platform_system_vold/model/PublicVolume.cpp
Martijn Coenen a485006ab1 Configure backing device max_ratio for FUSE filesystems.
By default FUSE filesystems have a max_ratio of 1%, meaning only 1% of
dirty pages on the system can belong to a FUSE filesystem before we
start writing back pages (and throttling, if writeback can't keep up).
This limit is useful for untrusted filesystems, but in our case, we
trust the FUSE filesystem. Since FUSE writes result in writes to the
lower filesystem, FUSE should take at most 50%. Let's start with
changing max_ratio to 40%, to avoid needless throttling.

Bug: 159254170
Bug: 159770752
Test: inspect /sys/class/bdi manually after boot
Change-Id: I467e3770fc4afba0a08fa480c0b86aa054c8b875
2020-06-30 10:16:55 +02:00

364 lines
11 KiB
C++

/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "PublicVolume.h"
#include "AppFuseUtil.h"
#include "Utils.h"
#include "VolumeManager.h"
#include "fs/Exfat.h"
#include "fs/Vfat.h"
#include <android-base/logging.h>
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <cutils/fs.h>
#include <private/android_filesystem_config.h>
#include <utils/Timers.h>
#include <fcntl.h>
#include <stdlib.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <sys/sysmacros.h>
#include <sys/types.h>
#include <sys/wait.h>
using android::base::GetBoolProperty;
using android::base::StringPrintf;
namespace android {
namespace vold {
static const char* kSdcardFsPath = "/system/bin/sdcard";
static const char* kAsecPath = "/mnt/secure/asec";
PublicVolume::PublicVolume(dev_t device) : VolumeBase(Type::kPublic), mDevice(device) {
setId(StringPrintf("public:%u,%u", major(device), minor(device)));
mDevPath = StringPrintf("/dev/block/vold/%s", getId().c_str());
mFuseMounted = false;
mUseSdcardFs = IsSdcardfsUsed();
}
PublicVolume::~PublicVolume() {}
status_t PublicVolume::readMetadata() {
status_t res = ReadMetadataUntrusted(mDevPath, &mFsType, &mFsUuid, &mFsLabel);
auto listener = getListener();
if (listener) listener->onVolumeMetadataChanged(getId(), mFsType, mFsUuid, mFsLabel);
return res;
}
status_t PublicVolume::initAsecStage() {
std::string legacyPath(mRawPath + "/android_secure");
std::string securePath(mRawPath + "/.android_secure");
// Recover legacy secure path
if (!access(legacyPath.c_str(), R_OK | X_OK) && access(securePath.c_str(), R_OK | X_OK)) {
if (rename(legacyPath.c_str(), securePath.c_str())) {
PLOG(WARNING) << getId() << " failed to rename legacy ASEC dir";
}
}
if (TEMP_FAILURE_RETRY(mkdir(securePath.c_str(), 0700))) {
if (errno != EEXIST) {
PLOG(WARNING) << getId() << " creating ASEC stage failed";
return -errno;
}
}
BindMount(securePath, kAsecPath);
return OK;
}
status_t PublicVolume::doCreate() {
return CreateDeviceNode(mDevPath, mDevice);
}
status_t PublicVolume::doDestroy() {
return DestroyDeviceNode(mDevPath);
}
status_t PublicVolume::doMount() {
bool isVisible = getMountFlags() & MountFlags::kVisible;
readMetadata();
if (mFsType == "vfat" && vfat::IsSupported()) {
if (vfat::Check(mDevPath)) {
LOG(ERROR) << getId() << " failed filesystem check";
return -EIO;
}
} else if (mFsType == "exfat" && exfat::IsSupported()) {
if (exfat::Check(mDevPath)) {
LOG(ERROR) << getId() << " failed filesystem check";
return -EIO;
}
} else {
LOG(ERROR) << getId() << " unsupported filesystem " << mFsType;
return -EIO;
}
// Use UUID as stable name, if available
std::string stableName = getId();
if (!mFsUuid.empty()) {
stableName = mFsUuid;
}
mRawPath = StringPrintf("/mnt/media_rw/%s", stableName.c_str());
mSdcardFsDefault = StringPrintf("/mnt/runtime/default/%s", stableName.c_str());
mSdcardFsRead = StringPrintf("/mnt/runtime/read/%s", stableName.c_str());
mSdcardFsWrite = StringPrintf("/mnt/runtime/write/%s", stableName.c_str());
mSdcardFsFull = StringPrintf("/mnt/runtime/full/%s", stableName.c_str());
setInternalPath(mRawPath);
if (isVisible) {
setPath(StringPrintf("/storage/%s", stableName.c_str()));
} else {
setPath(mRawPath);
}
if (fs_prepare_dir(mRawPath.c_str(), 0700, AID_ROOT, AID_ROOT)) {
PLOG(ERROR) << getId() << " failed to create mount points";
return -errno;
}
if (mFsType == "vfat") {
if (vfat::Mount(mDevPath, mRawPath, false, false, false, AID_ROOT,
(isVisible ? AID_MEDIA_RW : AID_EXTERNAL_STORAGE), 0007, true)) {
PLOG(ERROR) << getId() << " failed to mount " << mDevPath;
return -EIO;
}
} else if (mFsType == "exfat") {
if (exfat::Mount(mDevPath, mRawPath, AID_ROOT,
(isVisible ? AID_MEDIA_RW : AID_EXTERNAL_STORAGE), 0007)) {
PLOG(ERROR) << getId() << " failed to mount " << mDevPath;
return -EIO;
}
}
if (getMountFlags() & MountFlags::kPrimary) {
initAsecStage();
}
if (!isVisible) {
// Not visible to apps, so no need to spin up sdcardfs or FUSE
return OK;
}
if (mUseSdcardFs) {
if (fs_prepare_dir(mSdcardFsDefault.c_str(), 0700, AID_ROOT, AID_ROOT) ||
fs_prepare_dir(mSdcardFsRead.c_str(), 0700, AID_ROOT, AID_ROOT) ||
fs_prepare_dir(mSdcardFsWrite.c_str(), 0700, AID_ROOT, AID_ROOT) ||
fs_prepare_dir(mSdcardFsFull.c_str(), 0700, AID_ROOT, AID_ROOT)) {
PLOG(ERROR) << getId() << " failed to create sdcardfs mount points";
return -errno;
}
dev_t before = GetDevice(mSdcardFsFull);
int sdcardFsPid;
if (!(sdcardFsPid = fork())) {
if (getMountFlags() & MountFlags::kPrimary) {
// clang-format off
if (execl(kSdcardFsPath, kSdcardFsPath,
"-u", "1023", // AID_MEDIA_RW
"-g", "1023", // AID_MEDIA_RW
"-U", std::to_string(getMountUserId()).c_str(),
"-w",
mRawPath.c_str(),
stableName.c_str(),
NULL)) {
// clang-format on
PLOG(ERROR) << "Failed to exec";
}
} else {
// clang-format off
if (execl(kSdcardFsPath, kSdcardFsPath,
"-u", "1023", // AID_MEDIA_RW
"-g", "1023", // AID_MEDIA_RW
"-U", std::to_string(getMountUserId()).c_str(),
mRawPath.c_str(),
stableName.c_str(),
NULL)) {
// clang-format on
PLOG(ERROR) << "Failed to exec";
}
}
LOG(ERROR) << "sdcardfs exiting";
_exit(1);
}
if (sdcardFsPid == -1) {
PLOG(ERROR) << getId() << " failed to fork";
return -errno;
}
nsecs_t start = systemTime(SYSTEM_TIME_BOOTTIME);
while (before == GetDevice(mSdcardFsFull)) {
LOG(DEBUG) << "Waiting for sdcardfs to spin up...";
usleep(50000); // 50ms
nsecs_t now = systemTime(SYSTEM_TIME_BOOTTIME);
if (nanoseconds_to_milliseconds(now - start) > 5000) {
LOG(WARNING) << "Timed out while waiting for sdcardfs to spin up";
return -ETIMEDOUT;
}
}
/* sdcardfs will have exited already. The filesystem will still be running */
TEMP_FAILURE_RETRY(waitpid(sdcardFsPid, nullptr, 0));
}
bool isFuse = base::GetBoolProperty(kPropFuse, false);
if (isFuse) {
// We need to mount FUSE *after* sdcardfs, since the FUSE daemon may depend
// on sdcardfs being up.
LOG(INFO) << "Mounting public fuse volume";
android::base::unique_fd fd;
int user_id = getMountUserId();
int result = MountUserFuse(user_id, getInternalPath(), stableName, &fd);
if (result != 0) {
LOG(ERROR) << "Failed to mount public fuse volume";
doUnmount();
return -result;
}
mFuseMounted = true;
auto callback = getMountCallback();
if (callback) {
bool is_ready = false;
callback->onVolumeChecking(std::move(fd), getPath(), getInternalPath(), &is_ready);
if (!is_ready) {
LOG(ERROR) << "Failed to complete public volume mount";
doUnmount();
return -EIO;
}
}
ConfigureReadAheadForFuse(GetFuseMountPathForUser(user_id, stableName), 256u);
// See comment in model/EmulatedVolume.cpp
ConfigureMaxDirtyRatioForFuse(GetFuseMountPathForUser(user_id, stableName), 40u);
}
return OK;
}
status_t PublicVolume::doUnmount() {
// Unmount the storage before we kill the FUSE process. If we kill
// the FUSE process first, most file system operations will return
// ENOTCONN until the unmount completes. This is an exotic and unusual
// error code and might cause broken behaviour in applications.
KillProcessesUsingPath(getPath());
if (mFuseMounted) {
// Use UUID as stable name, if available
std::string stableName = getId();
if (!mFsUuid.empty()) {
stableName = mFsUuid;
}
if (UnmountUserFuse(getMountUserId(), getInternalPath(), stableName) != OK) {
PLOG(INFO) << "UnmountUserFuse failed on public fuse volume";
return -errno;
}
mFuseMounted = false;
}
ForceUnmount(kAsecPath);
if (mUseSdcardFs) {
ForceUnmount(mSdcardFsDefault);
ForceUnmount(mSdcardFsRead);
ForceUnmount(mSdcardFsWrite);
ForceUnmount(mSdcardFsFull);
rmdir(mSdcardFsDefault.c_str());
rmdir(mSdcardFsRead.c_str());
rmdir(mSdcardFsWrite.c_str());
rmdir(mSdcardFsFull.c_str());
mSdcardFsDefault.clear();
mSdcardFsRead.clear();
mSdcardFsWrite.clear();
mSdcardFsFull.clear();
}
ForceUnmount(mRawPath);
rmdir(mRawPath.c_str());
mRawPath.clear();
return OK;
}
status_t PublicVolume::doFormat(const std::string& fsType) {
bool useVfat = vfat::IsSupported();
bool useExfat = exfat::IsSupported();
status_t res = OK;
// Resolve the target filesystem type
if (fsType == "auto" && useVfat && useExfat) {
uint64_t size = 0;
res = GetBlockDevSize(mDevPath, &size);
if (res != OK) {
LOG(ERROR) << "Couldn't get device size " << mDevPath;
return res;
}
// If both vfat & exfat are supported use exfat for SDXC (>~32GiB) cards
if (size > 32896LL * 1024 * 1024) {
useVfat = false;
} else {
useExfat = false;
}
} else if (fsType == "vfat") {
useExfat = false;
} else if (fsType == "exfat") {
useVfat = false;
}
if (!useVfat && !useExfat) {
LOG(ERROR) << "Unsupported filesystem " << fsType;
return -EINVAL;
}
if (WipeBlockDevice(mDevPath) != OK) {
LOG(WARNING) << getId() << " failed to wipe";
}
if (useVfat) {
res = vfat::Format(mDevPath, 0);
} else if (useExfat) {
res = exfat::Format(mDevPath);
}
if (res != OK) {
LOG(ERROR) << getId() << " failed to format";
res = -errno;
}
return res;
}
} // namespace vold
} // namespace android