platform_system_vold/FsCrypt.cpp
Eric Biggers 8c1659e271 Make the CE key always be encrypted by the synthetic password
When generating a CE key, don't persist it immediately with
kEmptyAuthentication.  Instead, cache it in memory and persist it later
when the secret to protect it with is given.  This is needed to make it
so that the CE key is always encrypted by the user's synthetic password
while it is stored on-disk.  See the corresponding system_server changes
for more information about this design change and its motivation.

As part of this, simplify vold's Binder interface by replacing the three
methods addUserKeyAuth(), clearUserKeyAuth(), and
fixateNewestUserKeyAuth() with a single method setUserKeyProtection().
setUserKeyProtection() handles persisting the key for a new user or
re-encrypting the default-encrypted key for an existing unsecured user.

Bug: 232452368
Ignore-AOSP-First: This depends on frameworks/base changes that can only
                   be submitted to internal master, due to conflicts.
Test: see Ia753ea21bbaca8ef7a90c03fe73b66c896b1536e
Change-Id: Id36ba8ee343ccb6de7ec892c3f600abd636f6ce5
2022-09-06 21:30:36 +00:00

1041 lines
42 KiB
C++

/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "FsCrypt.h"
#include "KeyStorage.h"
#include "KeyUtil.h"
#include "Utils.h"
#include "VoldUtil.h"
#include <algorithm>
#include <map>
#include <optional>
#include <set>
#include <sstream>
#include <string>
#include <vector>
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <private/android_filesystem_config.h>
#include <private/android_projectid_config.h>
#include "android/os/IVold.h"
#define MANAGE_MISC_DIRS 0
#include <cutils/fs.h>
#include <cutils/properties.h>
#include <fscrypt/fscrypt.h>
#include <keyutils.h>
#include <libdm/dm.h>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <android-base/unique_fd.h>
using android::base::Basename;
using android::base::Realpath;
using android::base::StartsWith;
using android::base::StringPrintf;
using android::fs_mgr::GetEntryForMountPoint;
using android::vold::BuildDataPath;
using android::vold::IsDotOrDotDot;
using android::vold::IsFilesystemSupported;
using android::vold::kEmptyAuthentication;
using android::vold::KeyBuffer;
using android::vold::KeyGeneration;
using android::vold::retrieveKey;
using android::vold::retrieveOrGenerateKey;
using android::vold::SetDefaultAcl;
using android::vold::SetQuotaInherit;
using android::vold::SetQuotaProjectId;
using android::vold::writeStringToFile;
using namespace android::fscrypt;
using namespace android::dm;
namespace {
const std::string device_key_dir = std::string() + DATA_MNT_POINT + fscrypt_unencrypted_folder;
const std::string device_key_path = device_key_dir + "/key";
const std::string device_key_temp = device_key_dir + "/temp";
const std::string user_key_dir = std::string() + DATA_MNT_POINT + "/misc/vold/user_keys";
const std::string user_key_temp = user_key_dir + "/temp";
const std::string prepare_subdirs_path = "/system/bin/vold_prepare_subdirs";
const std::string systemwide_volume_key_dir =
std::string() + DATA_MNT_POINT + "/misc/vold/volume_keys";
const std::string data_data_dir = std::string() + DATA_MNT_POINT + "/data";
const std::string data_user_0_dir = std::string() + DATA_MNT_POINT + "/user/0";
const std::string media_obb_dir = std::string() + DATA_MNT_POINT + "/media/obb";
// Some users are ephemeral, don't try to wipe their keys from disk
std::set<userid_t> s_ephemeral_users;
// New CE keys that haven't been committed to disk yet
std::map<userid_t, KeyBuffer> s_new_ce_keys;
// The system DE encryption policy
EncryptionPolicy s_device_policy;
// Map user ids to encryption policies
std::map<userid_t, EncryptionPolicy> s_de_policies;
std::map<userid_t, EncryptionPolicy> s_ce_policies;
} // namespace
// Returns KeyGeneration suitable for key as described in EncryptionOptions
static KeyGeneration makeGen(const EncryptionOptions& options) {
return KeyGeneration{FSCRYPT_MAX_KEY_SIZE, true, options.use_hw_wrapped_key};
}
static const char* escape_empty(const std::string& value) {
return value.empty() ? "null" : value.c_str();
}
static std::string get_de_key_path(userid_t user_id) {
return StringPrintf("%s/de/%d", user_key_dir.c_str(), user_id);
}
static std::string get_ce_key_directory_path(userid_t user_id) {
return StringPrintf("%s/ce/%d", user_key_dir.c_str(), user_id);
}
// Returns the keys newest first
static std::vector<std::string> get_ce_key_paths(const std::string& directory_path) {
auto dirp = std::unique_ptr<DIR, int (*)(DIR*)>(opendir(directory_path.c_str()), closedir);
if (!dirp) {
PLOG(ERROR) << "Unable to open ce key directory: " + directory_path;
return std::vector<std::string>();
}
std::vector<std::string> result;
for (;;) {
errno = 0;
auto const entry = readdir(dirp.get());
if (!entry) {
if (errno) {
PLOG(ERROR) << "Unable to read ce key directory: " + directory_path;
return std::vector<std::string>();
}
break;
}
if (IsDotOrDotDot(*entry)) continue;
if (entry->d_type != DT_DIR || entry->d_name[0] != 'c') {
LOG(DEBUG) << "Skipping non-key " << entry->d_name;
continue;
}
result.emplace_back(directory_path + "/" + entry->d_name);
}
std::sort(result.begin(), result.end());
std::reverse(result.begin(), result.end());
return result;
}
static std::string get_ce_key_current_path(const std::string& directory_path) {
return directory_path + "/current";
}
static bool get_ce_key_new_path(const std::string& directory_path,
const std::vector<std::string>& paths, std::string* ce_key_path) {
if (paths.empty()) {
*ce_key_path = get_ce_key_current_path(directory_path);
return true;
}
for (unsigned int i = 0; i < UINT_MAX; i++) {
auto const candidate = StringPrintf("%s/cx%010u", directory_path.c_str(), i);
if (paths[0] < candidate) {
*ce_key_path = candidate;
return true;
}
}
return false;
}
// Discard all keys but the named one; rename it to canonical name.
static bool fixate_user_ce_key(const std::string& directory_path, const std::string& to_fix,
const std::vector<std::string>& paths) {
for (auto const other_path : paths) {
if (other_path != to_fix) {
android::vold::destroyKey(other_path);
}
}
auto const current_path = get_ce_key_current_path(directory_path);
if (to_fix != current_path) {
LOG(DEBUG) << "Renaming " << to_fix << " to " << current_path;
if (!android::vold::RenameKeyDir(to_fix, current_path)) return false;
}
if (!android::vold::FsyncDirectory(directory_path)) return false;
return true;
}
static bool read_and_fixate_user_ce_key(userid_t user_id,
const android::vold::KeyAuthentication& auth,
KeyBuffer* ce_key) {
auto const directory_path = get_ce_key_directory_path(user_id);
auto const paths = get_ce_key_paths(directory_path);
for (auto const ce_key_path : paths) {
LOG(DEBUG) << "Trying user CE key " << ce_key_path;
if (retrieveKey(ce_key_path, auth, ce_key)) {
LOG(DEBUG) << "Successfully retrieved key";
fixate_user_ce_key(directory_path, ce_key_path, paths);
return true;
}
}
LOG(ERROR) << "Failed to find working ce key for user " << user_id;
return false;
}
static bool MightBeEmmcStorage(const std::string& blk_device) {
// Handle symlinks.
std::string real_path;
if (!Realpath(blk_device, &real_path)) {
real_path = blk_device;
}
// Handle logical volumes.
auto& dm = DeviceMapper::Instance();
for (;;) {
auto parent = dm.GetParentBlockDeviceByPath(real_path);
if (!parent.has_value()) break;
real_path = *parent;
}
// Now we should have the "real" block device.
LOG(DEBUG) << "MightBeEmmcStorage(): blk_device = " << blk_device
<< ", real_path=" << real_path;
std::string name = Basename(real_path);
return StartsWith(name, "mmcblk") ||
// virtio devices may provide inline encryption support that is
// backed by eMMC inline encryption on the host, thus inheriting the
// DUN size limitation. So virtio devices must be allowed here too.
// TODO(b/207390665): check the maximum DUN size directly instead.
StartsWith(name, "vd");
}
// Retrieve the options to use for encryption policies on the /data filesystem.
static bool get_data_file_encryption_options(EncryptionOptions* options) {
auto entry = GetEntryForMountPoint(&fstab_default, DATA_MNT_POINT);
if (entry == nullptr) {
LOG(ERROR) << "No mount point entry for " << DATA_MNT_POINT;
return false;
}
if (!ParseOptions(entry->encryption_options, options)) {
LOG(ERROR) << "Unable to parse encryption options for " << DATA_MNT_POINT ": "
<< entry->encryption_options;
return false;
}
if ((options->flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) &&
!MightBeEmmcStorage(entry->blk_device)) {
LOG(ERROR) << "The emmc_optimized encryption flag is only allowed on eMMC storage. Remove "
"this flag from the device's fstab";
return false;
}
return true;
}
static bool install_storage_key(const std::string& mountpoint, const EncryptionOptions& options,
const KeyBuffer& key, EncryptionPolicy* policy) {
KeyBuffer ephemeral_wrapped_key;
if (options.use_hw_wrapped_key) {
if (!exportWrappedStorageKey(key, &ephemeral_wrapped_key)) {
LOG(ERROR) << "Failed to get ephemeral wrapped key";
return false;
}
}
return installKey(mountpoint, options, options.use_hw_wrapped_key ? ephemeral_wrapped_key : key,
policy);
}
// Retrieve the options to use for encryption policies on adoptable storage.
static bool get_volume_file_encryption_options(EncryptionOptions* options) {
// If we give the empty string, libfscrypt will use the default (currently XTS)
auto contents_mode = android::base::GetProperty("ro.crypto.volume.contents_mode", "");
// HEH as default was always a mistake. Use the libfscrypt default (CTS)
// for devices launching on versions above Android 10.
auto first_api_level = GetFirstApiLevel();
auto filenames_mode =
android::base::GetProperty("ro.crypto.volume.filenames_mode",
first_api_level > __ANDROID_API_Q__ ? "" : "aes-256-heh");
auto options_string = android::base::GetProperty("ro.crypto.volume.options",
contents_mode + ":" + filenames_mode);
if (!ParseOptionsForApiLevel(first_api_level, options_string, options)) {
LOG(ERROR) << "Unable to parse volume encryption options: " << options_string;
return false;
}
if (options->flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) {
LOG(ERROR) << "The emmc_optimized encryption flag is only allowed on eMMC storage. Remove "
"this flag from ro.crypto.volume.options";
return false;
}
return true;
}
static bool read_and_install_user_ce_key(userid_t user_id,
const android::vold::KeyAuthentication& auth) {
if (s_ce_policies.count(user_id) != 0) return true;
EncryptionOptions options;
if (!get_data_file_encryption_options(&options)) return false;
KeyBuffer ce_key;
if (!read_and_fixate_user_ce_key(user_id, auth, &ce_key)) return false;
EncryptionPolicy ce_policy;
if (!install_storage_key(DATA_MNT_POINT, options, ce_key, &ce_policy)) return false;
s_ce_policies[user_id] = ce_policy;
LOG(DEBUG) << "Installed ce key for user " << user_id;
return true;
}
// Prepare a directory without assigning it an encryption policy. The directory
// will inherit the encryption policy of its parent directory, or will be
// unencrypted if the parent directory is unencrypted.
static bool prepare_dir(const std::string& dir, mode_t mode, uid_t uid, gid_t gid) {
LOG(DEBUG) << "Preparing: " << dir;
if (android::vold::PrepareDir(dir, mode, uid, gid, 0) != 0) {
PLOG(ERROR) << "Failed to prepare " << dir;
return false;
}
return true;
}
// Prepare a directory and assign it the given encryption policy.
static bool prepare_dir_with_policy(const std::string& dir, mode_t mode, uid_t uid, gid_t gid,
const EncryptionPolicy& policy) {
if (!prepare_dir(dir, mode, uid, gid)) return false;
if (IsFbeEnabled() && !EnsurePolicy(policy, dir)) return false;
return true;
}
static bool destroy_dir(const std::string& dir) {
LOG(DEBUG) << "Destroying: " << dir;
if (rmdir(dir.c_str()) != 0 && errno != ENOENT) {
PLOG(ERROR) << "Failed to destroy " << dir;
return false;
}
return true;
}
// NB this assumes that there is only one thread listening for crypt commands, because
// it creates keys in a fixed location.
static bool create_and_install_user_keys(userid_t user_id, bool create_ephemeral) {
EncryptionOptions options;
if (!get_data_file_encryption_options(&options)) return false;
KeyBuffer de_key, ce_key;
if (!generateStorageKey(makeGen(options), &de_key)) return false;
if (!generateStorageKey(makeGen(options), &ce_key)) return false;
if (create_ephemeral) {
// If the key should be created as ephemeral, don't store it.
s_ephemeral_users.insert(user_id);
} else {
auto const directory_path = get_ce_key_directory_path(user_id);
if (!prepare_dir(directory_path, 0700, AID_ROOT, AID_ROOT)) return false;
// Wait until fscrypt_set_user_key_protection() to persist the CE key,
// since here we don't have the secret needed to do so securely.
s_new_ce_keys.insert({user_id, ce_key});
if (!android::vold::storeKeyAtomically(get_de_key_path(user_id), user_key_temp,
kEmptyAuthentication, de_key))
return false;
}
EncryptionPolicy de_policy;
if (!install_storage_key(DATA_MNT_POINT, options, de_key, &de_policy)) return false;
s_de_policies[user_id] = de_policy;
EncryptionPolicy ce_policy;
if (!install_storage_key(DATA_MNT_POINT, options, ce_key, &ce_policy)) return false;
s_ce_policies[user_id] = ce_policy;
LOG(DEBUG) << "Created keys for user " << user_id;
return true;
}
static bool lookup_policy(const std::map<userid_t, EncryptionPolicy>& key_map, userid_t user_id,
EncryptionPolicy* policy) {
auto refi = key_map.find(user_id);
if (refi == key_map.end()) {
return false;
}
*policy = refi->second;
return true;
}
static bool is_numeric(const char* name) {
for (const char* p = name; *p != '\0'; p++) {
if (!isdigit(*p)) return false;
}
return true;
}
static bool load_all_de_keys() {
EncryptionOptions options;
if (!get_data_file_encryption_options(&options)) return false;
auto de_dir = user_key_dir + "/de";
auto dirp = std::unique_ptr<DIR, int (*)(DIR*)>(opendir(de_dir.c_str()), closedir);
if (!dirp) {
PLOG(ERROR) << "Unable to read de key directory";
return false;
}
for (;;) {
errno = 0;
auto entry = readdir(dirp.get());
if (!entry) {
if (errno) {
PLOG(ERROR) << "Unable to read de key directory";
return false;
}
break;
}
if (IsDotOrDotDot(*entry)) continue;
if (entry->d_type != DT_DIR || !is_numeric(entry->d_name)) {
LOG(DEBUG) << "Skipping non-de-key " << entry->d_name;
continue;
}
userid_t user_id = std::stoi(entry->d_name);
auto key_path = de_dir + "/" + entry->d_name;
KeyBuffer de_key;
if (!retrieveKey(key_path, kEmptyAuthentication, &de_key)) return false;
EncryptionPolicy de_policy;
if (!install_storage_key(DATA_MNT_POINT, options, de_key, &de_policy)) return false;
auto ret = s_de_policies.insert({user_id, de_policy});
if (!ret.second && ret.first->second != de_policy) {
LOG(ERROR) << "DE policy for user" << user_id << " changed";
return false;
}
LOG(DEBUG) << "Installed de key for user " << user_id;
}
// fscrypt:TODO: go through all DE directories, ensure that all user dirs have the
// correct policy set on them, and that no rogue ones exist.
return true;
}
// Attempt to reinstall CE keys for users that we think are unlocked.
static bool try_reload_ce_keys() {
for (const auto& it : s_ce_policies) {
if (!android::vold::reloadKeyFromSessionKeyring(DATA_MNT_POINT, it.second)) {
LOG(ERROR) << "Failed to load CE key from session keyring for user " << it.first;
return false;
}
}
return true;
}
bool fscrypt_initialize_systemwide_keys() {
LOG(INFO) << "fscrypt_initialize_systemwide_keys";
EncryptionOptions options;
if (!get_data_file_encryption_options(&options)) return false;
KeyBuffer device_key;
if (!retrieveOrGenerateKey(device_key_path, device_key_temp, kEmptyAuthentication,
makeGen(options), &device_key))
return false;
// This initializes s_device_policy, which is a global variable so that
// fscrypt_init_user0() can access it later.
if (!install_storage_key(DATA_MNT_POINT, options, device_key, &s_device_policy)) return false;
std::string options_string;
if (!OptionsToString(s_device_policy.options, &options_string)) {
LOG(ERROR) << "Unable to serialize options";
return false;
}
std::string options_filename = std::string(DATA_MNT_POINT) + fscrypt_key_mode;
if (!android::vold::writeStringToFile(options_string, options_filename)) return false;
std::string ref_filename = std::string(DATA_MNT_POINT) + fscrypt_key_ref;
if (!android::vold::writeStringToFile(s_device_policy.key_raw_ref, ref_filename)) return false;
LOG(INFO) << "Wrote system DE key reference to:" << ref_filename;
KeyBuffer per_boot_key;
if (!generateStorageKey(makeGen(options), &per_boot_key)) return false;
EncryptionPolicy per_boot_policy;
if (!install_storage_key(DATA_MNT_POINT, options, per_boot_key, &per_boot_policy)) return false;
std::string per_boot_ref_filename = std::string("/data") + fscrypt_key_per_boot_ref;
if (!android::vold::writeStringToFile(per_boot_policy.key_raw_ref, per_boot_ref_filename))
return false;
LOG(INFO) << "Wrote per boot key reference to:" << per_boot_ref_filename;
return true;
}
static bool prepare_special_dirs() {
// Ensure that /data/data and its "alias" /data/user/0 exist, and create the
// bind mount of /data/data onto /data/user/0. This *should* happen in
// fscrypt_prepare_user_storage(). However, it actually must be done early,
// before the rest of user 0's CE storage is prepared. This is because
// zygote may need to set up app data isolation before then, which requires
// mounting a tmpfs over /data/data to ensure it remains hidden. This issue
// arises due to /data/data being in the top-level directory.
// /data/user/0 used to be a symlink to /data/data, so we must first delete
// the old symlink if present.
if (android::vold::IsSymlink(data_user_0_dir) && android::vold::Unlink(data_user_0_dir) != 0)
return false;
// On first boot, we'll be creating /data/data for the first time, and user
// 0's CE key will be installed already since it was just created. Take the
// opportunity to also set the encryption policy of /data/data right away.
EncryptionPolicy ce_policy;
if (lookup_policy(s_ce_policies, 0, &ce_policy)) {
if (!prepare_dir_with_policy(data_data_dir, 0771, AID_SYSTEM, AID_SYSTEM, ce_policy))
return false;
} else {
if (!prepare_dir(data_data_dir, 0771, AID_SYSTEM, AID_SYSTEM)) return false;
// EnsurePolicy() will have to happen later, in fscrypt_prepare_user_storage().
}
if (!prepare_dir(data_user_0_dir, 0700, AID_SYSTEM, AID_SYSTEM)) return false;
if (android::vold::BindMount(data_data_dir, data_user_0_dir) != 0) return false;
// If /data/media/obb doesn't exist, create it and encrypt it with the
// device policy. Normally, device-policy-encrypted directories are created
// and encrypted by init; /data/media/obb is special because it is located
// in /data/media. Since /data/media also contains per-user encrypted
// directories, by design only vold can write to it. As a side effect of
// that, vold must create /data/media/obb.
//
// We must tolerate /data/media/obb being unencrypted if it already exists
// on-disk, since it used to be unencrypted (b/64566063).
if (android::vold::pathExists(media_obb_dir)) {
if (!prepare_dir(media_obb_dir, 0770, AID_MEDIA_RW, AID_MEDIA_RW)) return false;
} else {
if (!prepare_dir_with_policy(media_obb_dir, 0770, AID_MEDIA_RW, AID_MEDIA_RW,
s_device_policy))
return false;
}
return true;
}
bool fscrypt_init_user0_done;
bool fscrypt_init_user0() {
LOG(DEBUG) << "fscrypt_init_user0";
if (IsFbeEnabled()) {
if (!prepare_dir(user_key_dir, 0700, AID_ROOT, AID_ROOT)) return false;
if (!prepare_dir(user_key_dir + "/ce", 0700, AID_ROOT, AID_ROOT)) return false;
if (!prepare_dir(user_key_dir + "/de", 0700, AID_ROOT, AID_ROOT)) return false;
if (!android::vold::pathExists(get_de_key_path(0))) {
if (!create_and_install_user_keys(0, false)) return false;
}
// TODO: switch to loading only DE_0 here once framework makes
// explicit calls to install DE keys for secondary users
if (!load_all_de_keys()) return false;
}
// Now that user 0's CE key has been created, we can prepare /data/data.
if (!prepare_special_dirs()) return false;
// With the exception of what is done by prepare_special_dirs() above, we
// only prepare DE storage here, since user 0's CE key won't be installed
// yet unless it was just created. The framework will prepare the user's CE
// storage later, once their CE key is installed.
if (!fscrypt_prepare_user_storage("", 0, 0, android::os::IVold::STORAGE_FLAG_DE)) {
LOG(ERROR) << "Failed to prepare user 0 storage";
return false;
}
// In some scenarios (e.g. userspace reboot) we might unmount userdata
// without doing a hard reboot. If CE keys were stored in fs keyring then
// they will be lost after unmount. Attempt to re-install them.
if (IsFbeEnabled() && android::vold::isFsKeyringSupported()) {
if (!try_reload_ce_keys()) return false;
}
fscrypt_init_user0_done = true;
return true;
}
bool fscrypt_vold_create_user_key(userid_t user_id, int serial, bool ephemeral) {
LOG(DEBUG) << "fscrypt_vold_create_user_key for " << user_id << " serial " << serial;
if (!IsFbeEnabled()) {
return true;
}
// FIXME test for existence of key that is not loaded yet
if (s_ce_policies.count(user_id) != 0) {
LOG(ERROR) << "Already exists, can't fscrypt_vold_create_user_key for " << user_id
<< " serial " << serial;
// FIXME should we fail the command?
return true;
}
if (!create_and_install_user_keys(user_id, ephemeral)) {
return false;
}
return true;
}
// "Lock" all encrypted directories whose key has been removed. This is needed
// in the case where the keys are being put in the session keyring (rather in
// the newer filesystem-level keyrings), because removing a key from the session
// keyring doesn't affect inodes in the kernel's inode cache whose per-file key
// was already set up. So to remove the per-file keys and make the files
// "appear encrypted", these inodes must be evicted.
//
// To do this, sync() to clean all dirty inodes, then drop all reclaimable slab
// objects systemwide. This is overkill, but it's the best available method
// currently. Don't use drop_caches mode "3" because that also evicts pagecache
// for in-use files; all files relevant here are already closed and sync'ed.
static void drop_caches_if_needed() {
if (android::vold::isFsKeyringSupported()) {
return;
}
sync();
if (!writeStringToFile("2", "/proc/sys/vm/drop_caches")) {
PLOG(ERROR) << "Failed to drop caches during key eviction";
}
}
static bool evict_ce_key(userid_t user_id) {
bool success = true;
EncryptionPolicy policy;
// If we haven't loaded the CE key, no need to evict it.
if (lookup_policy(s_ce_policies, user_id, &policy)) {
success &= android::vold::evictKey(DATA_MNT_POINT, policy);
drop_caches_if_needed();
}
s_ce_policies.erase(user_id);
s_new_ce_keys.erase(user_id);
return success;
}
bool fscrypt_destroy_user_key(userid_t user_id) {
LOG(DEBUG) << "fscrypt_destroy_user_key(" << user_id << ")";
if (!IsFbeEnabled()) {
return true;
}
bool success = true;
success &= evict_ce_key(user_id);
EncryptionPolicy de_policy;
success &= lookup_policy(s_de_policies, user_id, &de_policy) &&
android::vold::evictKey(DATA_MNT_POINT, de_policy);
s_de_policies.erase(user_id);
if (!s_ephemeral_users.erase(user_id)) {
auto ce_path = get_ce_key_directory_path(user_id);
if (!s_new_ce_keys.erase(user_id)) {
for (auto const path : get_ce_key_paths(ce_path)) {
success &= android::vold::destroyKey(path);
}
}
success &= destroy_dir(ce_path);
auto de_key_path = get_de_key_path(user_id);
if (android::vold::pathExists(de_key_path)) {
success &= android::vold::destroyKey(de_key_path);
} else {
LOG(INFO) << "Not present so not erasing: " << de_key_path;
}
}
return success;
}
static bool parse_hex(const std::string& hex, std::string* result) {
if (hex == "!") {
*result = "";
return true;
}
if (android::vold::HexToStr(hex, *result) != 0) {
LOG(ERROR) << "Invalid FBE hex string"; // Don't log the string for security reasons
return false;
}
return true;
}
static std::optional<android::vold::KeyAuthentication> authentication_from_hex(
const std::string& secret_hex) {
std::string secret;
if (!parse_hex(secret_hex, &secret)) return std::optional<android::vold::KeyAuthentication>();
if (secret.empty()) {
return kEmptyAuthentication;
} else {
return android::vold::KeyAuthentication(secret);
}
}
static std::string volkey_path(const std::string& misc_path, const std::string& volume_uuid) {
return misc_path + "/vold/volume_keys/" + volume_uuid + "/default";
}
static std::string volume_secdiscardable_path(const std::string& volume_uuid) {
return systemwide_volume_key_dir + "/" + volume_uuid + "/secdiscardable";
}
static bool read_or_create_volkey(const std::string& misc_path, const std::string& volume_uuid,
EncryptionPolicy* policy) {
auto secdiscardable_path = volume_secdiscardable_path(volume_uuid);
std::string secdiscardable_hash;
if (android::vold::pathExists(secdiscardable_path)) {
if (!android::vold::readSecdiscardable(secdiscardable_path, &secdiscardable_hash))
return false;
} else {
if (!android::vold::MkdirsSync(secdiscardable_path, 0700)) return false;
if (!android::vold::createSecdiscardable(secdiscardable_path, &secdiscardable_hash))
return false;
}
auto key_path = volkey_path(misc_path, volume_uuid);
if (!android::vold::MkdirsSync(key_path, 0700)) return false;
android::vold::KeyAuthentication auth(secdiscardable_hash);
EncryptionOptions options;
if (!get_volume_file_encryption_options(&options)) return false;
KeyBuffer key;
if (!retrieveOrGenerateKey(key_path, key_path + "_tmp", auth, makeGen(options), &key))
return false;
if (!install_storage_key(BuildDataPath(volume_uuid), options, key, policy)) return false;
return true;
}
static bool destroy_volkey(const std::string& misc_path, const std::string& volume_uuid) {
auto path = volkey_path(misc_path, volume_uuid);
if (!android::vold::pathExists(path)) return true;
return android::vold::destroyKey(path);
}
// (Re-)encrypts the user's CE key with the given secret. The CE key must
// either be (a) new (not yet committed), (b) protected by kEmptyAuthentication,
// or (c) already protected by the given secret. Cases (b) and (c) are needed
// to support upgrades from Android versions where CE keys were stored with
// kEmptyAuthentication when the user didn't have an LSKF. Case (b) is the
// normal upgrade case, while case (c) can theoretically happen if an upgrade is
// requested for a user more than once due to a power-off or other interruption.
bool fscrypt_set_user_key_protection(userid_t user_id, const std::string& secret_hex) {
LOG(DEBUG) << "fscrypt_set_user_key_protection " << user_id;
if (!IsFbeEnabled()) return true;
auto auth = authentication_from_hex(secret_hex);
if (!auth) return false;
if (auth->secret.empty()) {
LOG(ERROR) << "fscrypt_set_user_key_protection: secret must be nonempty";
return false;
}
if (s_ephemeral_users.count(user_id) != 0) {
LOG(DEBUG) << "Not storing key because user is ephemeral";
return true;
}
auto const directory_path = get_ce_key_directory_path(user_id);
KeyBuffer ce_key;
auto it = s_new_ce_keys.find(user_id);
if (it != s_new_ce_keys.end()) {
// Committing the key for a new user. This happens when the user's
// synthetic password is created.
ce_key = it->second;
} else {
// Setting the protection on an existing key. This happens at upgrade
// time, when CE keys that were previously protected by
// kEmptyAuthentication are encrypted by the user's synthetic password.
LOG(DEBUG) << "Key already exists; re-protecting it with the given secret";
if (!read_and_fixate_user_ce_key(user_id, kEmptyAuthentication, &ce_key)) {
LOG(ERROR) << "Failed to retrieve key for user " << user_id << " using empty auth";
// Before failing, also check whether the key is already protected
// with the given secret. This isn't expected, but in theory it
// could happen if an upgrade is requested for a user more than once
// due to a power-off or other interruption.
if (read_and_fixate_user_ce_key(user_id, *auth, &ce_key)) {
LOG(WARNING) << "Key is already protected by given secret";
return true;
}
return false;
}
}
auto const paths = get_ce_key_paths(directory_path);
std::string ce_key_path;
if (!get_ce_key_new_path(directory_path, paths, &ce_key_path)) return false;
if (!android::vold::storeKeyAtomically(ce_key_path, user_key_temp, *auth, ce_key)) return false;
if (!fixate_user_ce_key(directory_path, ce_key_path, paths)) return false;
if (s_new_ce_keys.erase(user_id)) {
LOG(INFO) << "Stored CE key for new user " << user_id;
}
return true;
}
std::vector<int> fscrypt_get_unlocked_users() {
std::vector<int> user_ids;
for (const auto& it : s_ce_policies) {
user_ids.push_back(it.first);
}
return user_ids;
}
// TODO: rename to 'install' for consistency, and take flags to know which keys to install
bool fscrypt_unlock_user_key(userid_t user_id, int serial, const std::string& secret_hex) {
LOG(DEBUG) << "fscrypt_unlock_user_key " << user_id << " serial=" << serial;
if (IsFbeEnabled()) {
if (s_ce_policies.count(user_id) != 0) {
LOG(WARNING) << "Tried to unlock already-unlocked key for user " << user_id;
return true;
}
auto auth = authentication_from_hex(secret_hex);
if (!auth) return false;
if (!read_and_install_user_ce_key(user_id, *auth)) {
LOG(ERROR) << "Couldn't read key for " << user_id;
return false;
}
}
return true;
}
// TODO: rename to 'evict' for consistency
bool fscrypt_lock_user_key(userid_t user_id) {
LOG(DEBUG) << "fscrypt_lock_user_key " << user_id;
if (IsFbeEnabled()) {
return evict_ce_key(user_id);
}
return true;
}
static bool prepare_subdirs(const std::string& action, const std::string& volume_uuid,
userid_t user_id, int flags) {
if (0 != android::vold::ForkExecvp(
std::vector<std::string>{prepare_subdirs_path, action, volume_uuid,
std::to_string(user_id), std::to_string(flags)})) {
LOG(ERROR) << "vold_prepare_subdirs failed";
return false;
}
return true;
}
bool fscrypt_prepare_user_storage(const std::string& volume_uuid, userid_t user_id, int serial,
int flags) {
LOG(DEBUG) << "fscrypt_prepare_user_storage for volume " << escape_empty(volume_uuid)
<< ", user " << user_id << ", serial " << serial << ", flags " << flags;
// Internal storage must be prepared before adoptable storage, since the
// user's volume keys are stored in their internal storage.
if (!volume_uuid.empty()) {
if ((flags & android::os::IVold::STORAGE_FLAG_DE) &&
!android::vold::pathExists(android::vold::BuildDataMiscDePath("", user_id))) {
LOG(ERROR) << "Cannot prepare DE storage for user " << user_id << " on volume "
<< volume_uuid << " before internal storage";
return false;
}
if ((flags & android::os::IVold::STORAGE_FLAG_CE) &&
!android::vold::pathExists(android::vold::BuildDataMiscCePath("", user_id))) {
LOG(ERROR) << "Cannot prepare CE storage for user " << user_id << " on volume "
<< volume_uuid << " before internal storage";
return false;
}
}
if (flags & android::os::IVold::STORAGE_FLAG_DE) {
// DE_sys key
auto system_legacy_path = android::vold::BuildDataSystemLegacyPath(user_id);
auto misc_legacy_path = android::vold::BuildDataMiscLegacyPath(user_id);
auto profiles_de_path = android::vold::BuildDataProfilesDePath(user_id);
// DE_n key
EncryptionPolicy de_policy;
auto system_de_path = android::vold::BuildDataSystemDePath(user_id);
auto misc_de_path = android::vold::BuildDataMiscDePath(volume_uuid, user_id);
auto vendor_de_path = android::vold::BuildDataVendorDePath(user_id);
auto user_de_path = android::vold::BuildDataUserDePath(volume_uuid, user_id);
if (IsFbeEnabled()) {
if (volume_uuid.empty()) {
if (!lookup_policy(s_de_policies, user_id, &de_policy)) {
LOG(ERROR) << "Cannot find DE policy for user " << user_id;
return false;
}
} else {
auto misc_de_empty_volume_path = android::vold::BuildDataMiscDePath("", user_id);
if (!read_or_create_volkey(misc_de_empty_volume_path, volume_uuid, &de_policy)) {
return false;
}
}
}
if (volume_uuid.empty()) {
if (!prepare_dir(system_legacy_path, 0700, AID_SYSTEM, AID_SYSTEM)) return false;
#if MANAGE_MISC_DIRS
if (!prepare_dir(misc_legacy_path, 0750, multiuser_get_uid(user_id, AID_SYSTEM),
multiuser_get_uid(user_id, AID_EVERYBODY)))
return false;
#endif
if (!prepare_dir(profiles_de_path, 0771, AID_SYSTEM, AID_SYSTEM)) return false;
if (!prepare_dir_with_policy(system_de_path, 0770, AID_SYSTEM, AID_SYSTEM, de_policy))
return false;
if (!prepare_dir_with_policy(vendor_de_path, 0771, AID_ROOT, AID_ROOT, de_policy))
return false;
}
if (!prepare_dir_with_policy(misc_de_path, 01771, AID_SYSTEM, AID_MISC, de_policy))
return false;
if (!prepare_dir_with_policy(user_de_path, 0771, AID_SYSTEM, AID_SYSTEM, de_policy))
return false;
}
if (flags & android::os::IVold::STORAGE_FLAG_CE) {
// CE_n key
EncryptionPolicy ce_policy;
auto system_ce_path = android::vold::BuildDataSystemCePath(user_id);
auto misc_ce_path = android::vold::BuildDataMiscCePath(volume_uuid, user_id);
auto vendor_ce_path = android::vold::BuildDataVendorCePath(user_id);
auto media_ce_path = android::vold::BuildDataMediaCePath(volume_uuid, user_id);
auto user_ce_path = android::vold::BuildDataUserCePath(volume_uuid, user_id);
if (IsFbeEnabled()) {
if (volume_uuid.empty()) {
if (!lookup_policy(s_ce_policies, user_id, &ce_policy)) {
LOG(ERROR) << "Cannot find CE policy for user " << user_id;
return false;
}
} else {
auto misc_ce_empty_volume_path = android::vold::BuildDataMiscCePath("", user_id);
if (!read_or_create_volkey(misc_ce_empty_volume_path, volume_uuid, &ce_policy)) {
return false;
}
}
}
if (volume_uuid.empty()) {
if (!prepare_dir_with_policy(system_ce_path, 0770, AID_SYSTEM, AID_SYSTEM, ce_policy))
return false;
if (!prepare_dir_with_policy(vendor_ce_path, 0771, AID_ROOT, AID_ROOT, ce_policy))
return false;
}
if (!prepare_dir_with_policy(media_ce_path, 02770, AID_MEDIA_RW, AID_MEDIA_RW, ce_policy))
return false;
// On devices without sdcardfs (kernel 5.4+), the path permissions aren't fixed
// up automatically; therefore, use a default ACL, to ensure apps with MEDIA_RW
// can keep reading external storage; in particular, this allows app cloning
// scenarios to work correctly on such devices.
int ret = SetDefaultAcl(media_ce_path, 02770, AID_MEDIA_RW, AID_MEDIA_RW, {AID_MEDIA_RW});
if (ret != android::OK) {
return false;
}
if (!prepare_dir_with_policy(misc_ce_path, 01771, AID_SYSTEM, AID_MISC, ce_policy))
return false;
if (!prepare_dir_with_policy(user_ce_path, 0771, AID_SYSTEM, AID_SYSTEM, ce_policy))
return false;
if (volume_uuid.empty()) {
// Now that credentials have been installed, we can run restorecon
// over these paths
// NOTE: these paths need to be kept in sync with libselinux
android::vold::RestoreconRecursive(system_ce_path);
android::vold::RestoreconRecursive(vendor_ce_path);
android::vold::RestoreconRecursive(misc_ce_path);
}
}
if (!prepare_subdirs("prepare", volume_uuid, user_id, flags)) return false;
return true;
}
bool fscrypt_destroy_user_storage(const std::string& volume_uuid, userid_t user_id, int flags) {
LOG(DEBUG) << "fscrypt_destroy_user_storage for volume " << escape_empty(volume_uuid)
<< ", user " << user_id << ", flags " << flags;
bool res = true;
res &= prepare_subdirs("destroy", volume_uuid, user_id, flags);
if (flags & android::os::IVold::STORAGE_FLAG_CE) {
// CE_n key
auto system_ce_path = android::vold::BuildDataSystemCePath(user_id);
auto misc_ce_path = android::vold::BuildDataMiscCePath(volume_uuid, user_id);
auto vendor_ce_path = android::vold::BuildDataVendorCePath(user_id);
auto media_ce_path = android::vold::BuildDataMediaCePath(volume_uuid, user_id);
auto user_ce_path = android::vold::BuildDataUserCePath(volume_uuid, user_id);
res &= destroy_dir(media_ce_path);
res &= destroy_dir(misc_ce_path);
res &= destroy_dir(user_ce_path);
if (volume_uuid.empty()) {
res &= destroy_dir(system_ce_path);
res &= destroy_dir(vendor_ce_path);
} else {
if (IsFbeEnabled()) {
auto misc_ce_empty_volume_path = android::vold::BuildDataMiscCePath("", user_id);
res &= destroy_volkey(misc_ce_empty_volume_path, volume_uuid);
}
}
}
if (flags & android::os::IVold::STORAGE_FLAG_DE) {
// DE_sys key
auto system_legacy_path = android::vold::BuildDataSystemLegacyPath(user_id);
auto misc_legacy_path = android::vold::BuildDataMiscLegacyPath(user_id);
auto profiles_de_path = android::vold::BuildDataProfilesDePath(user_id);
// DE_n key
auto system_de_path = android::vold::BuildDataSystemDePath(user_id);
auto misc_de_path = android::vold::BuildDataMiscDePath(volume_uuid, user_id);
auto vendor_de_path = android::vold::BuildDataVendorDePath(user_id);
auto user_de_path = android::vold::BuildDataUserDePath(volume_uuid, user_id);
res &= destroy_dir(user_de_path);
res &= destroy_dir(misc_de_path);
if (volume_uuid.empty()) {
res &= destroy_dir(system_legacy_path);
#if MANAGE_MISC_DIRS
res &= destroy_dir(misc_legacy_path);
#endif
res &= destroy_dir(profiles_de_path);
res &= destroy_dir(system_de_path);
res &= destroy_dir(vendor_de_path);
} else {
if (IsFbeEnabled()) {
auto misc_de_empty_volume_path = android::vold::BuildDataMiscDePath("", user_id);
res &= destroy_volkey(misc_de_empty_volume_path, volume_uuid);
}
}
}
return res;
}
static bool destroy_volume_keys(const std::string& directory_path, const std::string& volume_uuid) {
auto dirp = std::unique_ptr<DIR, int (*)(DIR*)>(opendir(directory_path.c_str()), closedir);
if (!dirp) {
PLOG(ERROR) << "Unable to open directory: " + directory_path;
return false;
}
bool res = true;
for (;;) {
errno = 0;
auto const entry = readdir(dirp.get());
if (!entry) {
if (errno) {
PLOG(ERROR) << "Unable to read directory: " + directory_path;
return false;
}
break;
}
if (IsDotOrDotDot(*entry)) continue;
if (entry->d_type != DT_DIR || entry->d_name[0] == '.') {
LOG(DEBUG) << "Skipping non-user " << entry->d_name;
continue;
}
res &= destroy_volkey(directory_path + "/" + entry->d_name, volume_uuid);
}
return res;
}
bool fscrypt_destroy_volume_keys(const std::string& volume_uuid) {
bool res = true;
LOG(DEBUG) << "fscrypt_destroy_volume_keys for volume " << escape_empty(volume_uuid);
auto secdiscardable_path = volume_secdiscardable_path(volume_uuid);
res &= android::vold::runSecdiscardSingle(secdiscardable_path);
res &= destroy_volume_keys("/data/misc_ce", volume_uuid);
res &= destroy_volume_keys("/data/misc_de", volume_uuid);
return res;
}