGI("Encrypted 1 block at %" PRId64, i);
|
|
}
|
|
}
|
|
|
|
one_pct = tot_numblocks / 100;
|
|
cur_pct = 0;
|
|
/* process the majority of the filesystem in blocks */
|
|
for (i/=CRYPT_SECTORS_PER_BUFSIZE; i<numblocks; i++) {
|
|
new_pct = (i + blocks_already_done) / one_pct;
|
|
if (new_pct > cur_pct) {
|
|
char buf[8];
|
|
|
|
cur_pct = new_pct;
|
|
snprintf(buf, sizeof(buf), "%" PRId64, cur_pct);
|
|
property_set("vold.encrypt_progress", buf);
|
|
}
|
|
if (unix_read(realfd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) {
|
|
SLOGE("Error reading real_blkdev %s for inplace encrypt", crypto_blkdev);
|
|
goto errout;
|
|
}
|
|
if (unix_write(cryptofd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) {
|
|
SLOGE("Error writing crypto_blkdev %s for inplace encrypt", crypto_blkdev);
|
|
goto errout;
|
|
} else {
|
|
SLOGD("Encrypted %d block at %" PRId64,
|
|
CRYPT_SECTORS_PER_BUFSIZE,
|
|
i * CRYPT_SECTORS_PER_BUFSIZE);
|
|
}
|
|
|
|
if (!is_battery_ok_to_continue()) {
|
|
SLOGE("Stopping encryption due to low battery");
|
|
*size_already_done += (i + 1) * CRYPT_SECTORS_PER_BUFSIZE - 1;
|
|
rc = 0;
|
|
goto errout;
|
|
}
|
|
}
|
|
|
|
/* Do any remaining sectors */
|
|
for (i=0; i<remainder; i++) {
|
|
if (unix_read(realfd, buf, CRYPT_SECTOR_SIZE) <= 0) {
|
|
SLOGE("Error reading final sectors from real_blkdev %s for inplace encrypt", crypto_blkdev);
|
|
goto errout;
|
|
}
|
|
if (unix_write(cryptofd, buf, CRYPT_SECTOR_SIZE) <= 0) {
|
|
SLOGE("Error writing final sectors to crypto_blkdev %s for inplace encrypt", crypto_blkdev);
|
|
goto errout;
|
|
} else {
|
|
SLOGI("Encrypted 1 block at next location");
|
|
}
|
|
}
|
|
|
|
*size_already_done += size;
|
|
rc = 0;
|
|
|
|
errout:
|
|
close(realfd);
|
|
close(cryptofd);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* returns on of the ENABLE_INPLACE_* return codes */
|
|
static int cryptfs_enable_inplace(char *crypto_blkdev, char *real_blkdev,
|
|
off64_t size, off64_t *size_already_done,
|
|
off64_t tot_size,
|
|
off64_t previously_encrypted_upto)
|
|
{
|
|
int rc_ext4, rc_f2fs, rc_full;
|
|
if (previously_encrypted_upto) {
|
|
SLOGD("Continuing encryption from %" PRId64, previously_encrypted_upto);
|
|
}
|
|
|
|
if (*size_already_done + size < previously_encrypted_upto) {
|
|
*size_already_done += size;
|
|
return 0;
|
|
}
|
|
|
|
/* TODO: identify filesystem type.
|
|
* As is, cryptfs_enable_inplace_ext4 will fail on an f2fs partition, and
|
|
* then we will drop down to cryptfs_enable_inplace_f2fs.
|
|
* */
|
|
if ((rc_ext4 = cryptfs_enable_inplace_ext4(crypto_blkdev, real_blkdev,
|
|
size, size_already_done,
|
|
tot_size, previously_encrypted_upto)) == 0) {
|
|
return 0;
|
|
}
|
|
SLOGD("cryptfs_enable_inplace_ext4()=%d\n", rc_ext4);
|
|
|
|
if ((rc_f2fs = cryptfs_enable_inplace_f2fs(crypto_blkdev, real_blkdev,
|
|
size, size_already_done,
|
|
tot_size, previously_encrypted_upto)) == 0) {
|
|
return 0;
|
|
}
|
|
SLOGD("cryptfs_enable_inplace_f2fs()=%d\n", rc_f2fs);
|
|
|
|
rc_full = cryptfs_enable_inplace_full(crypto_blkdev, real_blkdev,
|
|
size, size_already_done, tot_size,
|
|
previously_encrypted_upto);
|
|
SLOGD("cryptfs_enable_inplace_full()=%d\n", rc_full);
|
|
|
|
/* Hack for b/17898962, the following is the symptom... */
|
|
if (rc_ext4 == ENABLE_INPLACE_ERR_DEV
|
|
&& rc_f2fs == ENABLE_INPLACE_ERR_DEV
|
|
&& rc_full == ENABLE_INPLACE_ERR_DEV) {
|
|
return ENABLE_INPLACE_ERR_DEV;
|
|
}
|
|
return rc_full;
|
|
}
|
|
|
|
#define CRYPTO_ENABLE_WIPE 1
|
|
#define CRYPTO_ENABLE_INPLACE 2
|
|
|
|
#define FRAMEWORK_BOOT_WAIT 60
|
|
|
|
static int cryptfs_SHA256_fileblock(const char* filename, __le8* buf)
|
|
{
|
|
int fd = open(filename, O_RDONLY|O_CLOEXEC);
|
|
if (fd == -1) {
|
|
SLOGE("Error opening file %s", filename);
|
|
return -1;
|
|
}
|
|
|
|
char block[CRYPT_INPLACE_BUFSIZE];
|
|
memset(block, 0, sizeof(block));
|
|
if (unix_read(fd, block, sizeof(block)) < 0) {
|
|
SLOGE("Error reading file %s", filename);
|
|
close(fd);
|
|
return -1;
|
|
}
|
|
|
|
close(fd);
|
|
|
|
SHA256_CTX c;
|
|
SHA256_Init(&c);
|
|
SHA256_Update(&c, block, sizeof(block));
|
|
SHA256_Final(buf, &c);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_fs_type(struct fstab_rec *rec)
|
|
{
|
|
if (!strcmp(rec->fs_type, "ext4")) {
|
|
return EXT4_FS;
|
|
} else if (!strcmp(rec->fs_type, "f2fs")) {
|
|
return F2FS_FS;
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
static int cryptfs_enable_all_volumes(struct crypt_mnt_ftr *crypt_ftr, int how,
|
|
char *crypto_blkdev, char *real_blkdev,
|
|
int previously_encrypted_upto)
|
|
{
|
|
off64_t cur_encryption_done=0, tot_encryption_size=0;
|
|
int rc = -1;
|
|
|
|
if (!is_battery_ok_to_start()) {
|
|
SLOGW("Not starting encryption due to low battery");
|
|
return 0;
|
|
}
|
|
|
|
/* The size of the userdata partition, and add in the vold volumes below */
|
|
tot_encryption_size = crypt_ftr->fs_size;
|
|
|
|
if (how == CRYPTO_ENABLE_WIPE) {
|
|
struct fstab_rec* rec = fs_mgr_get_entry_for_mount_point(fstab, DATA_MNT_POINT);
|
|
int fs_type = get_fs_type(rec);
|
|
if (fs_type < 0) {
|
|
SLOGE("cryptfs_enable: unsupported fs type %s\n", rec->fs_type);
|
|
return -1;
|
|
}
|
|
rc = cryptfs_enable_wipe(crypto_blkdev, crypt_ftr->fs_size, fs_type);
|
|
} else if (how == CRYPTO_ENABLE_INPLACE) {
|
|
rc = cryptfs_enable_inplace(crypto_blkdev, real_blkdev,
|
|
crypt_ftr->fs_size, &cur_encryption_done,
|
|
tot_encryption_size,
|
|
previously_encrypted_upto);
|
|
|
|
if (rc == ENABLE_INPLACE_ERR_DEV) {
|
|
/* Hack for b/17898962 */
|
|
SLOGE("cryptfs_enable: crypto block dev failure. Must reboot...\n");
|
|
cryptfs_reboot(reboot);
|
|
}
|
|
|
|
if (!rc) {
|
|
crypt_ftr->encrypted_upto = cur_encryption_done;
|
|
}
|
|
|
|
if (!rc && crypt_ftr->encrypted_upto == crypt_ftr->fs_size) {
|
|
/* The inplace routine never actually sets the progress to 100% due
|
|
* to the round down nature of integer division, so set it here */
|
|
property_set("vold.encrypt_progress", "100");
|
|
}
|
|
} else {
|
|
/* Shouldn't happen */
|
|
SLOGE("cryptfs_enable: internal error, unknown option\n");
|
|
rc = -1;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
int cryptfs_enable_internal(char *howarg, int crypt_type, char *passwd,
|
|
int allow_reboot)
|
|
{
|
|
int how = 0;
|
|
char crypto_blkdev[MAXPATHLEN], real_blkdev[MAXPATHLEN];
|
|
unsigned char decrypted_master_key[KEY_LEN_BYTES];
|
|
int rc=-1, i;
|
|
struct crypt_mnt_ftr crypt_ftr;
|
|
struct crypt_persist_data *pdata;
|
|
char encrypted_state[PROPERTY_VALUE_MAX];
|
|
char lockid[32] = { 0 };
|
|
char key_loc[PROPERTY_VALUE_MAX];
|
|
int num_vols;
|
|
off64_t previously_encrypted_upto = 0;
|
|
|
|
if (!strcmp(howarg, "wipe")) {
|
|
how = CRYPTO_ENABLE_WIPE;
|
|
} else if (! strcmp(howarg, "inplace")) {
|
|
how = CRYPTO_ENABLE_INPLACE;
|
|
} else {
|
|
/* Shouldn't happen, as CommandListener vets the args */
|
|
goto error_unencrypted;
|
|
}
|
|
|
|
/* See if an encryption was underway and interrupted */
|
|
if (how == CRYPTO_ENABLE_INPLACE
|
|
&& get_crypt_ftr_and_key(&crypt_ftr) == 0
|
|
&& (crypt_ftr.flags & CRYPT_ENCRYPTION_IN_PROGRESS)) {
|
|
previously_encrypted_upto = crypt_ftr.encrypted_upto;
|
|
crypt_ftr.encrypted_upto = 0;
|
|
crypt_ftr.flags &= ~CRYPT_ENCRYPTION_IN_PROGRESS;
|
|
|
|
/* At this point, we are in an inconsistent state. Until we successfully
|
|
complete encryption, a reboot will leave us broken. So mark the
|
|
encryption failed in case that happens.
|
|
On successfully completing encryption, remove this flag */
|
|
crypt_ftr.flags |= CRYPT_INCONSISTENT_STATE;
|
|
|
|
put_crypt_ftr_and_key(&crypt_ftr);
|
|
}
|
|
|
|
property_get("ro.crypto.state", encrypted_state, "");
|
|
if (!strcmp(encrypted_state, "encrypted") && !previously_encrypted_upto) {
|
|
SLOGE("Device is already running encrypted, aborting");
|
|
goto error_unencrypted;
|
|
}
|
|
|
|
// TODO refactor fs_mgr_get_crypt_info to get both in one call
|
|
fs_mgr_get_crypt_info(fstab, key_loc, 0, sizeof(key_loc));
|
|
fs_mgr_get_crypt_info(fstab, 0, real_blkdev, sizeof(real_blkdev));
|
|
|
|
/* Get the size of the real block device */
|
|
int fd = open(real_blkdev, O_RDONLY|O_CLOEXEC);
|
|
if (fd == -1) {
|
|
SLOGE("Cannot open block device %s\n", real_blkdev);
|
|
goto error_unencrypted;
|
|
}
|
|
unsigned long nr_sec;
|
|
get_blkdev_size(fd, &nr_sec);
|
|
if (nr_sec == 0) {
|
|
SLOGE("Cannot get size of block device %s\n", real_blkdev);
|
|
goto error_unencrypted;
|
|
}
|
|
close(fd);
|
|
|
|
/* If doing inplace encryption, make sure the orig fs doesn't include the crypto footer */
|
|
if ((how == CRYPTO_ENABLE_INPLACE) && (!strcmp(key_loc, KEY_IN_FOOTER))) {
|
|
unsigned int fs_size_sec, max_fs_size_sec;
|
|
fs_size_sec = get_fs_size(real_blkdev);
|
|
if (fs_size_sec == 0)
|
|
fs_size_sec = get_f2fs_filesystem_size_sec(real_blkdev);
|
|
|
|
max_fs_size_sec = nr_sec - (CRYPT_FOOTER_OFFSET / CRYPT_SECTOR_SIZE);
|
|
|
|
if (fs_size_sec > max_fs_size_sec) {
|
|
SLOGE("Orig filesystem overlaps crypto footer region. Cannot encrypt in place.");
|
|
goto error_unencrypted;
|
|
}
|
|
}
|
|
|
|
/* Get a wakelock as this may take a while, and we don't want the
|
|
* device to sleep on us. We'll grab a partial wakelock, and if the UI
|
|
* wants to keep the screen on, it can grab a full wakelock.
|
|
*/
|
|
snprintf(lockid, sizeof(lockid), "enablecrypto%d", (int) getpid());
|
|
acquire_wake_lock(PARTIAL_WAKE_LOCK, lockid);
|
|
|
|
/* The init files are setup to stop the class main and late start when
|
|
* vold sets trigger_shutdown_framework.
|
|
*/
|
|
property_set("vold.decrypt", "trigger_shutdown_framework");
|
|
SLOGD("Just asked init to shut down class main\n");
|
|
|
|
/* Ask vold to unmount all devices that it manages */
|
|
if (vold_unmountAll()) {
|
|
SLOGE("Failed to unmount all vold managed devices");
|
|
}
|
|
|
|
/* Now unmount the /data partition. */
|
|
if (wait_and_unmount(DATA_MNT_POINT, false)) {
|
|
if (allow_reboot) {
|
|
goto error_shutting_down;
|
|
} else {
|
|
goto error_unencrypted;
|
|
}
|
|
}
|
|
|
|
/* Do extra work for a better UX when doing the long inplace encryption */
|
|
if (how == CRYPTO_ENABLE_INPLACE) {
|
|
/* Now that /data is unmounted, we need to mount a tmpfs
|
|
* /data, set a property saying we're doing inplace encryption,
|
|
* and restart the framework.
|
|
*/
|
|
if (fs_mgr_do_tmpfs_mount(DATA_MNT_POINT)) {
|
|
goto error_shutting_down;
|
|
}
|
|
/* Tells the framework that inplace encryption is starting */
|
|
property_set("vold.encrypt_progress", "0");
|
|
|
|
/* restart the framework. */
|
|
/* Create necessary paths on /data */
|
|
if (prep_data_fs()) {
|
|
goto error_shutting_down;
|
|
}
|
|
|
|
/* Ugh, shutting down the framework is not synchronous, so until it
|
|
* can be fixed, this horrible hack will wait a moment for it all to
|
|
* shut down before proceeding. Without it, some devices cannot
|
|
* restart the graphics services.
|
|
*/
|
|
sleep(2);
|
|
}
|
|
|
|
/* Start the actual work of making an encrypted filesystem */
|
|
/* Initialize a crypt_mnt_ftr for the partition */
|
|
if (previously_encrypted_upto == 0) {
|
|
if (cryptfs_init_crypt_mnt_ftr(&crypt_ftr)) {
|
|
goto error_shutting_down;
|
|
}
|
|
|
|
if (!strcmp(key_loc, KEY_IN_FOOTER)) {
|
|
crypt_ftr.fs_size = nr_sec
|
|
- (CRYPT_FOOTER_OFFSET / CRYPT_SECTOR_SIZE);
|
|
} else {
|
|
crypt_ftr.fs_size = nr_sec;
|
|
}
|
|
/* At this point, we are in an inconsistent state. Until we successfully
|
|
complete encryption, a reboot will leave us broken. So mark the
|
|
encryption failed in case that happens.
|
|
On successfully completing encryption, remove this flag */
|
|
crypt_ftr.flags |= CRYPT_INCONSISTENT_STATE;
|
|
crypt_ftr.crypt_type = crypt_type;
|
|
#ifndef CONFIG_HW_DISK_ENCRYPTION
|
|
strlcpy((char *)crypt_ftr.crypto_type_name, "aes-cbc-essiv:sha256", MAX_CRYPTO_TYPE_NAME_LEN);
|
|
#else
|
|
strlcpy((char *)crypt_ftr.crypto_type_name, "aes-xts", MAX_CRYPTO_TYPE_NAME_LEN);
|
|
|
|
rc = clear_hw_device_encryption_key();
|
|
if (!rc) {
|
|
SLOGE("Error clearing device encryption hardware key. rc = %d", rc);
|
|
}
|
|
|
|
rc = set_hw_device_encryption_key(passwd,
|
|
(char*) crypt_ftr.crypto_type_name);
|
|
if (!rc) {
|
|
SLOGE("Error initializing device encryption hardware key. rc = %d", rc);
|
|
goto error_shutting_down;
|
|
}
|
|
#endif
|
|
|
|
/* Make an encrypted master key */
|
|
if (create_encrypted_random_key(passwd, crypt_ftr.master_key, crypt_ftr.salt, &crypt_ftr)) {
|
|
SLOGE("Cannot create encrypted master key\n");
|
|
goto error_shutting_down;
|
|
}
|
|
|
|
/* Write the key to the end of the partition */
|
|
put_crypt_ftr_and_key(&crypt_ftr);
|
|
|
|
/* If any persistent data has been remembered, save it.
|
|
* If none, create a valid empty table and save that.
|
|
*/
|
|
if (!persist_data) {
|
|
pdata = malloc(CRYPT_PERSIST_DATA_SIZE);
|
|
if (pdata) {
|
|
init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE);
|
|
persist_data = pdata;
|
|
}
|
|
}
|
|
if (persist_data) {
|
|
save_persistent_data();
|
|
}
|
|
}
|
|
|
|
if (how == CRYPTO_ENABLE_INPLACE) {
|
|
/* startup service classes main and late_start */
|
|
property_set("vold.decrypt", "trigger_restart_min_framework");
|
|
SLOGD("Just triggered restart_min_framework\n");
|
|
|
|
/* OK, the framework is restarted and will soon be showing a
|
|
* progress bar. Time to setup an encrypted mapping, and
|
|
* either write a new filesystem, or encrypt in place updating
|
|
* the progress bar as we work.
|
|
*/
|
|
}
|
|
|
|
decrypt_master_key(passwd, decrypted_master_key, &crypt_ftr, 0, 0);
|
|
create_crypto_blk_dev(&crypt_ftr, decrypted_master_key, real_blkdev, crypto_blkdev,
|
|
"userdata");
|
|
|
|
/* If we are continuing, check checksums match */
|
|
rc = 0;
|
|
if (previously_encrypted_upto) {
|
|
__le8 hash_first_block[SHA256_DIGEST_LENGTH];
|
|
rc = cryptfs_SHA256_fileblock(crypto_blkdev, hash_first_block);
|
|
|
|
if (!rc && memcmp(hash_first_block, crypt_ftr.hash_first_block,
|
|
sizeof(hash_first_block)) != 0) {
|
|
SLOGE("Checksums do not match - trigger wipe");
|
|
rc = -1;
|
|
}
|
|
}
|
|
|
|
if (!rc) {
|
|
rc = cryptfs_enable_all_volumes(&crypt_ftr, how,
|
|
crypto_blkdev, real_blkdev,
|
|
previously_encrypted_upto);
|
|
}
|
|
|
|
/* Calculate checksum if we are not finished */
|
|
if (!rc && how == CRYPTO_ENABLE_INPLACE
|
|
&& crypt_ftr.encrypted_upto != crypt_ftr.fs_size) {
|
|
rc = cryptfs_SHA256_fileblock(crypto_blkdev,
|
|
crypt_ftr.hash_first_block);
|
|
if (rc) {
|
|
SLOGE("Error calculating checksum for continuing encryption");
|
|
rc = -1;
|
|
}
|
|
}
|
|
|
|
/* Undo the dm-crypt mapping whether we succeed or not */
|
|
delete_crypto_blk_dev("userdata");
|
|
|
|
if (! rc) {
|
|
/* Success */
|
|
crypt_ftr.flags &= ~CRYPT_INCONSISTENT_STATE;
|
|
|
|
if (how == CRYPTO_ENABLE_INPLACE
|
|
&& crypt_ftr.encrypted_upto != crypt_ftr.fs_size) {
|
|
SLOGD("Encrypted up to sector %lld - will continue after reboot",
|
|
crypt_ftr.encrypted_upto);
|
|
crypt_ftr.flags |= CRYPT_ENCRYPTION_IN_PROGRESS;
|
|
}
|
|
|
|
put_crypt_ftr_and_key(&crypt_ftr);
|
|
|
|
if (how == CRYPTO_ENABLE_WIPE
|
|
|| crypt_ftr.encrypted_upto == crypt_ftr.fs_size) {
|
|
char value[PROPERTY_VALUE_MAX];
|
|
property_get("ro.crypto.state", value, "");
|
|
if (!strcmp(value, "")) {
|
|
/* default encryption - continue first boot sequence */
|
|
property_set("ro.crypto.state", "encrypted");
|
|
release_wake_lock(lockid);
|
|
cryptfs_check_passwd(DEFAULT_PASSWORD);
|
|
cryptfs_restart_internal(1);
|
|
return 0;
|
|
} else {
|
|
sleep(2); /* Give the UI a chance to show 100% progress */
|
|
cryptfs_reboot(reboot);
|
|
}
|
|
} else {
|
|
sleep(2); /* Partially encrypted, ensure writes flushed to ssd */
|
|
cryptfs_reboot(shutdown);
|
|
}
|
|
} else {
|
|
char value[PROPERTY_VALUE_MAX];
|
|
|
|
property_get("ro.vold.wipe_on_crypt_fail", value, "0");
|
|
if (!strcmp(value, "1")) {
|
|
/* wipe data if encryption failed */
|
|
SLOGE("encryption failed - rebooting into recovery to wipe data\n");
|
|
mkdir("/cache/recovery", 0700);
|
|
int fd = open("/cache/recovery/command", O_RDWR|O_CREAT|O_TRUNC|O_CLOEXEC, 0600);
|
|
if (fd >= 0) {
|
|
write(fd, "--wipe_data\n", strlen("--wipe_data\n") + 1);
|
|
write(fd, "--reason=cryptfs_enable_internal\n", strlen("--reason=cryptfs_enable_internal\n") + 1);
|
|
close(fd);
|
|
} else {
|
|
SLOGE("could not open /cache/recovery/command\n");
|
|
}
|
|
cryptfs_reboot(recovery);
|
|
} else {
|
|
/* set property to trigger dialog */
|
|
property_set("vold.encrypt_progress", "error_partially_encrypted");
|
|
release_wake_lock(lockid);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/* hrm, the encrypt step claims success, but the reboot failed.
|
|
* This should not happen.
|
|
* Set the property and return. Hope the framework can deal with it.
|
|
*/
|
|
property_set("vold.encrypt_progress", "error_reboot_failed");
|
|
release_wake_lock(lockid);
|
|
return rc;
|
|
|
|
error_unencrypted:
|
|
property_set("vold.encrypt_progress", "error_not_encrypted");
|
|
if (lockid[0]) {
|
|
release_wake_lock(lockid);
|
|
}
|
|
return -1;
|
|
|
|
error_shutting_down:
|
|
/* we failed, and have not encrypted anthing, so the users's data is still intact,
|
|
* but the framework is stopped and not restarted to show the error, so it's up to
|
|
* vold to restart the system.
|
|
*/
|
|
SLOGE("Error enabling encryption after framework is shutdown, no data changed, restarting system");
|
|
cryptfs_reboot(reboot);
|
|
|
|
/* shouldn't get here */
|
|
property_set("vold.encrypt_progress", "error_shutting_down");
|
|
if (lockid[0]) {
|
|
release_wake_lock(lockid);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
int cryptfs_enable(char *howarg, int type, char *passwd, int allow_reboot)
|
|
{
|
|
return cryptfs_enable_internal(howarg, type, passwd, allow_reboot);
|
|
}
|
|
|
|
int cryptfs_enable_default(char *howarg, int allow_reboot)
|
|
{
|
|
return cryptfs_enable_internal(howarg, CRYPT_TYPE_DEFAULT,
|
|
DEFAULT_PASSWORD, allow_reboot);
|
|
}
|
|
|
|
int cryptfs_changepw(int crypt_type, const char *newpw)
|
|
{
|
|
if (e4crypt_crypto_complete(DATA_MNT_POINT) == 0) {
|
|
return e4crypt_change_password(DATA_MNT_POINT, crypt_type, newpw);
|
|
}
|
|
|
|
struct crypt_mnt_ftr crypt_ftr;
|
|
int rc;
|
|
|
|
/* This is only allowed after we've successfully decrypted the master key */
|
|
if (!master_key_saved) {
|
|
SLOGE("Key not saved, aborting");
|
|
return -1;
|
|
}
|
|
|
|
if (crypt_type < 0 || crypt_type > CRYPT_TYPE_MAX_TYPE) {
|
|
SLOGE("Invalid crypt_type %d", crypt_type);
|
|
return -1;
|
|
}
|
|
|
|
/* get key */
|
|
if (get_crypt_ftr_and_key(&crypt_ftr)) {
|
|
SLOGE("Error getting crypt footer and key");
|
|
return -1;
|
|
}
|
|
|
|
crypt_ftr.crypt_type = crypt_type;
|
|
|
|
rc = encrypt_master_key(crypt_type == CRYPT_TYPE_DEFAULT ? DEFAULT_PASSWORD
|
|
: newpw,
|
|
crypt_ftr.salt,
|
|
saved_master_key,
|
|
crypt_ftr.master_key,
|
|
&crypt_ftr);
|
|
if (rc) {
|
|
SLOGE("Encrypt master key failed: %d", rc);
|
|
return -1;
|
|
}
|
|
/* save the key */
|
|
put_crypt_ftr_and_key(&crypt_ftr);
|
|
|
|
#ifdef CONFIG_HW_DISK_ENCRYPTION
|
|
if (!strcmp((char *)crypt_ftr.crypto_type_name, "aes-xts")) {
|
|
if (crypt_type == CRYPT_TYPE_DEFAULT) {
|
|
int rc = update_hw_device_encryption_key(DEFAULT_PASSWORD, (char*) crypt_ftr.crypto_type_name);
|
|
SLOGD("Update hardware encryption key to default for crypt_type: %d. rc = %d", crypt_type, rc);
|
|
if (!rc)
|
|
return -1;
|
|
} else {
|
|
int rc = update_hw_device_encryption_key(newpw, (char*) crypt_ftr.crypto_type_name);
|
|
SLOGD("Update hardware encryption key for crypt_type: %d. rc = %d", crypt_type, rc);
|
|
if (!rc)
|
|
return -1;
|
|
}
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int persist_get_max_entries(int encrypted) {
|
|
struct crypt_mnt_ftr crypt_ftr;
|
|
unsigned int dsize;
|
|
unsigned int max_persistent_entries;
|
|
|
|
/* If encrypted, use the values from the crypt_ftr, otherwise
|
|
* use the values for the current spec.
|
|
*/
|
|
if (encrypted) {
|
|
if (get_crypt_ftr_and_key(&crypt_ftr)) {
|
|
return -1;
|
|
}
|
|
dsize = crypt_ftr.persist_data_size;
|
|
} else {
|
|
dsize = CRYPT_PERSIST_DATA_SIZE;
|
|
}
|
|
|
|
max_persistent_entries = (dsize - sizeof(struct crypt_persist_data)) /
|
|
sizeof(struct crypt_persist_entry);
|
|
|
|
return max_persistent_entries;
|
|
}
|
|
|
|
static int persist_get_key(const char *fieldname, char *value)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (persist_data == NULL) {
|
|
return -1;
|
|
}
|
|
for (i = 0; i < persist_data->persist_valid_entries; i++) {
|
|
if (!strncmp(persist_data->persist_entry[i].key, fieldname, PROPERTY_KEY_MAX)) {
|
|
/* We found it! */
|
|
strlcpy(value, persist_data->persist_entry[i].val, PROPERTY_VALUE_MAX);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int persist_set_key(const char *fieldname, const char *value, int encrypted)
|
|
{
|
|
unsigned int i;
|
|
unsigned int num;
|
|
unsigned int max_persistent_entries;
|
|
|
|
if (persist_data == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
max_persistent_entries = persist_get_max_entries(encrypted);
|
|
|
|
num = persist_data->persist_valid_entries;
|
|
|
|
for (i = 0; i < num; i++) {
|
|
if (!strncmp(persist_data->persist_entry[i].key, fieldname, PROPERTY_KEY_MAX)) {
|
|
/* We found an existing entry, update it! */
|
|
memset(persist_data->persist_entry[i].val, 0, PROPERTY_VALUE_MAX);
|
|
strlcpy(persist_data->persist_entry[i].val, value, PROPERTY_VALUE_MAX);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* We didn't find it, add it to the end, if there is room */
|
|
if (persist_data->persist_valid_entries < max_persistent_entries) {
|
|
memset(&persist_data->persist_entry[num], 0, sizeof(struct crypt_persist_entry));
|
|
strlcpy(persist_data->persist_entry[num].key, fieldname, PROPERTY_KEY_MAX);
|
|
strlcpy(persist_data->persist_entry[num].val, value, PROPERTY_VALUE_MAX);
|
|
persist_data->persist_valid_entries++;
|
|
return 0;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* Test if key is part of the multi-entry (field, index) sequence. Return non-zero if key is in the
|
|
* sequence and its index is greater than or equal to index. Return 0 otherwise.
|
|
*/
|
|
static int match_multi_entry(const char *key, const char *field, unsigned index) {
|
|
unsigned int field_len;
|
|
unsigned int key_index;
|
|
field_len = strlen(field);
|
|
|
|
if (index == 0) {
|
|
// The first key in a multi-entry field is just the filedname itself.
|
|
if (!strcmp(key, field)) {
|
|
return 1;
|
|
}
|
|
}
|
|
// Match key against "%s_%d" % (field, index)
|
|
if (strlen(key) < field_len + 1 + 1) {
|
|
// Need at least a '_' and a digit.
|
|
return 0;
|
|
}
|
|
if (strncmp(key, field, field_len)) {
|
|
// If the key does not begin with field, it's not a match.
|
|
return 0;
|
|
}
|
|
if (1 != sscanf(&key[field_len],"_%d", &key_index)) {
|
|
return 0;
|
|
}
|
|
return key_index >= index;
|
|
}
|
|
|
|
/*
|
|
* Delete entry/entries from persist_data. If the entries are part of a multi-segment field, all
|
|
* remaining entries starting from index will be deleted.
|
|
* returns PERSIST_DEL_KEY_OK if deletion succeeds,
|
|
* PERSIST_DEL_KEY_ERROR_NO_FIELD if the field does not exist,
|
|
* and PERSIST_DEL_KEY_ERROR_OTHER if error occurs.
|
|
*
|
|
*/
|
|
static int persist_del_keys(const char *fieldname, unsigned index)
|
|
{
|
|
unsigned int i;
|
|
unsigned int j;
|
|
unsigned int num;
|
|
|
|
if (persist_data == NULL) {
|
|
return PERSIST_DEL_KEY_ERROR_OTHER;
|
|
}
|
|
|
|
num = persist_data->persist_valid_entries;
|
|
|
|
j = 0; // points to the end of non-deleted entries.
|
|
// Filter out to-be-deleted entries in place.
|
|
for (i = 0; i < num; i++) {
|
|
if (!match_multi_entry(persist_data->persist_entry[i].key, fieldname, index)) {
|
|
persist_data->persist_entry[j] = persist_data->persist_entry[i];
|
|
j++;
|
|
}
|
|
}
|
|
|
|
if (j < num) {
|
|
persist_data->persist_valid_entries = j;
|
|
// Zeroise the remaining entries
|
|
memset(&persist_data->persist_entry[j], 0, (num - j) * sizeof(struct crypt_persist_entry));
|
|
return PERSIST_DEL_KEY_OK;
|
|
} else {
|
|
// Did not find an entry matching the given fieldname
|
|
return PERSIST_DEL_KEY_ERROR_NO_FIELD;
|
|
}
|
|
}
|
|
|
|
static int persist_count_keys(const char *fieldname)
|
|
{
|
|
unsigned int i;
|
|
unsigned int count;
|
|
|
|
if (persist_data == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
count = 0;
|
|
for (i = 0; i < persist_data->persist_valid_entries; i++) {
|
|
if (match_multi_entry(persist_data->persist_entry[i].key, fieldname, 0)) {
|
|
count++;
|
|
}
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
/* Return the value of the specified field. */
|
|
int cryptfs_getfield(const char *fieldname, char *value, int len)
|
|
{
|
|
if (e4crypt_crypto_complete(DATA_MNT_POINT) == 0) {
|
|
return e4crypt_get_field(DATA_MNT_POINT, fieldname, value, len);
|
|
}
|
|
|
|
char temp_value[PROPERTY_VALUE_MAX];
|
|
/* CRYPTO_GETFIELD_OK is success,
|
|
* CRYPTO_GETFIELD_ERROR_NO_FIELD is value not set,
|
|
* CRYPTO_GETFIELD_ERROR_BUF_TOO_SMALL is buffer (as given by len) too small,
|
|
* CRYPTO_GETFIELD_ERROR_OTHER is any other error
|
|
*/
|
|
int rc = CRYPTO_GETFIELD_ERROR_OTHER;
|
|
int i;
|
|
char temp_field[PROPERTY_KEY_MAX];
|
|
|
|
if (persist_data == NULL) {
|
|
load_persistent_data();
|
|
if (persist_data == NULL) {
|
|
SLOGE("Getfield error, cannot load persistent data");
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
// Read value from persistent entries. If the original value is split into multiple entries,
|
|
// stitch them back together.
|
|
if (!persist_get_key(fieldname, temp_value)) {
|
|
// We found it, copy it to the caller's buffer and keep going until all entries are read.
|
|
if (strlcpy(value, temp_value, len) >= (unsigned) len) {
|
|
// value too small
|
|
rc = CRYPTO_GETFIELD_ERROR_BUF_TOO_SMALL;
|
|
goto out;
|
|
}
|
|
rc = CRYPTO_GETFIELD_OK;
|
|
|
|
for (i = 1; /* break explicitly */; i++) {
|
|
if (snprintf(temp_field, sizeof(temp_field), "%s_%d", fieldname, i) >=
|
|
(int) sizeof(temp_field)) {
|
|
// If the fieldname is very long, we stop as soon as it begins to overflow the
|
|
// maximum field length. At this point we have in fact fully read out the original
|
|
// value because cryptfs_setfield would not allow fields with longer names to be
|
|
// written in the first place.
|
|
break;
|
|
}
|
|
if (!persist_get_key(temp_field, temp_value)) {
|
|
if (strlcat(value, temp_value, len) >= (unsigned)len) {
|
|
// value too small.
|
|
rc = CRYPTO_GETFIELD_ERROR_BUF_TOO_SMALL;
|
|
goto out;
|
|
}
|
|
} else {
|
|
// Exhaust all entries.
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
/* Sadness, it's not there. Return the error */
|
|
rc = CRYPTO_GETFIELD_ERROR_NO_FIELD;
|
|
}
|
|
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
/* Set the value of the specified field. */
|
|
int cryptfs_setfield(const char *fieldname, const char *value)
|
|
{
|
|
if (e4crypt_crypto_complete(DATA_MNT_POINT) == 0) {
|
|
return e4crypt_set_field(DATA_MNT_POINT, fieldname, value);
|
|
}
|
|
|
|
char encrypted_state[PROPERTY_VALUE_MAX];
|
|
/* 0 is success, negative values are error */
|
|
int rc = CRYPTO_SETFIELD_ERROR_OTHER;
|
|
int encrypted = 0;
|
|
unsigned int field_id;
|
|
char temp_field[PROPERTY_KEY_MAX];
|
|
unsigned int num_entries;
|
|
unsigned int max_keylen;
|
|
|
|
if (persist_data == NULL) {
|
|
load_persistent_data();
|
|
if (persist_data == NULL) {
|
|
SLOGE("Setfield error, cannot load persistent data");
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
property_get("ro.crypto.state", encrypted_state, "");
|
|
if (!strcmp(encrypted_state, "encrypted") ) {
|
|
encrypted = 1;
|
|
}
|
|
|
|
// Compute the number of entries required to store value, each entry can store up to
|
|
// (PROPERTY_VALUE_MAX - 1) chars
|
|
if (strlen(value) == 0) {
|
|
// Empty value also needs one entry to store.
|
|
num_entries = 1;
|
|
} else {
|
|
num_entries = (strlen(value) + (PROPERTY_VALUE_MAX - 1) - 1) / (PROPERTY_VALUE_MAX - 1);
|
|
}
|
|
|
|
max_keylen = strlen(fieldname);
|
|
if (num_entries > 1) {
|
|
// Need an extra "_%d" suffix.
|
|
max_keylen += 1 + log10(num_entries);
|
|
}
|
|
if (max_keylen > PROPERTY_KEY_MAX - 1) {
|
|
rc = CRYPTO_SETFIELD_ERROR_FIELD_TOO_LONG;
|
|
goto out;
|
|
}
|
|
|
|
// Make sure we have enough space to write the new value
|
|
if (persist_data->persist_valid_entries + num_entries - persist_count_keys(fieldname) >
|
|
persist_get_max_entries(encrypted)) {
|
|
rc = CRYPTO_SETFIELD_ERROR_VALUE_TOO_LONG;
|
|
goto out;
|
|
}
|
|
|
|
// Now that we know persist_data has enough space for value, let's delete the old field first
|
|
// to make up space.
|
|
persist_del_keys(fieldname, 0);
|
|
|
|
if (persist_set_key(fieldname, value, encrypted)) {
|
|
// fail to set key, should not happen as we have already checked the available space
|
|
SLOGE("persist_set_key() error during setfield()");
|
|
goto out;
|
|
}
|
|
|
|
for (field_id = 1; field_id < num_entries; field_id++) {
|
|
snprintf(temp_field, sizeof(temp_field), "%s_%d", fieldname, field_id);
|
|
|
|
if (persist_set_key(temp_field, value + field_id * (PROPERTY_VALUE_MAX - 1), encrypted)) {
|
|
// fail to set key, should not happen as we have already checked the available space.
|
|
SLOGE("persist_set_key() error during setfield()");
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* If we are running encrypted, save the persistent data now */
|
|
if (encrypted) {
|
|
if (save_persistent_data()) {
|
|
SLOGE("Setfield error, cannot save persistent data");
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
rc = CRYPTO_SETFIELD_OK;
|
|
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
/* Checks userdata. Attempt to mount the volume if default-
|
|
* encrypted.
|
|
* On success trigger next init phase and return 0.
|
|
* Currently do not handle failure - see TODO below.
|
|
*/
|
|
int cryptfs_mount_default_encrypted(void)
|
|
{
|
|
char decrypt_state[PROPERTY_VALUE_MAX];
|
|
property_get("vold.decrypt", decrypt_state, "0");
|
|
if (!strcmp(decrypt_state, "0")) {
|
|
SLOGE("Not encrypted - should not call here");
|
|
} else {
|
|
int crypt_type = cryptfs_get_password_type();
|
|
if (crypt_type < 0 || crypt_type > CRYPT_TYPE_MAX_TYPE) {
|
|
SLOGE("Bad crypt type - error");
|
|
} else if (crypt_type != CRYPT_TYPE_DEFAULT) {
|
|
SLOGD("Password is not default - "
|
|
"starting min framework to prompt");
|
|
property_set("vold.decrypt", "trigger_restart_min_framework");
|
|
return 0;
|
|
} else if (cryptfs_check_passwd(DEFAULT_PASSWORD) == 0) {
|
|
SLOGD("Password is default - restarting filesystem");
|
|
cryptfs_restart_internal(0);
|
|
return 0;
|
|
} else {
|
|
SLOGE("Encrypted, default crypt type but can't decrypt");
|
|
}
|
|
}
|
|
|
|
/** Corrupt. Allow us to boot into framework, which will detect bad
|
|
crypto when it calls do_crypto_complete, then do a factory reset
|
|
*/
|
|
property_set("vold.decrypt", "trigger_restart_min_framework");
|
|
return 0;
|
|
}
|
|
|
|
/* Returns type of the password, default, pattern, pin or password.
|
|
*/
|
|
int cryptfs_get_password_type(void)
|
|
{
|
|
if (e4crypt_crypto_complete(DATA_MNT_POINT) == 0) {
|
|
return e4crypt_get_password_type(DATA_MNT_POINT);
|
|
}
|
|
|
|
struct crypt_mnt_ftr crypt_ftr;
|
|
|
|
if (get_crypt_ftr_and_key(&crypt_ftr)) {
|
|
SLOGE("Error getting crypt footer and key\n");
|
|
return -1;
|
|
}
|
|
|
|
if (crypt_ftr.flags & CRYPT_INCONSISTENT_STATE) {
|
|
return -1;
|
|
}
|
|
|
|
return crypt_ftr.crypt_type;
|
|
}
|
|
|
|
const char* cryptfs_get_password()
|
|
{
|
|
if (e4crypt_crypto_complete(DATA_MNT_POINT) == 0) {
|
|
return e4crypt_get_password(DATA_MNT_POINT);
|
|
}
|
|
|
|
struct timespec now;
|
|
clock_gettime(CLOCK_BOOTTIME, &now);
|
|
if (now.tv_sec < password_expiry_time) {
|
|
return password;
|
|
} else {
|
|
cryptfs_clear_password();
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void cryptfs_clear_password()
|
|
{
|
|
if (e4crypt_crypto_complete(DATA_MNT_POINT) == 0) {
|
|
e4crypt_clear_password(DATA_MNT_POINT);
|
|
}
|
|
|
|
if (password) {
|
|
size_t len = strlen(password);
|
|
memset(password, 0, len);
|
|
free(password);
|
|
password = 0;
|
|
password_expiry_time = 0;
|
|
}
|
|
}
|
|
|
|
int cryptfs_enable_file()
|
|
{
|
|
return e4crypt_enable(DATA_MNT_POINT);
|
|
}
|
|
|
|
int cryptfs_create_default_ftr(struct crypt_mnt_ftr* crypt_ftr, __attribute__((unused))int key_length)
|
|
{
|
|
if (cryptfs_init_crypt_mnt_ftr(crypt_ftr)) {
|
|
SLOGE("Failed to initialize crypt_ftr");
|
|
return -1;
|
|
}
|
|
|
|
if (create_encrypted_random_key(DEFAULT_PASSWORD, crypt_ftr->master_key,
|
|
crypt_ftr->salt, crypt_ftr)) {
|
|
SLOGE("Cannot create encrypted master key\n");
|
|
return -1;
|
|
}
|
|
|
|
//crypt_ftr->keysize = key_length / 8;
|
|
return 0;
|
|
}
|
|
|
|
int cryptfs_get_master_key(struct crypt_mnt_ftr* ftr, const char* password,
|
|
unsigned char* master_key)
|
|
{
|
|
int rc;
|
|
|
|
unsigned char* intermediate_key = 0;
|
|
size_t intermediate_key_size = 0;
|
|
|
|
if (password == 0 || *password == 0) {
|
|
password = DEFAULT_PASSWORD;
|
|
}
|
|
|
|
rc = decrypt_master_key(password, master_key, ftr, &intermediate_key,
|
|
&intermediate_key_size);
|
|
|
|
int N = 1 << ftr->N_factor;
|
|
int r = 1 << ftr->r_factor;
|
|
int p = 1 << ftr->p_factor;
|
|
|
|
unsigned char scrypted_intermediate_key[sizeof(ftr->scrypted_intermediate_key)];
|
|
|
|
rc = crypto_scrypt(intermediate_key, intermediate_key_size,
|
|
ftr->salt, sizeof(ftr->salt), N, r, p,
|
|
scrypted_intermediate_key,
|
|
sizeof(scrypted_intermediate_key));
|
|
|
|
free(intermediate_key);
|
|
|
|
if (rc) {
|
|
SLOGE("Can't calculate intermediate key");
|
|
return rc;
|
|
}
|
|
|
|
return memcmp(scrypted_intermediate_key, ftr->scrypted_intermediate_key,
|
|
intermediate_key_size);
|
|
}
|
|
|
|
int cryptfs_set_password(struct crypt_mnt_ftr* ftr, const char* password,
|
|
const unsigned char* master_key)
|
|
{
|
|
return encrypt_master_key(password, ftr->salt, master_key, ftr->master_key,
|
|
ftr);
|
|
}
|