7373716c6d
Change-Id: I6eb9f21fff124b8b22f4fae2ac74c2b41d93b384
2085 lines
64 KiB
C
2085 lines
64 KiB
C
/*
|
|
* Copyright (C) 2010 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
/* TO DO:
|
|
* 1. Perhaps keep several copies of the encrypted key, in case something
|
|
* goes horribly wrong?
|
|
*
|
|
*/
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/wait.h>
|
|
#include <sys/stat.h>
|
|
#include <fcntl.h>
|
|
#include <inttypes.h>
|
|
#include <unistd.h>
|
|
#include <stdio.h>
|
|
#include <sys/ioctl.h>
|
|
#include <linux/dm-ioctl.h>
|
|
#include <libgen.h>
|
|
#include <stdlib.h>
|
|
#include <sys/param.h>
|
|
#include <string.h>
|
|
#include <sys/mount.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/sha.h>
|
|
#include <errno.h>
|
|
#include <ext4.h>
|
|
#include <linux/kdev_t.h>
|
|
#include <fs_mgr.h>
|
|
#include "cryptfs.h"
|
|
#define LOG_TAG "Cryptfs"
|
|
#include "cutils/log.h"
|
|
#include "cutils/properties.h"
|
|
#include "cutils/android_reboot.h"
|
|
#include "hardware_legacy/power.h"
|
|
#include <logwrap/logwrap.h>
|
|
#include "VolumeManager.h"
|
|
#include "VoldUtil.h"
|
|
#include "crypto_scrypt.h"
|
|
|
|
#define UNUSED __attribute__((unused))
|
|
|
|
#define DM_CRYPT_BUF_SIZE 4096
|
|
#define DATA_MNT_POINT "/data"
|
|
|
|
#define HASH_COUNT 2000
|
|
#define KEY_LEN_BYTES 16
|
|
#define IV_LEN_BYTES 16
|
|
|
|
#define KEY_IN_FOOTER "footer"
|
|
|
|
#define EXT4_FS 1
|
|
#define FAT_FS 2
|
|
|
|
#define TABLE_LOAD_RETRIES 10
|
|
|
|
char *me = "cryptfs";
|
|
|
|
static unsigned char saved_master_key[KEY_LEN_BYTES];
|
|
static char *saved_mount_point;
|
|
static int master_key_saved = 0;
|
|
static struct crypt_persist_data *persist_data = NULL;
|
|
|
|
extern struct fstab *fstab;
|
|
|
|
static void cryptfs_reboot(int recovery)
|
|
{
|
|
if (recovery) {
|
|
property_set(ANDROID_RB_PROPERTY, "reboot,recovery");
|
|
} else {
|
|
property_set(ANDROID_RB_PROPERTY, "reboot");
|
|
}
|
|
sleep(20);
|
|
|
|
/* Shouldn't get here, reboot should happen before sleep times out */
|
|
return;
|
|
}
|
|
|
|
static void ioctl_init(struct dm_ioctl *io, size_t dataSize, const char *name, unsigned flags)
|
|
{
|
|
memset(io, 0, dataSize);
|
|
io->data_size = dataSize;
|
|
io->data_start = sizeof(struct dm_ioctl);
|
|
io->version[0] = 4;
|
|
io->version[1] = 0;
|
|
io->version[2] = 0;
|
|
io->flags = flags;
|
|
if (name) {
|
|
strncpy(io->name, name, sizeof(io->name));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Gets the default device scrypt parameters for key derivation time tuning.
|
|
* The parameters should lead to about one second derivation time for the
|
|
* given device.
|
|
*/
|
|
static void get_device_scrypt_params(struct crypt_mnt_ftr *ftr) {
|
|
const int default_params[] = SCRYPT_DEFAULTS;
|
|
int params[] = SCRYPT_DEFAULTS;
|
|
char paramstr[PROPERTY_VALUE_MAX];
|
|
char *token;
|
|
char *saveptr;
|
|
int i;
|
|
|
|
property_get(SCRYPT_PROP, paramstr, "");
|
|
if (paramstr[0] != '\0') {
|
|
/*
|
|
* The token we're looking for should be three integers separated by
|
|
* colons (e.g., "12:8:1"). Scan the property to make sure it matches.
|
|
*/
|
|
for (i = 0, token = strtok_r(paramstr, ":", &saveptr);
|
|
token != NULL && i < 3;
|
|
i++, token = strtok_r(NULL, ":", &saveptr)) {
|
|
char *endptr;
|
|
params[i] = strtol(token, &endptr, 10);
|
|
|
|
/*
|
|
* Check that there was a valid number and it's 8-bit. If not,
|
|
* break out and the end check will take the default values.
|
|
*/
|
|
if ((*token == '\0') || (*endptr != '\0') || params[i] < 0 || params[i] > 255) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If there were not enough tokens or a token was malformed (not an
|
|
* integer), it will end up here and the default parameters can be
|
|
* taken.
|
|
*/
|
|
if ((i != 3) || (token != NULL)) {
|
|
SLOGW("bad scrypt parameters '%s' should be like '12:8:1'; using defaults", paramstr);
|
|
memcpy(params, default_params, sizeof(params));
|
|
}
|
|
}
|
|
|
|
ftr->N_factor = params[0];
|
|
ftr->r_factor = params[1];
|
|
ftr->p_factor = params[2];
|
|
}
|
|
|
|
static unsigned int get_fs_size(char *dev)
|
|
{
|
|
int fd, block_size;
|
|
struct ext4_super_block sb;
|
|
off64_t len;
|
|
|
|
if ((fd = open(dev, O_RDONLY)) < 0) {
|
|
SLOGE("Cannot open device to get filesystem size ");
|
|
return 0;
|
|
}
|
|
|
|
if (lseek64(fd, 1024, SEEK_SET) < 0) {
|
|
SLOGE("Cannot seek to superblock");
|
|
return 0;
|
|
}
|
|
|
|
if (read(fd, &sb, sizeof(sb)) != sizeof(sb)) {
|
|
SLOGE("Cannot read superblock");
|
|
return 0;
|
|
}
|
|
|
|
close(fd);
|
|
|
|
block_size = 1024 << sb.s_log_block_size;
|
|
/* compute length in bytes */
|
|
len = ( ((off64_t)sb.s_blocks_count_hi << 32) + sb.s_blocks_count_lo) * block_size;
|
|
|
|
/* return length in sectors */
|
|
return (unsigned int) (len / 512);
|
|
}
|
|
|
|
static int get_crypt_ftr_info(char **metadata_fname, off64_t *off)
|
|
{
|
|
static int cached_data = 0;
|
|
static off64_t cached_off = 0;
|
|
static char cached_metadata_fname[PROPERTY_VALUE_MAX] = "";
|
|
int fd;
|
|
char key_loc[PROPERTY_VALUE_MAX];
|
|
char real_blkdev[PROPERTY_VALUE_MAX];
|
|
unsigned int nr_sec;
|
|
int rc = -1;
|
|
|
|
if (!cached_data) {
|
|
fs_mgr_get_crypt_info(fstab, key_loc, real_blkdev, sizeof(key_loc));
|
|
|
|
if (!strcmp(key_loc, KEY_IN_FOOTER)) {
|
|
if ( (fd = open(real_blkdev, O_RDWR)) < 0) {
|
|
SLOGE("Cannot open real block device %s\n", real_blkdev);
|
|
return -1;
|
|
}
|
|
|
|
if ((nr_sec = get_blkdev_size(fd))) {
|
|
/* If it's an encrypted Android partition, the last 16 Kbytes contain the
|
|
* encryption info footer and key, and plenty of bytes to spare for future
|
|
* growth.
|
|
*/
|
|
strlcpy(cached_metadata_fname, real_blkdev, sizeof(cached_metadata_fname));
|
|
cached_off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET;
|
|
cached_data = 1;
|
|
} else {
|
|
SLOGE("Cannot get size of block device %s\n", real_blkdev);
|
|
}
|
|
close(fd);
|
|
} else {
|
|
strlcpy(cached_metadata_fname, key_loc, sizeof(cached_metadata_fname));
|
|
cached_off = 0;
|
|
cached_data = 1;
|
|
}
|
|
}
|
|
|
|
if (cached_data) {
|
|
if (metadata_fname) {
|
|
*metadata_fname = cached_metadata_fname;
|
|
}
|
|
if (off) {
|
|
*off = cached_off;
|
|
}
|
|
rc = 0;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* key or salt can be NULL, in which case just skip writing that value. Useful to
|
|
* update the failed mount count but not change the key.
|
|
*/
|
|
static int put_crypt_ftr_and_key(struct crypt_mnt_ftr *crypt_ftr)
|
|
{
|
|
int fd;
|
|
unsigned int nr_sec, cnt;
|
|
/* starting_off is set to the SEEK_SET offset
|
|
* where the crypto structure starts
|
|
*/
|
|
off64_t starting_off;
|
|
int rc = -1;
|
|
char *fname = NULL;
|
|
struct stat statbuf;
|
|
|
|
if (get_crypt_ftr_info(&fname, &starting_off)) {
|
|
SLOGE("Unable to get crypt_ftr_info\n");
|
|
return -1;
|
|
}
|
|
if (fname[0] != '/') {
|
|
SLOGE("Unexpected value for crypto key location\n");
|
|
return -1;
|
|
}
|
|
if ( (fd = open(fname, O_RDWR | O_CREAT, 0600)) < 0) {
|
|
SLOGE("Cannot open footer file %s for put\n", fname);
|
|
return -1;
|
|
}
|
|
|
|
/* Seek to the start of the crypt footer */
|
|
if (lseek64(fd, starting_off, SEEK_SET) == -1) {
|
|
SLOGE("Cannot seek to real block device footer\n");
|
|
goto errout;
|
|
}
|
|
|
|
if ((cnt = write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) {
|
|
SLOGE("Cannot write real block device footer\n");
|
|
goto errout;
|
|
}
|
|
|
|
fstat(fd, &statbuf);
|
|
/* If the keys are kept on a raw block device, do not try to truncate it. */
|
|
if (S_ISREG(statbuf.st_mode)) {
|
|
if (ftruncate(fd, 0x4000)) {
|
|
SLOGE("Cannot set footer file size\n");
|
|
goto errout;
|
|
}
|
|
}
|
|
|
|
/* Success! */
|
|
rc = 0;
|
|
|
|
errout:
|
|
close(fd);
|
|
return rc;
|
|
|
|
}
|
|
|
|
static inline int unix_read(int fd, void* buff, int len)
|
|
{
|
|
return TEMP_FAILURE_RETRY(read(fd, buff, len));
|
|
}
|
|
|
|
static inline int unix_write(int fd, const void* buff, int len)
|
|
{
|
|
return TEMP_FAILURE_RETRY(write(fd, buff, len));
|
|
}
|
|
|
|
static void init_empty_persist_data(struct crypt_persist_data *pdata, int len)
|
|
{
|
|
memset(pdata, 0, len);
|
|
pdata->persist_magic = PERSIST_DATA_MAGIC;
|
|
pdata->persist_valid_entries = 0;
|
|
}
|
|
|
|
/* A routine to update the passed in crypt_ftr to the lastest version.
|
|
* fd is open read/write on the device that holds the crypto footer and persistent
|
|
* data, crypt_ftr is a pointer to the struct to be updated, and offset is the
|
|
* absolute offset to the start of the crypt_mnt_ftr on the passed in fd.
|
|
*/
|
|
static void upgrade_crypt_ftr(int fd, struct crypt_mnt_ftr *crypt_ftr, off64_t offset)
|
|
{
|
|
int orig_major = crypt_ftr->major_version;
|
|
int orig_minor = crypt_ftr->minor_version;
|
|
|
|
if ((crypt_ftr->major_version == 1) && (crypt_ftr->minor_version == 0)) {
|
|
struct crypt_persist_data *pdata;
|
|
off64_t pdata_offset = offset + CRYPT_FOOTER_TO_PERSIST_OFFSET;
|
|
|
|
SLOGW("upgrading crypto footer to 1.1");
|
|
|
|
pdata = malloc(CRYPT_PERSIST_DATA_SIZE);
|
|
if (pdata == NULL) {
|
|
SLOGE("Cannot allocate persisent data\n");
|
|
return;
|
|
}
|
|
memset(pdata, 0, CRYPT_PERSIST_DATA_SIZE);
|
|
|
|
/* Need to initialize the persistent data area */
|
|
if (lseek64(fd, pdata_offset, SEEK_SET) == -1) {
|
|
SLOGE("Cannot seek to persisent data offset\n");
|
|
return;
|
|
}
|
|
/* Write all zeros to the first copy, making it invalid */
|
|
unix_write(fd, pdata, CRYPT_PERSIST_DATA_SIZE);
|
|
|
|
/* Write a valid but empty structure to the second copy */
|
|
init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE);
|
|
unix_write(fd, pdata, CRYPT_PERSIST_DATA_SIZE);
|
|
|
|
/* Update the footer */
|
|
crypt_ftr->persist_data_size = CRYPT_PERSIST_DATA_SIZE;
|
|
crypt_ftr->persist_data_offset[0] = pdata_offset;
|
|
crypt_ftr->persist_data_offset[1] = pdata_offset + CRYPT_PERSIST_DATA_SIZE;
|
|
crypt_ftr->minor_version = 1;
|
|
}
|
|
|
|
if ((crypt_ftr->major_version == 1) && (crypt_ftr->minor_version)) {
|
|
SLOGW("upgrading crypto footer to 1.2");
|
|
/* But keep the old kdf_type.
|
|
* It will get updated later to KDF_SCRYPT after the password has been verified.
|
|
*/
|
|
crypt_ftr->kdf_type = KDF_PBKDF2;
|
|
get_device_scrypt_params(crypt_ftr);
|
|
crypt_ftr->minor_version = 2;
|
|
}
|
|
|
|
if ((orig_major != crypt_ftr->major_version) || (orig_minor != crypt_ftr->minor_version)) {
|
|
if (lseek64(fd, offset, SEEK_SET) == -1) {
|
|
SLOGE("Cannot seek to crypt footer\n");
|
|
return;
|
|
}
|
|
unix_write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr));
|
|
}
|
|
}
|
|
|
|
|
|
static int get_crypt_ftr_and_key(struct crypt_mnt_ftr *crypt_ftr)
|
|
{
|
|
int fd;
|
|
unsigned int nr_sec, cnt;
|
|
off64_t starting_off;
|
|
int rc = -1;
|
|
char *fname = NULL;
|
|
struct stat statbuf;
|
|
|
|
if (get_crypt_ftr_info(&fname, &starting_off)) {
|
|
SLOGE("Unable to get crypt_ftr_info\n");
|
|
return -1;
|
|
}
|
|
if (fname[0] != '/') {
|
|
SLOGE("Unexpected value for crypto key location\n");
|
|
return -1;
|
|
}
|
|
if ( (fd = open(fname, O_RDWR)) < 0) {
|
|
SLOGE("Cannot open footer file %s for get\n", fname);
|
|
return -1;
|
|
}
|
|
|
|
/* Make sure it's 16 Kbytes in length */
|
|
fstat(fd, &statbuf);
|
|
if (S_ISREG(statbuf.st_mode) && (statbuf.st_size != 0x4000)) {
|
|
SLOGE("footer file %s is not the expected size!\n", fname);
|
|
goto errout;
|
|
}
|
|
|
|
/* Seek to the start of the crypt footer */
|
|
if (lseek64(fd, starting_off, SEEK_SET) == -1) {
|
|
SLOGE("Cannot seek to real block device footer\n");
|
|
goto errout;
|
|
}
|
|
|
|
if ( (cnt = read(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) {
|
|
SLOGE("Cannot read real block device footer\n");
|
|
goto errout;
|
|
}
|
|
|
|
if (crypt_ftr->magic != CRYPT_MNT_MAGIC) {
|
|
SLOGE("Bad magic for real block device %s\n", fname);
|
|
goto errout;
|
|
}
|
|
|
|
if (crypt_ftr->major_version != CURRENT_MAJOR_VERSION) {
|
|
SLOGE("Cannot understand major version %d real block device footer; expected %d\n",
|
|
crypt_ftr->major_version, CURRENT_MAJOR_VERSION);
|
|
goto errout;
|
|
}
|
|
|
|
if (crypt_ftr->minor_version > CURRENT_MINOR_VERSION) {
|
|
SLOGW("Warning: crypto footer minor version %d, expected <= %d, continuing...\n",
|
|
crypt_ftr->minor_version, CURRENT_MINOR_VERSION);
|
|
}
|
|
|
|
/* If this is a verion 1.0 crypt_ftr, make it a 1.1 crypt footer, and update the
|
|
* copy on disk before returning.
|
|
*/
|
|
if (crypt_ftr->minor_version < CURRENT_MINOR_VERSION) {
|
|
upgrade_crypt_ftr(fd, crypt_ftr, starting_off);
|
|
}
|
|
|
|
/* Success! */
|
|
rc = 0;
|
|
|
|
errout:
|
|
close(fd);
|
|
return rc;
|
|
}
|
|
|
|
static int validate_persistent_data_storage(struct crypt_mnt_ftr *crypt_ftr)
|
|
{
|
|
if (crypt_ftr->persist_data_offset[0] + crypt_ftr->persist_data_size >
|
|
crypt_ftr->persist_data_offset[1]) {
|
|
SLOGE("Crypt_ftr persist data regions overlap");
|
|
return -1;
|
|
}
|
|
|
|
if (crypt_ftr->persist_data_offset[0] >= crypt_ftr->persist_data_offset[1]) {
|
|
SLOGE("Crypt_ftr persist data region 0 starts after region 1");
|
|
return -1;
|
|
}
|
|
|
|
if (((crypt_ftr->persist_data_offset[1] + crypt_ftr->persist_data_size) -
|
|
(crypt_ftr->persist_data_offset[0] - CRYPT_FOOTER_TO_PERSIST_OFFSET)) >
|
|
CRYPT_FOOTER_OFFSET) {
|
|
SLOGE("Persistent data extends past crypto footer");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int load_persistent_data(void)
|
|
{
|
|
struct crypt_mnt_ftr crypt_ftr;
|
|
struct crypt_persist_data *pdata = NULL;
|
|
char encrypted_state[PROPERTY_VALUE_MAX];
|
|
char *fname;
|
|
int found = 0;
|
|
int fd;
|
|
int ret;
|
|
int i;
|
|
|
|
if (persist_data) {
|
|
/* Nothing to do, we've already loaded or initialized it */
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* If not encrypted, just allocate an empty table and initialize it */
|
|
property_get("ro.crypto.state", encrypted_state, "");
|
|
if (strcmp(encrypted_state, "encrypted") ) {
|
|
pdata = malloc(CRYPT_PERSIST_DATA_SIZE);
|
|
if (pdata) {
|
|
init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE);
|
|
persist_data = pdata;
|
|
return 0;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
if(get_crypt_ftr_and_key(&crypt_ftr)) {
|
|
return -1;
|
|
}
|
|
|
|
if ((crypt_ftr.major_version != 1) || (crypt_ftr.minor_version != 1)) {
|
|
SLOGE("Crypt_ftr version doesn't support persistent data");
|
|
return -1;
|
|
}
|
|
|
|
if (get_crypt_ftr_info(&fname, NULL)) {
|
|
return -1;
|
|
}
|
|
|
|
ret = validate_persistent_data_storage(&crypt_ftr);
|
|
if (ret) {
|
|
return -1;
|
|
}
|
|
|
|
fd = open(fname, O_RDONLY);
|
|
if (fd < 0) {
|
|
SLOGE("Cannot open %s metadata file", fname);
|
|
return -1;
|
|
}
|
|
|
|
if (persist_data == NULL) {
|
|
pdata = malloc(crypt_ftr.persist_data_size);
|
|
if (pdata == NULL) {
|
|
SLOGE("Cannot allocate memory for persistent data");
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
if (lseek64(fd, crypt_ftr.persist_data_offset[i], SEEK_SET) < 0) {
|
|
SLOGE("Cannot seek to read persistent data on %s", fname);
|
|
goto err2;
|
|
}
|
|
if (unix_read(fd, pdata, crypt_ftr.persist_data_size) < 0){
|
|
SLOGE("Error reading persistent data on iteration %d", i);
|
|
goto err2;
|
|
}
|
|
if (pdata->persist_magic == PERSIST_DATA_MAGIC) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found) {
|
|
SLOGI("Could not find valid persistent data, creating");
|
|
init_empty_persist_data(pdata, crypt_ftr.persist_data_size);
|
|
}
|
|
|
|
/* Success */
|
|
persist_data = pdata;
|
|
close(fd);
|
|
return 0;
|
|
|
|
err2:
|
|
free(pdata);
|
|
|
|
err:
|
|
close(fd);
|
|
return -1;
|
|
}
|
|
|
|
static int save_persistent_data(void)
|
|
{
|
|
struct crypt_mnt_ftr crypt_ftr;
|
|
struct crypt_persist_data *pdata;
|
|
char *fname;
|
|
off64_t write_offset;
|
|
off64_t erase_offset;
|
|
int found = 0;
|
|
int fd;
|
|
int ret;
|
|
|
|
if (persist_data == NULL) {
|
|
SLOGE("No persistent data to save");
|
|
return -1;
|
|
}
|
|
|
|
if(get_crypt_ftr_and_key(&crypt_ftr)) {
|
|
return -1;
|
|
}
|
|
|
|
if ((crypt_ftr.major_version != 1) || (crypt_ftr.minor_version != 1)) {
|
|
SLOGE("Crypt_ftr version doesn't support persistent data");
|
|
return -1;
|
|
}
|
|
|
|
ret = validate_persistent_data_storage(&crypt_ftr);
|
|
if (ret) {
|
|
return -1;
|
|
}
|
|
|
|
if (get_crypt_ftr_info(&fname, NULL)) {
|
|
return -1;
|
|
}
|
|
|
|
fd = open(fname, O_RDWR);
|
|
if (fd < 0) {
|
|
SLOGE("Cannot open %s metadata file", fname);
|
|
return -1;
|
|
}
|
|
|
|
pdata = malloc(crypt_ftr.persist_data_size);
|
|
if (pdata == NULL) {
|
|
SLOGE("Cannot allocate persistant data");
|
|
goto err;
|
|
}
|
|
|
|
if (lseek64(fd, crypt_ftr.persist_data_offset[0], SEEK_SET) < 0) {
|
|
SLOGE("Cannot seek to read persistent data on %s", fname);
|
|
goto err2;
|
|
}
|
|
|
|
if (unix_read(fd, pdata, crypt_ftr.persist_data_size) < 0) {
|
|
SLOGE("Error reading persistent data before save");
|
|
goto err2;
|
|
}
|
|
|
|
if (pdata->persist_magic == PERSIST_DATA_MAGIC) {
|
|
/* The first copy is the curent valid copy, so write to
|
|
* the second copy and erase this one */
|
|
write_offset = crypt_ftr.persist_data_offset[1];
|
|
erase_offset = crypt_ftr.persist_data_offset[0];
|
|
} else {
|
|
/* The second copy must be the valid copy, so write to
|
|
* the first copy, and erase the second */
|
|
write_offset = crypt_ftr.persist_data_offset[0];
|
|
erase_offset = crypt_ftr.persist_data_offset[1];
|
|
}
|
|
|
|
/* Write the new copy first, if successful, then erase the old copy */
|
|
if (lseek(fd, write_offset, SEEK_SET) < 0) {
|
|
SLOGE("Cannot seek to write persistent data");
|
|
goto err2;
|
|
}
|
|
if (unix_write(fd, persist_data, crypt_ftr.persist_data_size) ==
|
|
(int) crypt_ftr.persist_data_size) {
|
|
if (lseek(fd, erase_offset, SEEK_SET) < 0) {
|
|
SLOGE("Cannot seek to erase previous persistent data");
|
|
goto err2;
|
|
}
|
|
fsync(fd);
|
|
memset(pdata, 0, crypt_ftr.persist_data_size);
|
|
if (unix_write(fd, pdata, crypt_ftr.persist_data_size) !=
|
|
(int) crypt_ftr.persist_data_size) {
|
|
SLOGE("Cannot write to erase previous persistent data");
|
|
goto err2;
|
|
}
|
|
fsync(fd);
|
|
} else {
|
|
SLOGE("Cannot write to save persistent data");
|
|
goto err2;
|
|
}
|
|
|
|
/* Success */
|
|
free(pdata);
|
|
close(fd);
|
|
return 0;
|
|
|
|
err2:
|
|
free(pdata);
|
|
err:
|
|
close(fd);
|
|
return -1;
|
|
}
|
|
|
|
/* Convert a binary key of specified length into an ascii hex string equivalent,
|
|
* without the leading 0x and with null termination
|
|
*/
|
|
void convert_key_to_hex_ascii(unsigned char *master_key, unsigned int keysize,
|
|
char *master_key_ascii)
|
|
{
|
|
unsigned int i, a;
|
|
unsigned char nibble;
|
|
|
|
for (i=0, a=0; i<keysize; i++, a+=2) {
|
|
/* For each byte, write out two ascii hex digits */
|
|
nibble = (master_key[i] >> 4) & 0xf;
|
|
master_key_ascii[a] = nibble + (nibble > 9 ? 0x37 : 0x30);
|
|
|
|
nibble = master_key[i] & 0xf;
|
|
master_key_ascii[a+1] = nibble + (nibble > 9 ? 0x37 : 0x30);
|
|
}
|
|
|
|
/* Add the null termination */
|
|
master_key_ascii[a] = '\0';
|
|
|
|
}
|
|
|
|
static int load_crypto_mapping_table(struct crypt_mnt_ftr *crypt_ftr, unsigned char *master_key,
|
|
char *real_blk_name, const char *name, int fd,
|
|
char *extra_params)
|
|
{
|
|
char buffer[DM_CRYPT_BUF_SIZE];
|
|
struct dm_ioctl *io;
|
|
struct dm_target_spec *tgt;
|
|
char *crypt_params;
|
|
char master_key_ascii[129]; /* Large enough to hold 512 bit key and null */
|
|
int i;
|
|
|
|
io = (struct dm_ioctl *) buffer;
|
|
|
|
/* Load the mapping table for this device */
|
|
tgt = (struct dm_target_spec *) &buffer[sizeof(struct dm_ioctl)];
|
|
|
|
ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
|
|
io->target_count = 1;
|
|
tgt->status = 0;
|
|
tgt->sector_start = 0;
|
|
tgt->length = crypt_ftr->fs_size;
|
|
strcpy(tgt->target_type, "crypt");
|
|
|
|
crypt_params = buffer + sizeof(struct dm_ioctl) + sizeof(struct dm_target_spec);
|
|
convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii);
|
|
sprintf(crypt_params, "%s %s 0 %s 0 %s", crypt_ftr->crypto_type_name,
|
|
master_key_ascii, real_blk_name, extra_params);
|
|
crypt_params += strlen(crypt_params) + 1;
|
|
crypt_params = (char *) (((unsigned long)crypt_params + 7) & ~8); /* Align to an 8 byte boundary */
|
|
tgt->next = crypt_params - buffer;
|
|
|
|
for (i = 0; i < TABLE_LOAD_RETRIES; i++) {
|
|
if (! ioctl(fd, DM_TABLE_LOAD, io)) {
|
|
break;
|
|
}
|
|
usleep(500000);
|
|
}
|
|
|
|
if (i == TABLE_LOAD_RETRIES) {
|
|
/* We failed to load the table, return an error */
|
|
return -1;
|
|
} else {
|
|
return i + 1;
|
|
}
|
|
}
|
|
|
|
|
|
static int get_dm_crypt_version(int fd, const char *name, int *version)
|
|
{
|
|
char buffer[DM_CRYPT_BUF_SIZE];
|
|
struct dm_ioctl *io;
|
|
struct dm_target_versions *v;
|
|
int i;
|
|
|
|
io = (struct dm_ioctl *) buffer;
|
|
|
|
ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
|
|
|
|
if (ioctl(fd, DM_LIST_VERSIONS, io)) {
|
|
return -1;
|
|
}
|
|
|
|
/* Iterate over the returned versions, looking for name of "crypt".
|
|
* When found, get and return the version.
|
|
*/
|
|
v = (struct dm_target_versions *) &buffer[sizeof(struct dm_ioctl)];
|
|
while (v->next) {
|
|
if (! strcmp(v->name, "crypt")) {
|
|
/* We found the crypt driver, return the version, and get out */
|
|
version[0] = v->version[0];
|
|
version[1] = v->version[1];
|
|
version[2] = v->version[2];
|
|
return 0;
|
|
}
|
|
v = (struct dm_target_versions *)(((char *)v) + v->next);
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int create_crypto_blk_dev(struct crypt_mnt_ftr *crypt_ftr, unsigned char *master_key,
|
|
char *real_blk_name, char *crypto_blk_name, const char *name)
|
|
{
|
|
char buffer[DM_CRYPT_BUF_SIZE];
|
|
char master_key_ascii[129]; /* Large enough to hold 512 bit key and null */
|
|
char *crypt_params;
|
|
struct dm_ioctl *io;
|
|
struct dm_target_spec *tgt;
|
|
unsigned int minor;
|
|
int fd;
|
|
int i;
|
|
int retval = -1;
|
|
int version[3];
|
|
char *extra_params;
|
|
int load_count;
|
|
|
|
if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) {
|
|
SLOGE("Cannot open device-mapper\n");
|
|
goto errout;
|
|
}
|
|
|
|
io = (struct dm_ioctl *) buffer;
|
|
|
|
ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
|
|
if (ioctl(fd, DM_DEV_CREATE, io)) {
|
|
SLOGE("Cannot create dm-crypt device\n");
|
|
goto errout;
|
|
}
|
|
|
|
/* Get the device status, in particular, the name of it's device file */
|
|
ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
|
|
if (ioctl(fd, DM_DEV_STATUS, io)) {
|
|
SLOGE("Cannot retrieve dm-crypt device status\n");
|
|
goto errout;
|
|
}
|
|
minor = (io->dev & 0xff) | ((io->dev >> 12) & 0xfff00);
|
|
snprintf(crypto_blk_name, MAXPATHLEN, "/dev/block/dm-%u", minor);
|
|
|
|
extra_params = "";
|
|
if (! get_dm_crypt_version(fd, name, version)) {
|
|
/* Support for allow_discards was added in version 1.11.0 */
|
|
if ((version[0] >= 2) ||
|
|
((version[0] == 1) && (version[1] >= 11))) {
|
|
extra_params = "1 allow_discards";
|
|
SLOGI("Enabling support for allow_discards in dmcrypt.\n");
|
|
}
|
|
}
|
|
|
|
load_count = load_crypto_mapping_table(crypt_ftr, master_key, real_blk_name, name,
|
|
fd, extra_params);
|
|
if (load_count < 0) {
|
|
SLOGE("Cannot load dm-crypt mapping table.\n");
|
|
goto errout;
|
|
} else if (load_count > 1) {
|
|
SLOGI("Took %d tries to load dmcrypt table.\n", load_count);
|
|
}
|
|
|
|
/* Resume this device to activate it */
|
|
ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
|
|
|
|
if (ioctl(fd, DM_DEV_SUSPEND, io)) {
|
|
SLOGE("Cannot resume the dm-crypt device\n");
|
|
goto errout;
|
|
}
|
|
|
|
/* We made it here with no errors. Woot! */
|
|
retval = 0;
|
|
|
|
errout:
|
|
close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */
|
|
|
|
return retval;
|
|
}
|
|
|
|
static int delete_crypto_blk_dev(char *name)
|
|
{
|
|
int fd;
|
|
char buffer[DM_CRYPT_BUF_SIZE];
|
|
struct dm_ioctl *io;
|
|
int retval = -1;
|
|
|
|
if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) {
|
|
SLOGE("Cannot open device-mapper\n");
|
|
goto errout;
|
|
}
|
|
|
|
io = (struct dm_ioctl *) buffer;
|
|
|
|
ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
|
|
if (ioctl(fd, DM_DEV_REMOVE, io)) {
|
|
SLOGE("Cannot remove dm-crypt device\n");
|
|
goto errout;
|
|
}
|
|
|
|
/* We made it here with no errors. Woot! */
|
|
retval = 0;
|
|
|
|
errout:
|
|
close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
static void pbkdf2(char *passwd, unsigned char *salt, unsigned char *ikey, void *params UNUSED) {
|
|
/* Turn the password into a key and IV that can decrypt the master key */
|
|
PKCS5_PBKDF2_HMAC_SHA1(passwd, strlen(passwd), salt, SALT_LEN,
|
|
HASH_COUNT, KEY_LEN_BYTES+IV_LEN_BYTES, ikey);
|
|
}
|
|
|
|
static void scrypt(char *passwd, unsigned char *salt, unsigned char *ikey, void *params) {
|
|
struct crypt_mnt_ftr *ftr = (struct crypt_mnt_ftr *) params;
|
|
|
|
int N = 1 << ftr->N_factor;
|
|
int r = 1 << ftr->r_factor;
|
|
int p = 1 << ftr->p_factor;
|
|
|
|
/* Turn the password into a key and IV that can decrypt the master key */
|
|
crypto_scrypt((unsigned char *) passwd, strlen(passwd), salt, SALT_LEN, N, r, p, ikey,
|
|
KEY_LEN_BYTES + IV_LEN_BYTES);
|
|
}
|
|
|
|
static int encrypt_master_key(char *passwd, unsigned char *salt,
|
|
unsigned char *decrypted_master_key,
|
|
unsigned char *encrypted_master_key,
|
|
struct crypt_mnt_ftr *crypt_ftr)
|
|
{
|
|
unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */
|
|
EVP_CIPHER_CTX e_ctx;
|
|
int encrypted_len, final_len;
|
|
|
|
/* Turn the password into a key and IV that can decrypt the master key */
|
|
get_device_scrypt_params(crypt_ftr);
|
|
scrypt(passwd, salt, ikey, crypt_ftr);
|
|
|
|
/* Initialize the decryption engine */
|
|
if (! EVP_EncryptInit(&e_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) {
|
|
SLOGE("EVP_EncryptInit failed\n");
|
|
return -1;
|
|
}
|
|
EVP_CIPHER_CTX_set_padding(&e_ctx, 0); /* Turn off padding as our data is block aligned */
|
|
|
|
/* Encrypt the master key */
|
|
if (! EVP_EncryptUpdate(&e_ctx, encrypted_master_key, &encrypted_len,
|
|
decrypted_master_key, KEY_LEN_BYTES)) {
|
|
SLOGE("EVP_EncryptUpdate failed\n");
|
|
return -1;
|
|
}
|
|
if (! EVP_EncryptFinal(&e_ctx, encrypted_master_key + encrypted_len, &final_len)) {
|
|
SLOGE("EVP_EncryptFinal failed\n");
|
|
return -1;
|
|
}
|
|
|
|
if (encrypted_len + final_len != KEY_LEN_BYTES) {
|
|
SLOGE("EVP_Encryption length check failed with %d, %d bytes\n", encrypted_len, final_len);
|
|
return -1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int decrypt_master_key_aux(char *passwd, unsigned char *salt,
|
|
unsigned char *encrypted_master_key,
|
|
unsigned char *decrypted_master_key,
|
|
kdf_func kdf, void *kdf_params)
|
|
{
|
|
unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */
|
|
EVP_CIPHER_CTX d_ctx;
|
|
int decrypted_len, final_len;
|
|
|
|
/* Turn the password into a key and IV that can decrypt the master key */
|
|
kdf(passwd, salt, ikey, kdf_params);
|
|
|
|
/* Initialize the decryption engine */
|
|
if (! EVP_DecryptInit(&d_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) {
|
|
return -1;
|
|
}
|
|
EVP_CIPHER_CTX_set_padding(&d_ctx, 0); /* Turn off padding as our data is block aligned */
|
|
/* Decrypt the master key */
|
|
if (! EVP_DecryptUpdate(&d_ctx, decrypted_master_key, &decrypted_len,
|
|
encrypted_master_key, KEY_LEN_BYTES)) {
|
|
return -1;
|
|
}
|
|
if (! EVP_DecryptFinal(&d_ctx, decrypted_master_key + decrypted_len, &final_len)) {
|
|
return -1;
|
|
}
|
|
|
|
if (decrypted_len + final_len != KEY_LEN_BYTES) {
|
|
return -1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void get_kdf_func(struct crypt_mnt_ftr *ftr, kdf_func *kdf, void** kdf_params)
|
|
{
|
|
if (ftr->kdf_type == KDF_SCRYPT) {
|
|
*kdf = scrypt;
|
|
*kdf_params = ftr;
|
|
} else {
|
|
*kdf = pbkdf2;
|
|
*kdf_params = NULL;
|
|
}
|
|
}
|
|
|
|
static int decrypt_master_key(char *passwd, unsigned char *decrypted_master_key,
|
|
struct crypt_mnt_ftr *crypt_ftr)
|
|
{
|
|
kdf_func kdf;
|
|
void *kdf_params;
|
|
int ret;
|
|
|
|
get_kdf_func(crypt_ftr, &kdf, &kdf_params);
|
|
ret = decrypt_master_key_aux(passwd, crypt_ftr->salt, crypt_ftr->master_key, decrypted_master_key, kdf,
|
|
kdf_params);
|
|
if (ret != 0) {
|
|
SLOGW("failure decrypting master key");
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int create_encrypted_random_key(char *passwd, unsigned char *master_key, unsigned char *salt,
|
|
struct crypt_mnt_ftr *crypt_ftr) {
|
|
int fd;
|
|
unsigned char key_buf[KEY_LEN_BYTES];
|
|
EVP_CIPHER_CTX e_ctx;
|
|
int encrypted_len, final_len;
|
|
|
|
/* Get some random bits for a key */
|
|
fd = open("/dev/urandom", O_RDONLY);
|
|
read(fd, key_buf, sizeof(key_buf));
|
|
read(fd, salt, SALT_LEN);
|
|
close(fd);
|
|
|
|
/* Now encrypt it with the password */
|
|
return encrypt_master_key(passwd, salt, key_buf, master_key, crypt_ftr);
|
|
}
|
|
|
|
static int wait_and_unmount(char *mountpoint)
|
|
{
|
|
int i, rc;
|
|
#define WAIT_UNMOUNT_COUNT 20
|
|
|
|
/* Now umount the tmpfs filesystem */
|
|
for (i=0; i<WAIT_UNMOUNT_COUNT; i++) {
|
|
if (umount(mountpoint)) {
|
|
if (errno == EINVAL) {
|
|
/* EINVAL is returned if the directory is not a mountpoint,
|
|
* i.e. there is no filesystem mounted there. So just get out.
|
|
*/
|
|
break;
|
|
}
|
|
sleep(1);
|
|
i++;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i < WAIT_UNMOUNT_COUNT) {
|
|
SLOGD("unmounting %s succeeded\n", mountpoint);
|
|
rc = 0;
|
|
} else {
|
|
SLOGE("unmounting %s failed\n", mountpoint);
|
|
rc = -1;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
#define DATA_PREP_TIMEOUT 200
|
|
static int prep_data_fs(void)
|
|
{
|
|
int i;
|
|
|
|
/* Do the prep of the /data filesystem */
|
|
property_set("vold.post_fs_data_done", "0");
|
|
property_set("vold.decrypt", "trigger_post_fs_data");
|
|
SLOGD("Just triggered post_fs_data\n");
|
|
|
|
/* Wait a max of 50 seconds, hopefully it takes much less */
|
|
for (i=0; i<DATA_PREP_TIMEOUT; i++) {
|
|
char p[PROPERTY_VALUE_MAX];
|
|
|
|
property_get("vold.post_fs_data_done", p, "0");
|
|
if (*p == '1') {
|
|
break;
|
|
} else {
|
|
usleep(250000);
|
|
}
|
|
}
|
|
if (i == DATA_PREP_TIMEOUT) {
|
|
/* Ugh, we failed to prep /data in time. Bail. */
|
|
SLOGE("post_fs_data timed out!\n");
|
|
return -1;
|
|
} else {
|
|
SLOGD("post_fs_data done\n");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int cryptfs_restart(void)
|
|
{
|
|
char fs_type[32];
|
|
char real_blkdev[MAXPATHLEN];
|
|
char crypto_blkdev[MAXPATHLEN];
|
|
char fs_options[256];
|
|
unsigned long mnt_flags;
|
|
struct stat statbuf;
|
|
int rc = -1, i;
|
|
static int restart_successful = 0;
|
|
|
|
/* Validate that it's OK to call this routine */
|
|
if (! master_key_saved) {
|
|
SLOGE("Encrypted filesystem not validated, aborting");
|
|
return -1;
|
|
}
|
|
|
|
if (restart_successful) {
|
|
SLOGE("System already restarted with encrypted disk, aborting");
|
|
return -1;
|
|
}
|
|
|
|
/* Here is where we shut down the framework. The init scripts
|
|
* start all services in one of three classes: core, main or late_start.
|
|
* On boot, we start core and main. Now, we stop main, but not core,
|
|
* as core includes vold and a few other really important things that
|
|
* we need to keep running. Once main has stopped, we should be able
|
|
* to umount the tmpfs /data, then mount the encrypted /data.
|
|
* We then restart the class main, and also the class late_start.
|
|
* At the moment, I've only put a few things in late_start that I know
|
|
* are not needed to bring up the framework, and that also cause problems
|
|
* with unmounting the tmpfs /data, but I hope to add add more services
|
|
* to the late_start class as we optimize this to decrease the delay
|
|
* till the user is asked for the password to the filesystem.
|
|
*/
|
|
|
|
/* The init files are setup to stop the class main when vold.decrypt is
|
|
* set to trigger_reset_main.
|
|
*/
|
|
property_set("vold.decrypt", "trigger_reset_main");
|
|
SLOGD("Just asked init to shut down class main\n");
|
|
|
|
/* Ugh, shutting down the framework is not synchronous, so until it
|
|
* can be fixed, this horrible hack will wait a moment for it all to
|
|
* shut down before proceeding. Without it, some devices cannot
|
|
* restart the graphics services.
|
|
*/
|
|
sleep(2);
|
|
|
|
/* Now that the framework is shutdown, we should be able to umount()
|
|
* the tmpfs filesystem, and mount the real one.
|
|
*/
|
|
|
|
property_get("ro.crypto.fs_crypto_blkdev", crypto_blkdev, "");
|
|
if (strlen(crypto_blkdev) == 0) {
|
|
SLOGE("fs_crypto_blkdev not set\n");
|
|
return -1;
|
|
}
|
|
|
|
if (! (rc = wait_and_unmount(DATA_MNT_POINT)) ) {
|
|
/* If that succeeded, then mount the decrypted filesystem */
|
|
fs_mgr_do_mount(fstab, DATA_MNT_POINT, crypto_blkdev, 0);
|
|
|
|
property_set("vold.decrypt", "trigger_load_persist_props");
|
|
/* Create necessary paths on /data */
|
|
if (prep_data_fs()) {
|
|
return -1;
|
|
}
|
|
|
|
/* startup service classes main and late_start */
|
|
property_set("vold.decrypt", "trigger_restart_framework");
|
|
SLOGD("Just triggered restart_framework\n");
|
|
|
|
/* Give it a few moments to get started */
|
|
sleep(1);
|
|
}
|
|
|
|
if (rc == 0) {
|
|
restart_successful = 1;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int do_crypto_complete(char *mount_point UNUSED)
|
|
{
|
|
struct crypt_mnt_ftr crypt_ftr;
|
|
char encrypted_state[PROPERTY_VALUE_MAX];
|
|
char key_loc[PROPERTY_VALUE_MAX];
|
|
|
|
property_get("ro.crypto.state", encrypted_state, "");
|
|
if (strcmp(encrypted_state, "encrypted") ) {
|
|
SLOGE("not running with encryption, aborting");
|
|
return 1;
|
|
}
|
|
|
|
if (get_crypt_ftr_and_key(&crypt_ftr)) {
|
|
fs_mgr_get_crypt_info(fstab, key_loc, 0, sizeof(key_loc));
|
|
|
|
/*
|
|
* Only report this error if key_loc is a file and it exists.
|
|
* If the device was never encrypted, and /data is not mountable for
|
|
* some reason, returning 1 should prevent the UI from presenting the
|
|
* a "enter password" screen, or worse, a "press button to wipe the
|
|
* device" screen.
|
|
*/
|
|
if ((key_loc[0] == '/') && (access("key_loc", F_OK) == -1)) {
|
|
SLOGE("master key file does not exist, aborting");
|
|
return 1;
|
|
} else {
|
|
SLOGE("Error getting crypt footer and key\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (crypt_ftr.flags & CRYPT_ENCRYPTION_IN_PROGRESS) {
|
|
SLOGE("Encryption process didn't finish successfully\n");
|
|
return -2; /* -2 is the clue to the UI that there is no usable data on the disk,
|
|
* and give the user an option to wipe the disk */
|
|
}
|
|
|
|
/* We passed the test! We shall diminish, and return to the west */
|
|
return 0;
|
|
}
|
|
|
|
static int test_mount_encrypted_fs(char *passwd, char *mount_point, char *label)
|
|
{
|
|
struct crypt_mnt_ftr crypt_ftr;
|
|
/* Allocate enough space for a 256 bit key, but we may use less */
|
|
unsigned char decrypted_master_key[32];
|
|
char crypto_blkdev[MAXPATHLEN];
|
|
char real_blkdev[MAXPATHLEN];
|
|
char tmp_mount_point[64];
|
|
unsigned int orig_failed_decrypt_count;
|
|
char encrypted_state[PROPERTY_VALUE_MAX];
|
|
int rc;
|
|
kdf_func kdf;
|
|
void *kdf_params;
|
|
|
|
property_get("ro.crypto.state", encrypted_state, "");
|
|
if ( master_key_saved || strcmp(encrypted_state, "encrypted") ) {
|
|
SLOGE("encrypted fs already validated or not running with encryption, aborting");
|
|
return -1;
|
|
}
|
|
|
|
fs_mgr_get_crypt_info(fstab, 0, real_blkdev, sizeof(real_blkdev));
|
|
|
|
if (get_crypt_ftr_and_key(&crypt_ftr)) {
|
|
SLOGE("Error getting crypt footer and key\n");
|
|
return -1;
|
|
}
|
|
|
|
SLOGD("crypt_ftr->fs_size = %lld\n", crypt_ftr.fs_size);
|
|
orig_failed_decrypt_count = crypt_ftr.failed_decrypt_count;
|
|
|
|
if (! (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) ) {
|
|
if (decrypt_master_key(passwd, decrypted_master_key, &crypt_ftr)) {
|
|
SLOGE("Failed to decrypt master key\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (create_crypto_blk_dev(&crypt_ftr, decrypted_master_key,
|
|
real_blkdev, crypto_blkdev, label)) {
|
|
SLOGE("Error creating decrypted block device\n");
|
|
return -1;
|
|
}
|
|
|
|
/* If init detects an encrypted filesystem, it writes a file for each such
|
|
* encrypted fs into the tmpfs /data filesystem, and then the framework finds those
|
|
* files and passes that data to me */
|
|
/* Create a tmp mount point to try mounting the decryptd fs
|
|
* Since we're here, the mount_point should be a tmpfs filesystem, so make
|
|
* a directory in it to test mount the decrypted filesystem.
|
|
*/
|
|
sprintf(tmp_mount_point, "%s/tmp_mnt", mount_point);
|
|
mkdir(tmp_mount_point, 0755);
|
|
if (fs_mgr_do_mount(fstab, DATA_MNT_POINT, crypto_blkdev, tmp_mount_point)) {
|
|
SLOGE("Error temp mounting decrypted block device\n");
|
|
delete_crypto_blk_dev(label);
|
|
crypt_ftr.failed_decrypt_count++;
|
|
} else {
|
|
/* Success, so just umount and we'll mount it properly when we restart
|
|
* the framework.
|
|
*/
|
|
umount(tmp_mount_point);
|
|
crypt_ftr.failed_decrypt_count = 0;
|
|
}
|
|
|
|
if (orig_failed_decrypt_count != crypt_ftr.failed_decrypt_count) {
|
|
put_crypt_ftr_and_key(&crypt_ftr);
|
|
}
|
|
|
|
if (crypt_ftr.failed_decrypt_count) {
|
|
/* We failed to mount the device, so return an error */
|
|
rc = crypt_ftr.failed_decrypt_count;
|
|
|
|
} else {
|
|
/* Woot! Success! Save the name of the crypto block device
|
|
* so we can mount it when restarting the framework.
|
|
*/
|
|
property_set("ro.crypto.fs_crypto_blkdev", crypto_blkdev);
|
|
|
|
/* Also save a the master key so we can reencrypted the key
|
|
* the key when we want to change the password on it.
|
|
*/
|
|
memcpy(saved_master_key, decrypted_master_key, KEY_LEN_BYTES);
|
|
saved_mount_point = strdup(mount_point);
|
|
master_key_saved = 1;
|
|
SLOGD("%s(): Master key saved\n", __FUNCTION__);
|
|
rc = 0;
|
|
/*
|
|
* Upgrade if we're not using the latest KDF.
|
|
*/
|
|
if (crypt_ftr.kdf_type != KDF_SCRYPT) {
|
|
crypt_ftr.kdf_type = KDF_SCRYPT;
|
|
rc = encrypt_master_key(passwd, crypt_ftr.salt, saved_master_key, crypt_ftr.master_key,
|
|
&crypt_ftr);
|
|
if (!rc) {
|
|
rc = put_crypt_ftr_and_key(&crypt_ftr);
|
|
}
|
|
SLOGD("Key Derivation Function upgrade: rc=%d\n", rc);
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Called by vold when it wants to undo the crypto mapping of a volume it
|
|
* manages. This is usually in response to a factory reset, when we want
|
|
* to undo the crypto mapping so the volume is formatted in the clear.
|
|
*/
|
|
int cryptfs_revert_volume(const char *label)
|
|
{
|
|
return delete_crypto_blk_dev((char *)label);
|
|
}
|
|
|
|
/*
|
|
* Called by vold when it's asked to mount an encrypted, nonremovable volume.
|
|
* Setup a dm-crypt mapping, use the saved master key from
|
|
* setting up the /data mapping, and return the new device path.
|
|
*/
|
|
int cryptfs_setup_volume(const char *label, int major, int minor,
|
|
char *crypto_sys_path, unsigned int max_path,
|
|
int *new_major, int *new_minor)
|
|
{
|
|
char real_blkdev[MAXPATHLEN], crypto_blkdev[MAXPATHLEN];
|
|
struct crypt_mnt_ftr sd_crypt_ftr;
|
|
struct stat statbuf;
|
|
int nr_sec, fd;
|
|
|
|
sprintf(real_blkdev, "/dev/block/vold/%d:%d", major, minor);
|
|
|
|
get_crypt_ftr_and_key(&sd_crypt_ftr);
|
|
|
|
/* Update the fs_size field to be the size of the volume */
|
|
fd = open(real_blkdev, O_RDONLY);
|
|
nr_sec = get_blkdev_size(fd);
|
|
close(fd);
|
|
if (nr_sec == 0) {
|
|
SLOGE("Cannot get size of volume %s\n", real_blkdev);
|
|
return -1;
|
|
}
|
|
|
|
sd_crypt_ftr.fs_size = nr_sec;
|
|
create_crypto_blk_dev(&sd_crypt_ftr, saved_master_key, real_blkdev,
|
|
crypto_blkdev, label);
|
|
|
|
stat(crypto_blkdev, &statbuf);
|
|
*new_major = MAJOR(statbuf.st_rdev);
|
|
*new_minor = MINOR(statbuf.st_rdev);
|
|
|
|
/* Create path to sys entry for this block device */
|
|
snprintf(crypto_sys_path, max_path, "/devices/virtual/block/%s", strrchr(crypto_blkdev, '/')+1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int cryptfs_crypto_complete(void)
|
|
{
|
|
return do_crypto_complete("/data");
|
|
}
|
|
|
|
int cryptfs_check_passwd(char *passwd)
|
|
{
|
|
int rc = -1;
|
|
|
|
rc = test_mount_encrypted_fs(passwd, DATA_MNT_POINT, "userdata");
|
|
|
|
return rc;
|
|
}
|
|
|
|
int cryptfs_verify_passwd(char *passwd)
|
|
{
|
|
struct crypt_mnt_ftr crypt_ftr;
|
|
/* Allocate enough space for a 256 bit key, but we may use less */
|
|
unsigned char decrypted_master_key[32];
|
|
char encrypted_state[PROPERTY_VALUE_MAX];
|
|
int rc;
|
|
|
|
property_get("ro.crypto.state", encrypted_state, "");
|
|
if (strcmp(encrypted_state, "encrypted") ) {
|
|
SLOGE("device not encrypted, aborting");
|
|
return -2;
|
|
}
|
|
|
|
if (!master_key_saved) {
|
|
SLOGE("encrypted fs not yet mounted, aborting");
|
|
return -1;
|
|
}
|
|
|
|
if (!saved_mount_point) {
|
|
SLOGE("encrypted fs failed to save mount point, aborting");
|
|
return -1;
|
|
}
|
|
|
|
if (get_crypt_ftr_and_key(&crypt_ftr)) {
|
|
SLOGE("Error getting crypt footer and key\n");
|
|
return -1;
|
|
}
|
|
|
|
if (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) {
|
|
/* If the device has no password, then just say the password is valid */
|
|
rc = 0;
|
|
} else {
|
|
decrypt_master_key(passwd, decrypted_master_key, &crypt_ftr);
|
|
if (!memcmp(decrypted_master_key, saved_master_key, crypt_ftr.keysize)) {
|
|
/* They match, the password is correct */
|
|
rc = 0;
|
|
} else {
|
|
/* If incorrect, sleep for a bit to prevent dictionary attacks */
|
|
sleep(1);
|
|
rc = 1;
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Initialize a crypt_mnt_ftr structure. The keysize is
|
|
* defaulted to 16 bytes, and the filesystem size to 0.
|
|
* Presumably, at a minimum, the caller will update the
|
|
* filesystem size and crypto_type_name after calling this function.
|
|
*/
|
|
static void cryptfs_init_crypt_mnt_ftr(struct crypt_mnt_ftr *ftr)
|
|
{
|
|
off64_t off;
|
|
|
|
memset(ftr, 0, sizeof(struct crypt_mnt_ftr));
|
|
ftr->magic = CRYPT_MNT_MAGIC;
|
|
ftr->major_version = CURRENT_MAJOR_VERSION;
|
|
ftr->minor_version = CURRENT_MINOR_VERSION;
|
|
ftr->ftr_size = sizeof(struct crypt_mnt_ftr);
|
|
ftr->keysize = KEY_LEN_BYTES;
|
|
|
|
ftr->kdf_type = KDF_SCRYPT;
|
|
get_device_scrypt_params(ftr);
|
|
|
|
ftr->persist_data_size = CRYPT_PERSIST_DATA_SIZE;
|
|
if (get_crypt_ftr_info(NULL, &off) == 0) {
|
|
ftr->persist_data_offset[0] = off + CRYPT_FOOTER_TO_PERSIST_OFFSET;
|
|
ftr->persist_data_offset[1] = off + CRYPT_FOOTER_TO_PERSIST_OFFSET +
|
|
ftr->persist_data_size;
|
|
}
|
|
}
|
|
|
|
static int cryptfs_enable_wipe(char *crypto_blkdev, off64_t size, int type)
|
|
{
|
|
const char *args[10];
|
|
char size_str[32]; /* Must be large enough to hold a %lld and null byte */
|
|
int num_args;
|
|
int status;
|
|
int tmp;
|
|
int rc = -1;
|
|
|
|
if (type == EXT4_FS) {
|
|
args[0] = "/system/bin/make_ext4fs";
|
|
args[1] = "-a";
|
|
args[2] = "/data";
|
|
args[3] = "-l";
|
|
snprintf(size_str, sizeof(size_str), "%" PRId64, size * 512);
|
|
args[4] = size_str;
|
|
args[5] = crypto_blkdev;
|
|
num_args = 6;
|
|
SLOGI("Making empty filesystem with command %s %s %s %s %s %s\n",
|
|
args[0], args[1], args[2], args[3], args[4], args[5]);
|
|
} else if (type== FAT_FS) {
|
|
args[0] = "/system/bin/newfs_msdos";
|
|
args[1] = "-F";
|
|
args[2] = "32";
|
|
args[3] = "-O";
|
|
args[4] = "android";
|
|
args[5] = "-c";
|
|
args[6] = "8";
|
|
args[7] = "-s";
|
|
snprintf(size_str, sizeof(size_str), "%" PRId64, size);
|
|
args[8] = size_str;
|
|
args[9] = crypto_blkdev;
|
|
num_args = 10;
|
|
SLOGI("Making empty filesystem with command %s %s %s %s %s %s %s %s %s %s\n",
|
|
args[0], args[1], args[2], args[3], args[4], args[5],
|
|
args[6], args[7], args[8], args[9]);
|
|
} else {
|
|
SLOGE("cryptfs_enable_wipe(): unknown filesystem type %d\n", type);
|
|
return -1;
|
|
}
|
|
|
|
tmp = android_fork_execvp(num_args, (char **)args, &status, false, true);
|
|
|
|
if (tmp != 0) {
|
|
SLOGE("Error creating empty filesystem on %s due to logwrap error\n", crypto_blkdev);
|
|
} else {
|
|
if (WIFEXITED(status)) {
|
|
if (WEXITSTATUS(status)) {
|
|
SLOGE("Error creating filesystem on %s, exit status %d ",
|
|
crypto_blkdev, WEXITSTATUS(status));
|
|
} else {
|
|
SLOGD("Successfully created filesystem on %s\n", crypto_blkdev);
|
|
rc = 0;
|
|
}
|
|
} else {
|
|
SLOGE("Error creating filesystem on %s, did not exit normally\n", crypto_blkdev);
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
#define CRYPT_INPLACE_BUFSIZE 4096
|
|
#define CRYPT_SECTORS_PER_BUFSIZE (CRYPT_INPLACE_BUFSIZE / 512)
|
|
static int cryptfs_enable_inplace(char *crypto_blkdev, char *real_blkdev, off64_t size,
|
|
off64_t *size_already_done, off64_t tot_size)
|
|
{
|
|
int realfd, cryptofd;
|
|
char *buf[CRYPT_INPLACE_BUFSIZE];
|
|
int rc = -1;
|
|
off64_t numblocks, i, remainder;
|
|
off64_t one_pct, cur_pct, new_pct;
|
|
off64_t blocks_already_done, tot_numblocks;
|
|
|
|
if ( (realfd = open(real_blkdev, O_RDONLY)) < 0) {
|
|
SLOGE("Error opening real_blkdev %s for inplace encrypt\n", real_blkdev);
|
|
return -1;
|
|
}
|
|
|
|
if ( (cryptofd = open(crypto_blkdev, O_WRONLY)) < 0) {
|
|
SLOGE("Error opening crypto_blkdev %s for inplace encrypt\n", crypto_blkdev);
|
|
close(realfd);
|
|
return -1;
|
|
}
|
|
|
|
/* This is pretty much a simple loop of reading 4K, and writing 4K.
|
|
* The size passed in is the number of 512 byte sectors in the filesystem.
|
|
* So compute the number of whole 4K blocks we should read/write,
|
|
* and the remainder.
|
|
*/
|
|
numblocks = size / CRYPT_SECTORS_PER_BUFSIZE;
|
|
remainder = size % CRYPT_SECTORS_PER_BUFSIZE;
|
|
tot_numblocks = tot_size / CRYPT_SECTORS_PER_BUFSIZE;
|
|
blocks_already_done = *size_already_done / CRYPT_SECTORS_PER_BUFSIZE;
|
|
|
|
SLOGE("Encrypting filesystem in place...");
|
|
|
|
one_pct = tot_numblocks / 100;
|
|
cur_pct = 0;
|
|
/* process the majority of the filesystem in blocks */
|
|
for (i=0; i<numblocks; i++) {
|
|
new_pct = (i + blocks_already_done) / one_pct;
|
|
if (new_pct > cur_pct) {
|
|
char buf[8];
|
|
|
|
cur_pct = new_pct;
|
|
snprintf(buf, sizeof(buf), "%" PRId64, cur_pct);
|
|
property_set("vold.encrypt_progress", buf);
|
|
}
|
|
if (unix_read(realfd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) {
|
|
SLOGE("Error reading real_blkdev %s for inplace encrypt\n", crypto_blkdev);
|
|
goto errout;
|
|
}
|
|
if (unix_write(cryptofd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) {
|
|
SLOGE("Error writing crypto_blkdev %s for inplace encrypt\n", crypto_blkdev);
|
|
goto errout;
|
|
}
|
|
}
|
|
|
|
/* Do any remaining sectors */
|
|
for (i=0; i<remainder; i++) {
|
|
if (unix_read(realfd, buf, 512) <= 0) {
|
|
SLOGE("Error reading rival sectors from real_blkdev %s for inplace encrypt\n", crypto_blkdev);
|
|
goto errout;
|
|
}
|
|
if (unix_write(cryptofd, buf, 512) <= 0) {
|
|
SLOGE("Error writing final sectors to crypto_blkdev %s for inplace encrypt\n", crypto_blkdev);
|
|
goto errout;
|
|
}
|
|
}
|
|
|
|
*size_already_done += size;
|
|
rc = 0;
|
|
|
|
errout:
|
|
close(realfd);
|
|
close(cryptofd);
|
|
|
|
return rc;
|
|
}
|
|
|
|
#define CRYPTO_ENABLE_WIPE 1
|
|
#define CRYPTO_ENABLE_INPLACE 2
|
|
|
|
#define FRAMEWORK_BOOT_WAIT 60
|
|
|
|
static inline int should_encrypt(struct volume_info *volume)
|
|
{
|
|
return (volume->flags & (VOL_ENCRYPTABLE | VOL_NONREMOVABLE)) ==
|
|
(VOL_ENCRYPTABLE | VOL_NONREMOVABLE);
|
|
}
|
|
|
|
int cryptfs_enable(char *howarg, char *passwd)
|
|
{
|
|
int how = 0;
|
|
char crypto_blkdev[MAXPATHLEN], real_blkdev[MAXPATHLEN], sd_crypto_blkdev[MAXPATHLEN];
|
|
unsigned long nr_sec;
|
|
unsigned char decrypted_master_key[KEY_LEN_BYTES];
|
|
int rc=-1, fd, i, ret;
|
|
struct crypt_mnt_ftr crypt_ftr, sd_crypt_ftr;;
|
|
struct crypt_persist_data *pdata;
|
|
char tmpfs_options[PROPERTY_VALUE_MAX];
|
|
char encrypted_state[PROPERTY_VALUE_MAX];
|
|
char lockid[32] = { 0 };
|
|
char key_loc[PROPERTY_VALUE_MAX];
|
|
char fuse_sdcard[PROPERTY_VALUE_MAX];
|
|
char *sd_mnt_point;
|
|
char sd_blk_dev[256] = { 0 };
|
|
int num_vols;
|
|
struct volume_info *vol_list = 0;
|
|
off64_t cur_encryption_done=0, tot_encryption_size=0;
|
|
|
|
property_get("ro.crypto.state", encrypted_state, "");
|
|
if (strcmp(encrypted_state, "unencrypted")) {
|
|
SLOGE("Device is already running encrypted, aborting");
|
|
goto error_unencrypted;
|
|
}
|
|
|
|
fs_mgr_get_crypt_info(fstab, key_loc, 0, sizeof(key_loc));
|
|
|
|
if (!strcmp(howarg, "wipe")) {
|
|
how = CRYPTO_ENABLE_WIPE;
|
|
} else if (! strcmp(howarg, "inplace")) {
|
|
how = CRYPTO_ENABLE_INPLACE;
|
|
} else {
|
|
/* Shouldn't happen, as CommandListener vets the args */
|
|
goto error_unencrypted;
|
|
}
|
|
|
|
fs_mgr_get_crypt_info(fstab, 0, real_blkdev, sizeof(real_blkdev));
|
|
|
|
/* Get the size of the real block device */
|
|
fd = open(real_blkdev, O_RDONLY);
|
|
if ( (nr_sec = get_blkdev_size(fd)) == 0) {
|
|
SLOGE("Cannot get size of block device %s\n", real_blkdev);
|
|
goto error_unencrypted;
|
|
}
|
|
close(fd);
|
|
|
|
/* If doing inplace encryption, make sure the orig fs doesn't include the crypto footer */
|
|
if ((how == CRYPTO_ENABLE_INPLACE) && (!strcmp(key_loc, KEY_IN_FOOTER))) {
|
|
unsigned int fs_size_sec, max_fs_size_sec;
|
|
|
|
fs_size_sec = get_fs_size(real_blkdev);
|
|
max_fs_size_sec = nr_sec - (CRYPT_FOOTER_OFFSET / 512);
|
|
|
|
if (fs_size_sec > max_fs_size_sec) {
|
|
SLOGE("Orig filesystem overlaps crypto footer region. Cannot encrypt in place.");
|
|
goto error_unencrypted;
|
|
}
|
|
}
|
|
|
|
/* Get a wakelock as this may take a while, and we don't want the
|
|
* device to sleep on us. We'll grab a partial wakelock, and if the UI
|
|
* wants to keep the screen on, it can grab a full wakelock.
|
|
*/
|
|
snprintf(lockid, sizeof(lockid), "enablecrypto%d", (int) getpid());
|
|
acquire_wake_lock(PARTIAL_WAKE_LOCK, lockid);
|
|
|
|
/* Get the sdcard mount point */
|
|
sd_mnt_point = getenv("EMULATED_STORAGE_SOURCE");
|
|
if (!sd_mnt_point) {
|
|
sd_mnt_point = getenv("EXTERNAL_STORAGE");
|
|
}
|
|
if (!sd_mnt_point) {
|
|
sd_mnt_point = "/mnt/sdcard";
|
|
}
|
|
|
|
num_vols=vold_getNumDirectVolumes();
|
|
vol_list = malloc(sizeof(struct volume_info) * num_vols);
|
|
vold_getDirectVolumeList(vol_list);
|
|
|
|
for (i=0; i<num_vols; i++) {
|
|
if (should_encrypt(&vol_list[i])) {
|
|
fd = open(vol_list[i].blk_dev, O_RDONLY);
|
|
if ( (vol_list[i].size = get_blkdev_size(fd)) == 0) {
|
|
SLOGE("Cannot get size of block device %s\n", vol_list[i].blk_dev);
|
|
goto error_unencrypted;
|
|
}
|
|
close(fd);
|
|
|
|
ret=vold_disableVol(vol_list[i].label);
|
|
if ((ret < 0) && (ret != UNMOUNT_NOT_MOUNTED_ERR)) {
|
|
/* -2 is returned when the device exists but is not currently mounted.
|
|
* ignore the error and continue. */
|
|
SLOGE("Failed to unmount volume %s\n", vol_list[i].label);
|
|
goto error_unencrypted;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* The init files are setup to stop the class main and late start when
|
|
* vold sets trigger_shutdown_framework.
|
|
*/
|
|
property_set("vold.decrypt", "trigger_shutdown_framework");
|
|
SLOGD("Just asked init to shut down class main\n");
|
|
|
|
if (vold_unmountAllAsecs()) {
|
|
/* Just report the error. If any are left mounted,
|
|
* umounting /data below will fail and handle the error.
|
|
*/
|
|
SLOGE("Error unmounting internal asecs");
|
|
}
|
|
|
|
property_get("ro.crypto.fuse_sdcard", fuse_sdcard, "");
|
|
if (!strcmp(fuse_sdcard, "true")) {
|
|
/* This is a device using the fuse layer to emulate the sdcard semantics
|
|
* on top of the userdata partition. vold does not manage it, it is managed
|
|
* by the sdcard service. The sdcard service was killed by the property trigger
|
|
* above, so just unmount it now. We must do this _AFTER_ killing the framework,
|
|
* unlike the case for vold managed devices above.
|
|
*/
|
|
if (wait_and_unmount(sd_mnt_point)) {
|
|
goto error_shutting_down;
|
|
}
|
|
}
|
|
|
|
/* Now unmount the /data partition. */
|
|
if (wait_and_unmount(DATA_MNT_POINT)) {
|
|
goto error_shutting_down;
|
|
}
|
|
|
|
/* Do extra work for a better UX when doing the long inplace encryption */
|
|
if (how == CRYPTO_ENABLE_INPLACE) {
|
|
/* Now that /data is unmounted, we need to mount a tmpfs
|
|
* /data, set a property saying we're doing inplace encryption,
|
|
* and restart the framework.
|
|
*/
|
|
if (fs_mgr_do_tmpfs_mount(DATA_MNT_POINT)) {
|
|
goto error_shutting_down;
|
|
}
|
|
/* Tells the framework that inplace encryption is starting */
|
|
property_set("vold.encrypt_progress", "0");
|
|
|
|
/* restart the framework. */
|
|
/* Create necessary paths on /data */
|
|
if (prep_data_fs()) {
|
|
goto error_shutting_down;
|
|
}
|
|
|
|
/* Ugh, shutting down the framework is not synchronous, so until it
|
|
* can be fixed, this horrible hack will wait a moment for it all to
|
|
* shut down before proceeding. Without it, some devices cannot
|
|
* restart the graphics services.
|
|
*/
|
|
sleep(2);
|
|
|
|
/* startup service classes main and late_start */
|
|
property_set("vold.decrypt", "trigger_restart_min_framework");
|
|
SLOGD("Just triggered restart_min_framework\n");
|
|
|
|
/* OK, the framework is restarted and will soon be showing a
|
|
* progress bar. Time to setup an encrypted mapping, and
|
|
* either write a new filesystem, or encrypt in place updating
|
|
* the progress bar as we work.
|
|
*/
|
|
}
|
|
|
|
/* Start the actual work of making an encrypted filesystem */
|
|
/* Initialize a crypt_mnt_ftr for the partition */
|
|
cryptfs_init_crypt_mnt_ftr(&crypt_ftr);
|
|
|
|
if (!strcmp(key_loc, KEY_IN_FOOTER)) {
|
|
crypt_ftr.fs_size = nr_sec - (CRYPT_FOOTER_OFFSET / 512);
|
|
} else {
|
|
crypt_ftr.fs_size = nr_sec;
|
|
}
|
|
crypt_ftr.flags |= CRYPT_ENCRYPTION_IN_PROGRESS;
|
|
strcpy((char *)crypt_ftr.crypto_type_name, "aes-cbc-essiv:sha256");
|
|
|
|
/* Make an encrypted master key */
|
|
if (create_encrypted_random_key(passwd, crypt_ftr.master_key, crypt_ftr.salt, &crypt_ftr)) {
|
|
SLOGE("Cannot create encrypted master key\n");
|
|
goto error_unencrypted;
|
|
}
|
|
|
|
/* Write the key to the end of the partition */
|
|
put_crypt_ftr_and_key(&crypt_ftr);
|
|
|
|
/* If any persistent data has been remembered, save it.
|
|
* If none, create a valid empty table and save that.
|
|
*/
|
|
if (!persist_data) {
|
|
pdata = malloc(CRYPT_PERSIST_DATA_SIZE);
|
|
if (pdata) {
|
|
init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE);
|
|
persist_data = pdata;
|
|
}
|
|
}
|
|
if (persist_data) {
|
|
save_persistent_data();
|
|
}
|
|
|
|
decrypt_master_key(passwd, decrypted_master_key, &crypt_ftr);
|
|
create_crypto_blk_dev(&crypt_ftr, decrypted_master_key, real_blkdev, crypto_blkdev,
|
|
"userdata");
|
|
|
|
/* The size of the userdata partition, and add in the vold volumes below */
|
|
tot_encryption_size = crypt_ftr.fs_size;
|
|
|
|
/* setup crypto mapping for all encryptable volumes handled by vold */
|
|
for (i=0; i<num_vols; i++) {
|
|
if (should_encrypt(&vol_list[i])) {
|
|
vol_list[i].crypt_ftr = crypt_ftr; /* gotta love struct assign */
|
|
vol_list[i].crypt_ftr.fs_size = vol_list[i].size;
|
|
create_crypto_blk_dev(&vol_list[i].crypt_ftr, decrypted_master_key,
|
|
vol_list[i].blk_dev, vol_list[i].crypto_blkdev,
|
|
vol_list[i].label);
|
|
tot_encryption_size += vol_list[i].size;
|
|
}
|
|
}
|
|
|
|
if (how == CRYPTO_ENABLE_WIPE) {
|
|
rc = cryptfs_enable_wipe(crypto_blkdev, crypt_ftr.fs_size, EXT4_FS);
|
|
/* Encrypt all encryptable volumes handled by vold */
|
|
if (!rc) {
|
|
for (i=0; i<num_vols; i++) {
|
|
if (should_encrypt(&vol_list[i])) {
|
|
rc = cryptfs_enable_wipe(vol_list[i].crypto_blkdev,
|
|
vol_list[i].crypt_ftr.fs_size, FAT_FS);
|
|
}
|
|
}
|
|
}
|
|
} else if (how == CRYPTO_ENABLE_INPLACE) {
|
|
rc = cryptfs_enable_inplace(crypto_blkdev, real_blkdev, crypt_ftr.fs_size,
|
|
&cur_encryption_done, tot_encryption_size);
|
|
/* Encrypt all encryptable volumes handled by vold */
|
|
if (!rc) {
|
|
for (i=0; i<num_vols; i++) {
|
|
if (should_encrypt(&vol_list[i])) {
|
|
rc = cryptfs_enable_inplace(vol_list[i].crypto_blkdev,
|
|
vol_list[i].blk_dev,
|
|
vol_list[i].crypt_ftr.fs_size,
|
|
&cur_encryption_done, tot_encryption_size);
|
|
}
|
|
}
|
|
}
|
|
if (!rc) {
|
|
/* The inplace routine never actually sets the progress to 100%
|
|
* due to the round down nature of integer division, so set it here */
|
|
property_set("vold.encrypt_progress", "100");
|
|
}
|
|
} else {
|
|
/* Shouldn't happen */
|
|
SLOGE("cryptfs_enable: internal error, unknown option\n");
|
|
goto error_unencrypted;
|
|
}
|
|
|
|
/* Undo the dm-crypt mapping whether we succeed or not */
|
|
delete_crypto_blk_dev("userdata");
|
|
for (i=0; i<num_vols; i++) {
|
|
if (should_encrypt(&vol_list[i])) {
|
|
delete_crypto_blk_dev(vol_list[i].label);
|
|
}
|
|
}
|
|
|
|
free(vol_list);
|
|
|
|
if (! rc) {
|
|
/* Success */
|
|
|
|
/* Clear the encryption in progres flag in the footer */
|
|
crypt_ftr.flags &= ~CRYPT_ENCRYPTION_IN_PROGRESS;
|
|
put_crypt_ftr_and_key(&crypt_ftr);
|
|
|
|
sleep(2); /* Give the UI a chance to show 100% progress */
|
|
cryptfs_reboot(0);
|
|
} else {
|
|
char value[PROPERTY_VALUE_MAX];
|
|
|
|
property_get("ro.vold.wipe_on_crypt_fail", value, "0");
|
|
if (!strcmp(value, "1")) {
|
|
/* wipe data if encryption failed */
|
|
SLOGE("encryption failed - rebooting into recovery to wipe data\n");
|
|
mkdir("/cache/recovery", 0700);
|
|
int fd = open("/cache/recovery/command", O_RDWR|O_CREAT|O_TRUNC, 0600);
|
|
if (fd >= 0) {
|
|
write(fd, "--wipe_data", strlen("--wipe_data") + 1);
|
|
close(fd);
|
|
} else {
|
|
SLOGE("could not open /cache/recovery/command\n");
|
|
}
|
|
cryptfs_reboot(1);
|
|
} else {
|
|
/* set property to trigger dialog */
|
|
property_set("vold.encrypt_progress", "error_partially_encrypted");
|
|
release_wake_lock(lockid);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/* hrm, the encrypt step claims success, but the reboot failed.
|
|
* This should not happen.
|
|
* Set the property and return. Hope the framework can deal with it.
|
|
*/
|
|
property_set("vold.encrypt_progress", "error_reboot_failed");
|
|
release_wake_lock(lockid);
|
|
return rc;
|
|
|
|
error_unencrypted:
|
|
free(vol_list);
|
|
property_set("vold.encrypt_progress", "error_not_encrypted");
|
|
if (lockid[0]) {
|
|
release_wake_lock(lockid);
|
|
}
|
|
return -1;
|
|
|
|
error_shutting_down:
|
|
/* we failed, and have not encrypted anthing, so the users's data is still intact,
|
|
* but the framework is stopped and not restarted to show the error, so it's up to
|
|
* vold to restart the system.
|
|
*/
|
|
SLOGE("Error enabling encryption after framework is shutdown, no data changed, restarting system");
|
|
cryptfs_reboot(0);
|
|
|
|
/* shouldn't get here */
|
|
property_set("vold.encrypt_progress", "error_shutting_down");
|
|
free(vol_list);
|
|
if (lockid[0]) {
|
|
release_wake_lock(lockid);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
int cryptfs_changepw(char *newpw)
|
|
{
|
|
struct crypt_mnt_ftr crypt_ftr;
|
|
unsigned char decrypted_master_key[KEY_LEN_BYTES];
|
|
|
|
/* This is only allowed after we've successfully decrypted the master key */
|
|
if (! master_key_saved) {
|
|
SLOGE("Key not saved, aborting");
|
|
return -1;
|
|
}
|
|
|
|
/* get key */
|
|
if (get_crypt_ftr_and_key(&crypt_ftr)) {
|
|
SLOGE("Error getting crypt footer and key");
|
|
return -1;
|
|
}
|
|
|
|
encrypt_master_key(newpw, crypt_ftr.salt, saved_master_key, crypt_ftr.master_key, &crypt_ftr);
|
|
|
|
/* save the key */
|
|
put_crypt_ftr_and_key(&crypt_ftr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int persist_get_key(char *fieldname, char *value)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (persist_data == NULL) {
|
|
return -1;
|
|
}
|
|
for (i = 0; i < persist_data->persist_valid_entries; i++) {
|
|
if (!strncmp(persist_data->persist_entry[i].key, fieldname, PROPERTY_KEY_MAX)) {
|
|
/* We found it! */
|
|
strlcpy(value, persist_data->persist_entry[i].val, PROPERTY_VALUE_MAX);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int persist_set_key(char *fieldname, char *value, int encrypted)
|
|
{
|
|
unsigned int i;
|
|
unsigned int num;
|
|
struct crypt_mnt_ftr crypt_ftr;
|
|
unsigned int max_persistent_entries;
|
|
unsigned int dsize;
|
|
|
|
if (persist_data == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
/* If encrypted, use the values from the crypt_ftr, otherwise
|
|
* use the values for the current spec.
|
|
*/
|
|
if (encrypted) {
|
|
if(get_crypt_ftr_and_key(&crypt_ftr)) {
|
|
return -1;
|
|
}
|
|
dsize = crypt_ftr.persist_data_size;
|
|
} else {
|
|
dsize = CRYPT_PERSIST_DATA_SIZE;
|
|
}
|
|
max_persistent_entries = (dsize - sizeof(struct crypt_persist_data)) /
|
|
sizeof(struct crypt_persist_entry);
|
|
|
|
num = persist_data->persist_valid_entries;
|
|
|
|
for (i = 0; i < num; i++) {
|
|
if (!strncmp(persist_data->persist_entry[i].key, fieldname, PROPERTY_KEY_MAX)) {
|
|
/* We found an existing entry, update it! */
|
|
memset(persist_data->persist_entry[i].val, 0, PROPERTY_VALUE_MAX);
|
|
strlcpy(persist_data->persist_entry[i].val, value, PROPERTY_VALUE_MAX);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* We didn't find it, add it to the end, if there is room */
|
|
if (persist_data->persist_valid_entries < max_persistent_entries) {
|
|
memset(&persist_data->persist_entry[num], 0, sizeof(struct crypt_persist_entry));
|
|
strlcpy(persist_data->persist_entry[num].key, fieldname, PROPERTY_KEY_MAX);
|
|
strlcpy(persist_data->persist_entry[num].val, value, PROPERTY_VALUE_MAX);
|
|
persist_data->persist_valid_entries++;
|
|
return 0;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* Return the value of the specified field. */
|
|
int cryptfs_getfield(char *fieldname, char *value, int len)
|
|
{
|
|
char temp_value[PROPERTY_VALUE_MAX];
|
|
char real_blkdev[MAXPATHLEN];
|
|
/* 0 is success, 1 is not encrypted,
|
|
* -1 is value not set, -2 is any other error
|
|
*/
|
|
int rc = -2;
|
|
|
|
if (persist_data == NULL) {
|
|
load_persistent_data();
|
|
if (persist_data == NULL) {
|
|
SLOGE("Getfield error, cannot load persistent data");
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (!persist_get_key(fieldname, temp_value)) {
|
|
/* We found it, copy it to the caller's buffer and return */
|
|
strlcpy(value, temp_value, len);
|
|
rc = 0;
|
|
} else {
|
|
/* Sadness, it's not there. Return the error */
|
|
rc = -1;
|
|
}
|
|
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
/* Set the value of the specified field. */
|
|
int cryptfs_setfield(char *fieldname, char *value)
|
|
{
|
|
struct crypt_persist_data stored_pdata;
|
|
struct crypt_persist_data *pdata_p;
|
|
struct crypt_mnt_ftr crypt_ftr;
|
|
char encrypted_state[PROPERTY_VALUE_MAX];
|
|
/* 0 is success, -1 is an error */
|
|
int rc = -1;
|
|
int encrypted = 0;
|
|
|
|
if (persist_data == NULL) {
|
|
load_persistent_data();
|
|
if (persist_data == NULL) {
|
|
SLOGE("Setfield error, cannot load persistent data");
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
property_get("ro.crypto.state", encrypted_state, "");
|
|
if (!strcmp(encrypted_state, "encrypted") ) {
|
|
encrypted = 1;
|
|
}
|
|
|
|
if (persist_set_key(fieldname, value, encrypted)) {
|
|
goto out;
|
|
}
|
|
|
|
/* If we are running encrypted, save the persistent data now */
|
|
if (encrypted) {
|
|
if (save_persistent_data()) {
|
|
SLOGE("Setfield error, cannot save persistent data");
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
rc = 0;
|
|
|
|
out:
|
|
return rc;
|
|
}
|