platform_system_vold/cryptfs.c
Paul Lawrence 8c00839714 Fix encryption on Nakasi
We need to make sure we don't try to read the flags on keymaster
version 2 or below, or we get random junk.

Requires
  https://googleplex-android-review.git.corp.google.com/#/c/460689/

Bug: 14384714
Change-Id: I5a4ede1bec0347b8319cedaae6535201c122cf48
2014-05-06 22:16:16 +00:00

2913 lines
87 KiB
C

/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* TO DO:
* 1. Perhaps keep several copies of the encrypted key, in case something
* goes horribly wrong?
*
*/
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <ctype.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <sys/ioctl.h>
#include <linux/dm-ioctl.h>
#include <libgen.h>
#include <stdlib.h>
#include <sys/param.h>
#include <string.h>
#include <sys/mount.h>
#include <openssl/evp.h>
#include <errno.h>
#include <ext4.h>
#include <linux/kdev_t.h>
#include <fs_mgr.h>
#include "cryptfs.h"
#define LOG_TAG "Cryptfs"
#include "cutils/log.h"
#include "cutils/properties.h"
#include "cutils/android_reboot.h"
#include "hardware_legacy/power.h"
#include <logwrap/logwrap.h>
#include "VolumeManager.h"
#include "VoldUtil.h"
#include "crypto_scrypt.h"
#include "ext4_utils.h"
#include "CheckBattery.h"
#include <hardware/keymaster.h>
#define UNUSED __attribute__((unused))
#define UNUSED __attribute__((unused))
#define DM_CRYPT_BUF_SIZE 4096
#define HASH_COUNT 2000
#define KEY_LEN_BYTES 16
#define IV_LEN_BYTES 16
#define KEY_IN_FOOTER "footer"
// "default_password" encoded into hex (d=0x64 etc)
#define DEFAULT_PASSWORD "64656661756c745f70617373776f7264"
#define EXT4_FS 1
#define FAT_FS 2
#define TABLE_LOAD_RETRIES 10
#define RSA_DEFAULT_KEY_SIZE 2048
#define RSA_DEFAULT_EXPONENT 0x10001
char *me = "cryptfs";
static unsigned char saved_master_key[KEY_LEN_BYTES];
static char *saved_mount_point;
static int master_key_saved = 0;
static struct crypt_persist_data *persist_data = NULL;
static int keymaster_init(keymaster_device_t **keymaster_dev)
{
int rc;
const hw_module_t* mod;
rc = hw_get_module_by_class(KEYSTORE_HARDWARE_MODULE_ID, NULL, &mod);
if (rc) {
ALOGE("could not find any keystore module");
goto out;
}
rc = keymaster_open(mod, keymaster_dev);
if (rc) {
ALOGE("could not open keymaster device in %s (%s)",
KEYSTORE_HARDWARE_MODULE_ID, strerror(-rc));
goto out;
}
return 0;
out:
*keymaster_dev = NULL;
return rc;
}
/* Should we use keymaster? */
static int keymaster_check_compatibility()
{
keymaster_device_t *keymaster_dev = 0;
int rc = 0;
if (keymaster_init(&keymaster_dev)) {
SLOGE("Failed to init keymaster");
rc = -1;
goto out;
}
SLOGI("keymaster version is %d", keymaster_dev->common.module->module_api_version);
if (keymaster_dev->common.module->module_api_version
< KEYMASTER_MODULE_API_VERSION_0_3) {
rc = 0;
goto out;
}
if (keymaster_dev->flags & KEYMASTER_BLOBS_ARE_STANDALONE) {
rc = 1;
}
out:
keymaster_close(keymaster_dev);
return rc;
}
/* Create a new keymaster key and store it in this footer */
static int keymaster_create_key(struct crypt_mnt_ftr *ftr)
{
uint8_t* key = 0;
keymaster_device_t *keymaster_dev = 0;
if (keymaster_init(&keymaster_dev)) {
SLOGE("Failed to init keymaster");
return -1;
}
int rc = 0;
keymaster_rsa_keygen_params_t params;
memset(&params, '\0', sizeof(params));
params.public_exponent = RSA_DEFAULT_EXPONENT;
params.modulus_size = RSA_DEFAULT_KEY_SIZE;
size_t key_size;
if (keymaster_dev->generate_keypair(keymaster_dev, TYPE_RSA, &params,
&key, &key_size)) {
SLOGE("Failed to generate keypair");
rc = -1;
goto out;
}
if (key_size > KEYMASTER_BLOB_SIZE) {
SLOGE("Keymaster key too large for crypto footer");
rc = -1;
goto out;
}
memcpy(ftr->keymaster_blob, key, key_size);
ftr->keymaster_blob_size = key_size;
out:
keymaster_close(keymaster_dev);
free(key);
return rc;
}
/* This signs the given object using the keymaster key */
static int keymaster_sign_object(struct crypt_mnt_ftr *ftr,
const unsigned char *object,
const size_t object_size,
unsigned char **signature,
size_t *signature_size)
{
int rc = 0;
keymaster_device_t *keymaster_dev = 0;
if (keymaster_init(&keymaster_dev)) {
SLOGE("Failed to init keymaster");
return -1;
}
/* We currently set the digest type to DIGEST_NONE because it's the
* only supported value for keymaster. A similar issue exists with
* PADDING_NONE. Long term both of these should likely change.
*/
keymaster_rsa_sign_params_t params;
params.digest_type = DIGEST_NONE;
params.padding_type = PADDING_NONE;
rc = keymaster_dev->sign_data(keymaster_dev,
&params,
ftr->keymaster_blob,
ftr->keymaster_blob_size,
object,
object_size,
signature,
signature_size);
keymaster_close(keymaster_dev);
return rc;
}
/* Store password when userdata is successfully decrypted and mounted.
* Cleared by cryptfs_clear_password
*
* To avoid a double prompt at boot, we need to store the CryptKeeper
* password and pass it to KeyGuard, which uses it to unlock KeyStore.
* Since the entire framework is torn down and rebuilt after encryption,
* we have to use a daemon or similar to store the password. Since vold
* is secured against IPC except from system processes, it seems a reasonable
* place to store this.
*
* password should be cleared once it has been used.
*
* password is aged out after password_max_age_seconds seconds.
*/
static char* password = 0;
static int password_expiry_time = 0;
static const int password_max_age_seconds = 60;
extern struct fstab *fstab;
enum RebootType {reboot, recovery, shutdown};
static void cryptfs_reboot(enum RebootType rt)
{
switch(rt) {
case reboot:
property_set(ANDROID_RB_PROPERTY, "reboot");
break;
case recovery:
property_set(ANDROID_RB_PROPERTY, "reboot,recovery");
break;
case shutdown:
property_set(ANDROID_RB_PROPERTY, "shutdown");
break;
}
sleep(20);
/* Shouldn't get here, reboot should happen before sleep times out */
return;
}
static void ioctl_init(struct dm_ioctl *io, size_t dataSize, const char *name, unsigned flags)
{
memset(io, 0, dataSize);
io->data_size = dataSize;
io->data_start = sizeof(struct dm_ioctl);
io->version[0] = 4;
io->version[1] = 0;
io->version[2] = 0;
io->flags = flags;
if (name) {
strncpy(io->name, name, sizeof(io->name));
}
}
/**
* Gets the default device scrypt parameters for key derivation time tuning.
* The parameters should lead to about one second derivation time for the
* given device.
*/
static void get_device_scrypt_params(struct crypt_mnt_ftr *ftr) {
const int default_params[] = SCRYPT_DEFAULTS;
int params[] = SCRYPT_DEFAULTS;
char paramstr[PROPERTY_VALUE_MAX];
char *token;
char *saveptr;
int i;
property_get(SCRYPT_PROP, paramstr, "");
if (paramstr[0] != '\0') {
/*
* The token we're looking for should be three integers separated by
* colons (e.g., "12:8:1"). Scan the property to make sure it matches.
*/
for (i = 0, token = strtok_r(paramstr, ":", &saveptr);
token != NULL && i < 3;
i++, token = strtok_r(NULL, ":", &saveptr)) {
char *endptr;
params[i] = strtol(token, &endptr, 10);
/*
* Check that there was a valid number and it's 8-bit. If not,
* break out and the end check will take the default values.
*/
if ((*token == '\0') || (*endptr != '\0') || params[i] < 0 || params[i] > 255) {
break;
}
}
/*
* If there were not enough tokens or a token was malformed (not an
* integer), it will end up here and the default parameters can be
* taken.
*/
if ((i != 3) || (token != NULL)) {
SLOGW("bad scrypt parameters '%s' should be like '12:8:1'; using defaults", paramstr);
memcpy(params, default_params, sizeof(params));
}
}
ftr->N_factor = params[0];
ftr->r_factor = params[1];
ftr->p_factor = params[2];
}
static unsigned int get_fs_size(char *dev)
{
int fd, block_size;
struct ext4_super_block sb;
off64_t len;
if ((fd = open(dev, O_RDONLY)) < 0) {
SLOGE("Cannot open device to get filesystem size ");
return 0;
}
if (lseek64(fd, 1024, SEEK_SET) < 0) {
SLOGE("Cannot seek to superblock");
return 0;
}
if (read(fd, &sb, sizeof(sb)) != sizeof(sb)) {
SLOGE("Cannot read superblock");
return 0;
}
close(fd);
block_size = 1024 << sb.s_log_block_size;
/* compute length in bytes */
len = ( ((off64_t)sb.s_blocks_count_hi << 32) + sb.s_blocks_count_lo) * block_size;
/* return length in sectors */
return (unsigned int) (len / 512);
}
static int get_crypt_ftr_info(char **metadata_fname, off64_t *off)
{
static int cached_data = 0;
static off64_t cached_off = 0;
static char cached_metadata_fname[PROPERTY_VALUE_MAX] = "";
int fd;
char key_loc[PROPERTY_VALUE_MAX];
char real_blkdev[PROPERTY_VALUE_MAX];
unsigned int nr_sec;
int rc = -1;
if (!cached_data) {
fs_mgr_get_crypt_info(fstab, key_loc, real_blkdev, sizeof(key_loc));
if (!strcmp(key_loc, KEY_IN_FOOTER)) {
if ( (fd = open(real_blkdev, O_RDWR)) < 0) {
SLOGE("Cannot open real block device %s\n", real_blkdev);
return -1;
}
if ((nr_sec = get_blkdev_size(fd))) {
/* If it's an encrypted Android partition, the last 16 Kbytes contain the
* encryption info footer and key, and plenty of bytes to spare for future
* growth.
*/
strlcpy(cached_metadata_fname, real_blkdev, sizeof(cached_metadata_fname));
cached_off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET;
cached_data = 1;
} else {
SLOGE("Cannot get size of block device %s\n", real_blkdev);
}
close(fd);
} else {
strlcpy(cached_metadata_fname, key_loc, sizeof(cached_metadata_fname));
cached_off = 0;
cached_data = 1;
}
}
if (cached_data) {
if (metadata_fname) {
*metadata_fname = cached_metadata_fname;
}
if (off) {
*off = cached_off;
}
rc = 0;
}
return rc;
}
/* key or salt can be NULL, in which case just skip writing that value. Useful to
* update the failed mount count but not change the key.
*/
static int put_crypt_ftr_and_key(struct crypt_mnt_ftr *crypt_ftr)
{
int fd;
unsigned int nr_sec, cnt;
/* starting_off is set to the SEEK_SET offset
* where the crypto structure starts
*/
off64_t starting_off;
int rc = -1;
char *fname = NULL;
struct stat statbuf;
if (get_crypt_ftr_info(&fname, &starting_off)) {
SLOGE("Unable to get crypt_ftr_info\n");
return -1;
}
if (fname[0] != '/') {
SLOGE("Unexpected value for crypto key location\n");
return -1;
}
if ( (fd = open(fname, O_RDWR | O_CREAT, 0600)) < 0) {
SLOGE("Cannot open footer file %s for put\n", fname);
return -1;
}
/* Seek to the start of the crypt footer */
if (lseek64(fd, starting_off, SEEK_SET) == -1) {
SLOGE("Cannot seek to real block device footer\n");
goto errout;
}
if ((cnt = write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) {
SLOGE("Cannot write real block device footer\n");
goto errout;
}
fstat(fd, &statbuf);
/* If the keys are kept on a raw block device, do not try to truncate it. */
if (S_ISREG(statbuf.st_mode)) {
if (ftruncate(fd, 0x4000)) {
SLOGE("Cannot set footer file size\n");
goto errout;
}
}
/* Success! */
rc = 0;
errout:
close(fd);
return rc;
}
static inline int unix_read(int fd, void* buff, int len)
{
return TEMP_FAILURE_RETRY(read(fd, buff, len));
}
static inline int unix_write(int fd, const void* buff, int len)
{
return TEMP_FAILURE_RETRY(write(fd, buff, len));
}
static void init_empty_persist_data(struct crypt_persist_data *pdata, int len)
{
memset(pdata, 0, len);
pdata->persist_magic = PERSIST_DATA_MAGIC;
pdata->persist_valid_entries = 0;
}
/* A routine to update the passed in crypt_ftr to the lastest version.
* fd is open read/write on the device that holds the crypto footer and persistent
* data, crypt_ftr is a pointer to the struct to be updated, and offset is the
* absolute offset to the start of the crypt_mnt_ftr on the passed in fd.
*/
static void upgrade_crypt_ftr(int fd, struct crypt_mnt_ftr *crypt_ftr, off64_t offset)
{
int orig_major = crypt_ftr->major_version;
int orig_minor = crypt_ftr->minor_version;
if ((crypt_ftr->major_version == 1) && (crypt_ftr->minor_version == 0)) {
struct crypt_persist_data *pdata;
off64_t pdata_offset = offset + CRYPT_FOOTER_TO_PERSIST_OFFSET;
SLOGW("upgrading crypto footer to 1.1");
pdata = malloc(CRYPT_PERSIST_DATA_SIZE);
if (pdata == NULL) {
SLOGE("Cannot allocate persisent data\n");
return;
}
memset(pdata, 0, CRYPT_PERSIST_DATA_SIZE);
/* Need to initialize the persistent data area */
if (lseek64(fd, pdata_offset, SEEK_SET) == -1) {
SLOGE("Cannot seek to persisent data offset\n");
return;
}
/* Write all zeros to the first copy, making it invalid */
unix_write(fd, pdata, CRYPT_PERSIST_DATA_SIZE);
/* Write a valid but empty structure to the second copy */
init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE);
unix_write(fd, pdata, CRYPT_PERSIST_DATA_SIZE);
/* Update the footer */
crypt_ftr->persist_data_size = CRYPT_PERSIST_DATA_SIZE;
crypt_ftr->persist_data_offset[0] = pdata_offset;
crypt_ftr->persist_data_offset[1] = pdata_offset + CRYPT_PERSIST_DATA_SIZE;
crypt_ftr->minor_version = 1;
}
if ((crypt_ftr->major_version == 1) && (crypt_ftr->minor_version == 1)) {
SLOGW("upgrading crypto footer to 1.2");
/* But keep the old kdf_type.
* It will get updated later to KDF_SCRYPT after the password has been verified.
*/
crypt_ftr->kdf_type = KDF_PBKDF2;
get_device_scrypt_params(crypt_ftr);
crypt_ftr->minor_version = 2;
}
if ((crypt_ftr->major_version == 1) && (crypt_ftr->minor_version == 2)) {
SLOGW("upgrading crypto footer to 1.3");
crypt_ftr->crypt_type = CRYPT_TYPE_PASSWORD;
crypt_ftr->minor_version = 3;
}
if ((orig_major != crypt_ftr->major_version) || (orig_minor != crypt_ftr->minor_version)) {
if (lseek64(fd, offset, SEEK_SET) == -1) {
SLOGE("Cannot seek to crypt footer\n");
return;
}
unix_write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr));
}
}
static int get_crypt_ftr_and_key(struct crypt_mnt_ftr *crypt_ftr)
{
int fd;
unsigned int nr_sec, cnt;
off64_t starting_off;
int rc = -1;
char *fname = NULL;
struct stat statbuf;
if (get_crypt_ftr_info(&fname, &starting_off)) {
SLOGE("Unable to get crypt_ftr_info\n");
return -1;
}
if (fname[0] != '/') {
SLOGE("Unexpected value for crypto key location\n");
return -1;
}
if ( (fd = open(fname, O_RDWR)) < 0) {
SLOGE("Cannot open footer file %s for get\n", fname);
return -1;
}
/* Make sure it's 16 Kbytes in length */
fstat(fd, &statbuf);
if (S_ISREG(statbuf.st_mode) && (statbuf.st_size != 0x4000)) {
SLOGE("footer file %s is not the expected size!\n", fname);
goto errout;
}
/* Seek to the start of the crypt footer */
if (lseek64(fd, starting_off, SEEK_SET) == -1) {
SLOGE("Cannot seek to real block device footer\n");
goto errout;
}
if ( (cnt = read(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) {
SLOGE("Cannot read real block device footer\n");
goto errout;
}
if (crypt_ftr->magic != CRYPT_MNT_MAGIC) {
SLOGE("Bad magic for real block device %s\n", fname);
goto errout;
}
if (crypt_ftr->major_version != CURRENT_MAJOR_VERSION) {
SLOGE("Cannot understand major version %d real block device footer; expected %d\n",
crypt_ftr->major_version, CURRENT_MAJOR_VERSION);
goto errout;
}
if (crypt_ftr->minor_version > CURRENT_MINOR_VERSION) {
SLOGW("Warning: crypto footer minor version %d, expected <= %d, continuing...\n",
crypt_ftr->minor_version, CURRENT_MINOR_VERSION);
}
/* If this is a verion 1.0 crypt_ftr, make it a 1.1 crypt footer, and update the
* copy on disk before returning.
*/
if (crypt_ftr->minor_version < CURRENT_MINOR_VERSION) {
upgrade_crypt_ftr(fd, crypt_ftr, starting_off);
}
/* Success! */
rc = 0;
errout:
close(fd);
return rc;
}
static int validate_persistent_data_storage(struct crypt_mnt_ftr *crypt_ftr)
{
if (crypt_ftr->persist_data_offset[0] + crypt_ftr->persist_data_size >
crypt_ftr->persist_data_offset[1]) {
SLOGE("Crypt_ftr persist data regions overlap");
return -1;
}
if (crypt_ftr->persist_data_offset[0] >= crypt_ftr->persist_data_offset[1]) {
SLOGE("Crypt_ftr persist data region 0 starts after region 1");
return -1;
}
if (((crypt_ftr->persist_data_offset[1] + crypt_ftr->persist_data_size) -
(crypt_ftr->persist_data_offset[0] - CRYPT_FOOTER_TO_PERSIST_OFFSET)) >
CRYPT_FOOTER_OFFSET) {
SLOGE("Persistent data extends past crypto footer");
return -1;
}
return 0;
}
static int load_persistent_data(void)
{
struct crypt_mnt_ftr crypt_ftr;
struct crypt_persist_data *pdata = NULL;
char encrypted_state[PROPERTY_VALUE_MAX];
char *fname;
int found = 0;
int fd;
int ret;
int i;
if (persist_data) {
/* Nothing to do, we've already loaded or initialized it */
return 0;
}
/* If not encrypted, just allocate an empty table and initialize it */
property_get("ro.crypto.state", encrypted_state, "");
if (strcmp(encrypted_state, "encrypted") ) {
pdata = malloc(CRYPT_PERSIST_DATA_SIZE);
if (pdata) {
init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE);
persist_data = pdata;
return 0;
}
return -1;
}
if(get_crypt_ftr_and_key(&crypt_ftr)) {
return -1;
}
if ((crypt_ftr.major_version < 1)
|| (crypt_ftr.major_version == 1 && crypt_ftr.minor_version < 1)) {
SLOGE("Crypt_ftr version doesn't support persistent data");
return -1;
}
if (get_crypt_ftr_info(&fname, NULL)) {
return -1;
}
ret = validate_persistent_data_storage(&crypt_ftr);
if (ret) {
return -1;
}
fd = open(fname, O_RDONLY);
if (fd < 0) {
SLOGE("Cannot open %s metadata file", fname);
return -1;
}
if (persist_data == NULL) {
pdata = malloc(crypt_ftr.persist_data_size);
if (pdata == NULL) {
SLOGE("Cannot allocate memory for persistent data");
goto err;
}
}
for (i = 0; i < 2; i++) {
if (lseek64(fd, crypt_ftr.persist_data_offset[i], SEEK_SET) < 0) {
SLOGE("Cannot seek to read persistent data on %s", fname);
goto err2;
}
if (unix_read(fd, pdata, crypt_ftr.persist_data_size) < 0){
SLOGE("Error reading persistent data on iteration %d", i);
goto err2;
}
if (pdata->persist_magic == PERSIST_DATA_MAGIC) {
found = 1;
break;
}
}
if (!found) {
SLOGI("Could not find valid persistent data, creating");
init_empty_persist_data(pdata, crypt_ftr.persist_data_size);
}
/* Success */
persist_data = pdata;
close(fd);
return 0;
err2:
free(pdata);
err:
close(fd);
return -1;
}
static int save_persistent_data(void)
{
struct crypt_mnt_ftr crypt_ftr;
struct crypt_persist_data *pdata;
char *fname;
off64_t write_offset;
off64_t erase_offset;
int found = 0;
int fd;
int ret;
if (persist_data == NULL) {
SLOGE("No persistent data to save");
return -1;
}
if(get_crypt_ftr_and_key(&crypt_ftr)) {
return -1;
}
if ((crypt_ftr.major_version < 1)
|| (crypt_ftr.major_version == 1 && crypt_ftr.minor_version < 1)) {
SLOGE("Crypt_ftr version doesn't support persistent data");
return -1;
}
ret = validate_persistent_data_storage(&crypt_ftr);
if (ret) {
return -1;
}
if (get_crypt_ftr_info(&fname, NULL)) {
return -1;
}
fd = open(fname, O_RDWR);
if (fd < 0) {
SLOGE("Cannot open %s metadata file", fname);
return -1;
}
pdata = malloc(crypt_ftr.persist_data_size);
if (pdata == NULL) {
SLOGE("Cannot allocate persistant data");
goto err;
}
if (lseek64(fd, crypt_ftr.persist_data_offset[0], SEEK_SET) < 0) {
SLOGE("Cannot seek to read persistent data on %s", fname);
goto err2;
}
if (unix_read(fd, pdata, crypt_ftr.persist_data_size) < 0) {
SLOGE("Error reading persistent data before save");
goto err2;
}
if (pdata->persist_magic == PERSIST_DATA_MAGIC) {
/* The first copy is the curent valid copy, so write to
* the second copy and erase this one */
write_offset = crypt_ftr.persist_data_offset[1];
erase_offset = crypt_ftr.persist_data_offset[0];
} else {
/* The second copy must be the valid copy, so write to
* the first copy, and erase the second */
write_offset = crypt_ftr.persist_data_offset[0];
erase_offset = crypt_ftr.persist_data_offset[1];
}
/* Write the new copy first, if successful, then erase the old copy */
if (lseek(fd, write_offset, SEEK_SET) < 0) {
SLOGE("Cannot seek to write persistent data");
goto err2;
}
if (unix_write(fd, persist_data, crypt_ftr.persist_data_size) ==
(int) crypt_ftr.persist_data_size) {
if (lseek(fd, erase_offset, SEEK_SET) < 0) {
SLOGE("Cannot seek to erase previous persistent data");
goto err2;
}
fsync(fd);
memset(pdata, 0, crypt_ftr.persist_data_size);
if (unix_write(fd, pdata, crypt_ftr.persist_data_size) !=
(int) crypt_ftr.persist_data_size) {
SLOGE("Cannot write to erase previous persistent data");
goto err2;
}
fsync(fd);
} else {
SLOGE("Cannot write to save persistent data");
goto err2;
}
/* Success */
free(pdata);
close(fd);
return 0;
err2:
free(pdata);
err:
close(fd);
return -1;
}
static int hexdigit (char c)
{
if (c >= '0' && c <= '9') return c - '0';
c = tolower(c);
if (c >= 'a' && c <= 'f') return c - 'a' + 10;
return -1;
}
static unsigned char* convert_hex_ascii_to_key(const char* master_key_ascii,
unsigned int* out_keysize)
{
unsigned int i;
*out_keysize = 0;
size_t size = strlen (master_key_ascii);
if (size % 2) {
SLOGE("Trying to convert ascii string of odd length");
return NULL;
}
unsigned char* master_key = (unsigned char*) malloc(size / 2);
if (master_key == 0) {
SLOGE("Cannot allocate");
return NULL;
}
for (i = 0; i < size; i += 2) {
int high_nibble = hexdigit (master_key_ascii[i]);
int low_nibble = hexdigit (master_key_ascii[i + 1]);
if(high_nibble < 0 || low_nibble < 0) {
SLOGE("Invalid hex string");
free (master_key);
return NULL;
}
master_key[*out_keysize] = high_nibble * 16 + low_nibble;
(*out_keysize)++;
}
return master_key;
}
/* Convert a binary key of specified length into an ascii hex string equivalent,
* without the leading 0x and with null termination
*/
static void convert_key_to_hex_ascii(unsigned char *master_key, unsigned int keysize,
char *master_key_ascii)
{
unsigned int i, a;
unsigned char nibble;
for (i=0, a=0; i<keysize; i++, a+=2) {
/* For each byte, write out two ascii hex digits */
nibble = (master_key[i] >> 4) & 0xf;
master_key_ascii[a] = nibble + (nibble > 9 ? 0x37 : 0x30);
nibble = master_key[i] & 0xf;
master_key_ascii[a+1] = nibble + (nibble > 9 ? 0x37 : 0x30);
}
/* Add the null termination */
master_key_ascii[a] = '\0';
}
static int load_crypto_mapping_table(struct crypt_mnt_ftr *crypt_ftr, unsigned char *master_key,
char *real_blk_name, const char *name, int fd,
char *extra_params)
{
char buffer[DM_CRYPT_BUF_SIZE];
struct dm_ioctl *io;
struct dm_target_spec *tgt;
char *crypt_params;
char master_key_ascii[129]; /* Large enough to hold 512 bit key and null */
int i;
io = (struct dm_ioctl *) buffer;
/* Load the mapping table for this device */
tgt = (struct dm_target_spec *) &buffer[sizeof(struct dm_ioctl)];
ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
io->target_count = 1;
tgt->status = 0;
tgt->sector_start = 0;
tgt->length = crypt_ftr->fs_size;
strcpy(tgt->target_type, "crypt");
crypt_params = buffer + sizeof(struct dm_ioctl) + sizeof(struct dm_target_spec);
convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii);
sprintf(crypt_params, "%s %s 0 %s 0 %s", crypt_ftr->crypto_type_name,
master_key_ascii, real_blk_name, extra_params);
crypt_params += strlen(crypt_params) + 1;
crypt_params = (char *) (((unsigned long)crypt_params + 7) & ~8); /* Align to an 8 byte boundary */
tgt->next = crypt_params - buffer;
for (i = 0; i < TABLE_LOAD_RETRIES; i++) {
if (! ioctl(fd, DM_TABLE_LOAD, io)) {
break;
}
usleep(500000);
}
if (i == TABLE_LOAD_RETRIES) {
/* We failed to load the table, return an error */
return -1;
} else {
return i + 1;
}
}
static int get_dm_crypt_version(int fd, const char *name, int *version)
{
char buffer[DM_CRYPT_BUF_SIZE];
struct dm_ioctl *io;
struct dm_target_versions *v;
int i;
io = (struct dm_ioctl *) buffer;
ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
if (ioctl(fd, DM_LIST_VERSIONS, io)) {
return -1;
}
/* Iterate over the returned versions, looking for name of "crypt".
* When found, get and return the version.
*/
v = (struct dm_target_versions *) &buffer[sizeof(struct dm_ioctl)];
while (v->next) {
if (! strcmp(v->name, "crypt")) {
/* We found the crypt driver, return the version, and get out */
version[0] = v->version[0];
version[1] = v->version[1];
version[2] = v->version[2];
return 0;
}
v = (struct dm_target_versions *)(((char *)v) + v->next);
}
return -1;
}
static int create_crypto_blk_dev(struct crypt_mnt_ftr *crypt_ftr, unsigned char *master_key,
char *real_blk_name, char *crypto_blk_name, const char *name)
{
char buffer[DM_CRYPT_BUF_SIZE];
char master_key_ascii[129]; /* Large enough to hold 512 bit key and null */
char *crypt_params;
struct dm_ioctl *io;
struct dm_target_spec *tgt;
unsigned int minor;
int fd;
int i;
int retval = -1;
int version[3];
char *extra_params;
int load_count;
if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) {
SLOGE("Cannot open device-mapper\n");
goto errout;
}
io = (struct dm_ioctl *) buffer;
ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
if (ioctl(fd, DM_DEV_CREATE, io)) {
SLOGE("Cannot create dm-crypt device\n");
goto errout;
}
/* Get the device status, in particular, the name of it's device file */
ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
if (ioctl(fd, DM_DEV_STATUS, io)) {
SLOGE("Cannot retrieve dm-crypt device status\n");
goto errout;
}
minor = (io->dev & 0xff) | ((io->dev >> 12) & 0xfff00);
snprintf(crypto_blk_name, MAXPATHLEN, "/dev/block/dm-%u", minor);
extra_params = "";
if (! get_dm_crypt_version(fd, name, version)) {
/* Support for allow_discards was added in version 1.11.0 */
if ((version[0] >= 2) ||
((version[0] == 1) && (version[1] >= 11))) {
extra_params = "1 allow_discards";
SLOGI("Enabling support for allow_discards in dmcrypt.\n");
}
}
load_count = load_crypto_mapping_table(crypt_ftr, master_key, real_blk_name, name,
fd, extra_params);
if (load_count < 0) {
SLOGE("Cannot load dm-crypt mapping table.\n");
goto errout;
} else if (load_count > 1) {
SLOGI("Took %d tries to load dmcrypt table.\n", load_count);
}
/* Resume this device to activate it */
ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
if (ioctl(fd, DM_DEV_SUSPEND, io)) {
SLOGE("Cannot resume the dm-crypt device\n");
goto errout;
}
/* We made it here with no errors. Woot! */
retval = 0;
errout:
close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */
return retval;
}
static int delete_crypto_blk_dev(char *name)
{
int fd;
char buffer[DM_CRYPT_BUF_SIZE];
struct dm_ioctl *io;
int retval = -1;
if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) {
SLOGE("Cannot open device-mapper\n");
goto errout;
}
io = (struct dm_ioctl *) buffer;
ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
if (ioctl(fd, DM_DEV_REMOVE, io)) {
SLOGE("Cannot remove dm-crypt device\n");
goto errout;
}
/* We made it here with no errors. Woot! */
retval = 0;
errout:
close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */
return retval;
}
static int pbkdf2(const char *passwd, const unsigned char *salt,
unsigned char *ikey, void *params UNUSED)
{
SLOGI("Using pbkdf2 for cryptfs KDF");
/* Turn the password into a key and IV that can decrypt the master key */
unsigned int keysize;
char* master_key = (char*)convert_hex_ascii_to_key(passwd, &keysize);
if (!master_key) return -1;
PKCS5_PBKDF2_HMAC_SHA1(master_key, keysize, salt, SALT_LEN,
HASH_COUNT, KEY_LEN_BYTES+IV_LEN_BYTES, ikey);
memset(master_key, 0, keysize);
free (master_key);
return 0;
}
static int scrypt(const char *passwd, const unsigned char *salt,
unsigned char *ikey, void *params)
{
SLOGI("Using scrypt for cryptfs KDF");
struct crypt_mnt_ftr *ftr = (struct crypt_mnt_ftr *) params;
int N = 1 << ftr->N_factor;
int r = 1 << ftr->r_factor;
int p = 1 << ftr->p_factor;
/* Turn the password into a key and IV that can decrypt the master key */
unsigned int keysize;
unsigned char* master_key = convert_hex_ascii_to_key(passwd, &keysize);
if (!master_key) return -1;
crypto_scrypt(master_key, keysize, salt, SALT_LEN, N, r, p, ikey,
KEY_LEN_BYTES + IV_LEN_BYTES);
memset(master_key, 0, keysize);
free (master_key);
return 0;
}
static int scrypt_keymaster(const char *passwd, const unsigned char *salt,
unsigned char *ikey, void *params)
{
SLOGI("Using scrypt with keymaster for cryptfs KDF");
int rc;
unsigned int key_size;
size_t signature_size;
unsigned char* signature;
struct crypt_mnt_ftr *ftr = (struct crypt_mnt_ftr *) params;
int N = 1 << ftr->N_factor;
int r = 1 << ftr->r_factor;
int p = 1 << ftr->p_factor;
unsigned char* master_key = convert_hex_ascii_to_key(passwd, &key_size);
if (!master_key) {
SLOGE("Failed to convert passwd from hex");
return -1;
}
rc = crypto_scrypt(master_key, key_size, salt, SALT_LEN,
N, r, p, ikey, KEY_LEN_BYTES + IV_LEN_BYTES);
memset(master_key, 0, key_size);
free(master_key);
if (rc) {
SLOGE("scrypt failed");
return -1;
}
if (keymaster_sign_object(ftr, ikey, KEY_LEN_BYTES + IV_LEN_BYTES,
&signature, &signature_size)) {
SLOGE("Signing failed");
return -1;
}
rc = crypto_scrypt(signature, signature_size, salt, SALT_LEN,
N, r, p, ikey, KEY_LEN_BYTES + IV_LEN_BYTES);
free(signature);
if (rc) {
SLOGE("scrypt failed");
return -1;
}
return 0;
}
static int encrypt_master_key(const char *passwd, const unsigned char *salt,
const unsigned char *decrypted_master_key,
unsigned char *encrypted_master_key,
struct crypt_mnt_ftr *crypt_ftr)
{
unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */
EVP_CIPHER_CTX e_ctx;
int encrypted_len, final_len;
/* Turn the password into a key and IV that can decrypt the master key */
get_device_scrypt_params(crypt_ftr);
switch (crypt_ftr->kdf_type) {
case KDF_SCRYPT_KEYMASTER:
if (keymaster_create_key(crypt_ftr)) {
SLOGE("keymaster_create_key failed");
return -1;
}
if (scrypt_keymaster(passwd, salt, ikey, crypt_ftr)) {
SLOGE("scrypt failed");
return -1;
}
break;
case KDF_SCRYPT:
if (scrypt(passwd, salt, ikey, crypt_ftr)) {
SLOGE("scrypt failed");
return -1;
}
break;
default:
SLOGE("Invalid kdf_type");
return -1;
}
/* Initialize the decryption engine */
if (! EVP_EncryptInit(&e_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) {
SLOGE("EVP_EncryptInit failed\n");
return -1;
}
EVP_CIPHER_CTX_set_padding(&e_ctx, 0); /* Turn off padding as our data is block aligned */
/* Encrypt the master key */
if (! EVP_EncryptUpdate(&e_ctx, encrypted_master_key, &encrypted_len,
decrypted_master_key, KEY_LEN_BYTES)) {
SLOGE("EVP_EncryptUpdate failed\n");
return -1;
}
if (! EVP_EncryptFinal(&e_ctx, encrypted_master_key + encrypted_len, &final_len)) {
SLOGE("EVP_EncryptFinal failed\n");
return -1;
}
if (encrypted_len + final_len != KEY_LEN_BYTES) {
SLOGE("EVP_Encryption length check failed with %d, %d bytes\n", encrypted_len, final_len);
return -1;
}
return 0;
}
static int decrypt_master_key_aux(char *passwd, unsigned char *salt,
unsigned char *encrypted_master_key,
unsigned char *decrypted_master_key,
kdf_func kdf, void *kdf_params)
{
unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */
EVP_CIPHER_CTX d_ctx;
int decrypted_len, final_len;
/* Turn the password into a key and IV that can decrypt the master key */
if (kdf(passwd, salt, ikey, kdf_params)) {
SLOGE("kdf failed");
return -1;
}
/* Initialize the decryption engine */
if (! EVP_DecryptInit(&d_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) {
return -1;
}
EVP_CIPHER_CTX_set_padding(&d_ctx, 0); /* Turn off padding as our data is block aligned */
/* Decrypt the master key */
if (! EVP_DecryptUpdate(&d_ctx, decrypted_master_key, &decrypted_len,
encrypted_master_key, KEY_LEN_BYTES)) {
return -1;
}
if (! EVP_DecryptFinal(&d_ctx, decrypted_master_key + decrypted_len, &final_len)) {
return -1;
}
if (decrypted_len + final_len != KEY_LEN_BYTES) {
return -1;
} else {
return 0;
}
}
static void get_kdf_func(struct crypt_mnt_ftr *ftr, kdf_func *kdf, void** kdf_params)
{
if (ftr->kdf_type == KDF_SCRYPT_KEYMASTER) {
*kdf = scrypt_keymaster;
*kdf_params = ftr;
} else if (ftr->kdf_type == KDF_SCRYPT) {
*kdf = scrypt;
*kdf_params = ftr;
} else {
*kdf = pbkdf2;
*kdf_params = NULL;
}
}
static int decrypt_master_key(char *passwd, unsigned char *decrypted_master_key,
struct crypt_mnt_ftr *crypt_ftr)
{
kdf_func kdf;
void *kdf_params;
int ret;
get_kdf_func(crypt_ftr, &kdf, &kdf_params);
ret = decrypt_master_key_aux(passwd, crypt_ftr->salt, crypt_ftr->master_key, decrypted_master_key, kdf,
kdf_params);
if (ret != 0) {
SLOGW("failure decrypting master key");
}
return ret;
}
static int create_encrypted_random_key(char *passwd, unsigned char *master_key, unsigned char *salt,
struct crypt_mnt_ftr *crypt_ftr) {
int fd;
unsigned char key_buf[KEY_LEN_BYTES];
EVP_CIPHER_CTX e_ctx;
int encrypted_len, final_len;
/* Get some random bits for a key */
fd = open("/dev/urandom", O_RDONLY);
read(fd, key_buf, sizeof(key_buf));
read(fd, salt, SALT_LEN);
close(fd);
/* Now encrypt it with the password */
return encrypt_master_key(passwd, salt, key_buf, master_key, crypt_ftr);
}
static int wait_and_unmount(char *mountpoint)
{
int i, rc;
#define WAIT_UNMOUNT_COUNT 20
/* Now umount the tmpfs filesystem */
for (i=0; i<WAIT_UNMOUNT_COUNT; i++) {
if (umount(mountpoint)) {
if (errno == EINVAL) {
/* EINVAL is returned if the directory is not a mountpoint,
* i.e. there is no filesystem mounted there. So just get out.
*/
break;
}
sleep(1);
i++;
} else {
break;
}
}
if (i < WAIT_UNMOUNT_COUNT) {
SLOGD("unmounting %s succeeded\n", mountpoint);
rc = 0;
} else {
SLOGE("unmounting %s failed\n", mountpoint);
rc = -1;
}
return rc;
}
#define DATA_PREP_TIMEOUT 200
static int prep_data_fs(void)
{
int i;
/* Do the prep of the /data filesystem */
property_set("vold.post_fs_data_done", "0");
property_set("vold.decrypt", "trigger_post_fs_data");
SLOGD("Just triggered post_fs_data\n");
/* Wait a max of 50 seconds, hopefully it takes much less */
for (i=0; i<DATA_PREP_TIMEOUT; i++) {
char p[PROPERTY_VALUE_MAX];
property_get("vold.post_fs_data_done", p, "0");
if (*p == '1') {
break;
} else {
usleep(250000);
}
}
if (i == DATA_PREP_TIMEOUT) {
/* Ugh, we failed to prep /data in time. Bail. */
SLOGE("post_fs_data timed out!\n");
return -1;
} else {
SLOGD("post_fs_data done\n");
return 0;
}
}
static int cryptfs_restart_internal(int restart_main)
{
char fs_type[32];
char real_blkdev[MAXPATHLEN];
char crypto_blkdev[MAXPATHLEN];
char fs_options[256];
unsigned long mnt_flags;
struct stat statbuf;
int rc = -1, i;
static int restart_successful = 0;
/* Validate that it's OK to call this routine */
if (! master_key_saved) {
SLOGE("Encrypted filesystem not validated, aborting");
return -1;
}
if (restart_successful) {
SLOGE("System already restarted with encrypted disk, aborting");
return -1;
}
if (restart_main) {
/* Here is where we shut down the framework. The init scripts
* start all services in one of three classes: core, main or late_start.
* On boot, we start core and main. Now, we stop main, but not core,
* as core includes vold and a few other really important things that
* we need to keep running. Once main has stopped, we should be able
* to umount the tmpfs /data, then mount the encrypted /data.
* We then restart the class main, and also the class late_start.
* At the moment, I've only put a few things in late_start that I know
* are not needed to bring up the framework, and that also cause problems
* with unmounting the tmpfs /data, but I hope to add add more services
* to the late_start class as we optimize this to decrease the delay
* till the user is asked for the password to the filesystem.
*/
/* The init files are setup to stop the class main when vold.decrypt is
* set to trigger_reset_main.
*/
property_set("vold.decrypt", "trigger_reset_main");
SLOGD("Just asked init to shut down class main\n");
/* Ugh, shutting down the framework is not synchronous, so until it
* can be fixed, this horrible hack will wait a moment for it all to
* shut down before proceeding. Without it, some devices cannot
* restart the graphics services.
*/
sleep(2);
}
/* Now that the framework is shutdown, we should be able to umount()
* the tmpfs filesystem, and mount the real one.
*/
property_get("ro.crypto.fs_crypto_blkdev", crypto_blkdev, "");
if (strlen(crypto_blkdev) == 0) {
SLOGE("fs_crypto_blkdev not set\n");
return -1;
}
if (! (rc = wait_and_unmount(DATA_MNT_POINT)) ) {
/* If ro.crypto.readonly is set to 1, mount the decrypted
* filesystem readonly. This is used when /data is mounted by
* recovery mode.
*/
char ro_prop[PROPERTY_VALUE_MAX];
property_get("ro.crypto.readonly", ro_prop, "");
if (strlen(ro_prop) > 0 && atoi(ro_prop)) {
struct fstab_rec* rec = fs_mgr_get_entry_for_mount_point(fstab, DATA_MNT_POINT);
rec->flags |= MS_RDONLY;
}
/* If that succeeded, then mount the decrypted filesystem */
fs_mgr_do_mount(fstab, DATA_MNT_POINT, crypto_blkdev, 0);
property_set("vold.decrypt", "trigger_load_persist_props");
/* Create necessary paths on /data */
if (prep_data_fs()) {
return -1;
}
/* startup service classes main and late_start */
property_set("vold.decrypt", "trigger_restart_framework");
SLOGD("Just triggered restart_framework\n");
/* Give it a few moments to get started */
sleep(1);
}
if (rc == 0) {
restart_successful = 1;
}
return rc;
}
int cryptfs_restart(void)
{
/* Call internal implementation forcing a restart of main service group */
return cryptfs_restart_internal(1);
}
static int do_crypto_complete(char *mount_point UNUSED)
{
struct crypt_mnt_ftr crypt_ftr;
char encrypted_state[PROPERTY_VALUE_MAX];
char key_loc[PROPERTY_VALUE_MAX];
property_get("ro.crypto.state", encrypted_state, "");
if (strcmp(encrypted_state, "encrypted") ) {
SLOGE("not running with encryption, aborting");
return 1;
}
if (get_crypt_ftr_and_key(&crypt_ftr)) {
fs_mgr_get_crypt_info(fstab, key_loc, 0, sizeof(key_loc));
/*
* Only report this error if key_loc is a file and it exists.
* If the device was never encrypted, and /data is not mountable for
* some reason, returning 1 should prevent the UI from presenting the
* a "enter password" screen, or worse, a "press button to wipe the
* device" screen.
*/
if ((key_loc[0] == '/') && (access("key_loc", F_OK) == -1)) {
SLOGE("master key file does not exist, aborting");
return 1;
} else {
SLOGE("Error getting crypt footer and key\n");
return -1;
}
}
if (crypt_ftr.flags & CRYPT_ENCRYPTION_IN_PROGRESS) {
SLOGE("Encryption process didn't finish successfully\n");
return -2; /* -2 is the clue to the UI that there is no usable data on the disk,
* and give the user an option to wipe the disk */
}
/* We passed the test! We shall diminish, and return to the west */
return 0;
}
static int test_mount_encrypted_fs(struct crypt_mnt_ftr* crypt_ftr,
char *passwd, char *mount_point, char *label)
{
/* Allocate enough space for a 256 bit key, but we may use less */
unsigned char decrypted_master_key[32];
char crypto_blkdev[MAXPATHLEN];
char real_blkdev[MAXPATHLEN];
char tmp_mount_point[64];
unsigned int orig_failed_decrypt_count;
int rc;
kdf_func kdf;
void *kdf_params;
int use_keymaster = 0;
int upgrade = 0;
SLOGD("crypt_ftr->fs_size = %lld\n", crypt_ftr->fs_size);
orig_failed_decrypt_count = crypt_ftr->failed_decrypt_count;
if (! (crypt_ftr->flags & CRYPT_MNT_KEY_UNENCRYPTED) ) {
if (decrypt_master_key(passwd, decrypted_master_key, crypt_ftr)) {
SLOGE("Failed to decrypt master key\n");
return -1;
}
}
fs_mgr_get_crypt_info(fstab, 0, real_blkdev, sizeof(real_blkdev));
if (create_crypto_blk_dev(crypt_ftr, decrypted_master_key,
real_blkdev, crypto_blkdev, label)) {
SLOGE("Error creating decrypted block device\n");
return -1;
}
/* If init detects an encrypted filesystem, it writes a file for each such
* encrypted fs into the tmpfs /data filesystem, and then the framework finds those
* files and passes that data to me */
/* Create a tmp mount point to try mounting the decryptd fs
* Since we're here, the mount_point should be a tmpfs filesystem, so make
* a directory in it to test mount the decrypted filesystem.
*/
sprintf(tmp_mount_point, "%s/tmp_mnt", mount_point);
mkdir(tmp_mount_point, 0755);
if (fs_mgr_do_mount(fstab, DATA_MNT_POINT, crypto_blkdev, tmp_mount_point)) {
SLOGE("Error temp mounting decrypted block device\n");
delete_crypto_blk_dev(label);
crypt_ftr->failed_decrypt_count++;
} else {
/* Success, so just umount and we'll mount it properly when we restart
* the framework.
*/
umount(tmp_mount_point);
crypt_ftr->failed_decrypt_count = 0;
}
if (orig_failed_decrypt_count != crypt_ftr->failed_decrypt_count) {
put_crypt_ftr_and_key(crypt_ftr);
}
if (crypt_ftr->failed_decrypt_count) {
/* We failed to mount the device, so return an error */
rc = crypt_ftr->failed_decrypt_count;
} else {
/* Woot! Success! Save the name of the crypto block device
* so we can mount it when restarting the framework.
*/
property_set("ro.crypto.fs_crypto_blkdev", crypto_blkdev);
/* Also save a the master key so we can reencrypted the key
* the key when we want to change the password on it.
*/
memcpy(saved_master_key, decrypted_master_key, KEY_LEN_BYTES);
saved_mount_point = strdup(mount_point);
master_key_saved = 1;
SLOGD("%s(): Master key saved\n", __FUNCTION__);
rc = 0;
/*
* Upgrade if we're not using the latest KDF.
*/
use_keymaster = keymaster_check_compatibility();
if (crypt_ftr->kdf_type == KDF_SCRYPT_KEYMASTER) {
// Don't allow downgrade to KDF_SCRYPT
} else if (use_keymaster == 1 && crypt_ftr->kdf_type != KDF_SCRYPT_KEYMASTER) {
crypt_ftr->kdf_type = KDF_SCRYPT_KEYMASTER;
upgrade = 1;
} else if (use_keymaster == 0 && crypt_ftr->kdf_type != KDF_SCRYPT) {
crypt_ftr->kdf_type = KDF_SCRYPT;
upgrade = 1;
}
if (upgrade) {
rc = encrypt_master_key(passwd, crypt_ftr->salt, saved_master_key,
crypt_ftr->master_key, crypt_ftr);
if (!rc) {
rc = put_crypt_ftr_and_key(crypt_ftr);
}
SLOGD("Key Derivation Function upgrade: rc=%d\n", rc);
}
}
return rc;
}
/* Called by vold when it wants to undo the crypto mapping of a volume it
* manages. This is usually in response to a factory reset, when we want
* to undo the crypto mapping so the volume is formatted in the clear.
*/
int cryptfs_revert_volume(const char *label)
{
return delete_crypto_blk_dev((char *)label);
}
/*
* Called by vold when it's asked to mount an encrypted, nonremovable volume.
* Setup a dm-crypt mapping, use the saved master key from
* setting up the /data mapping, and return the new device path.
*/
int cryptfs_setup_volume(const char *label, int major, int minor,
char *crypto_sys_path, unsigned int max_path,
int *new_major, int *new_minor)
{
char real_blkdev[MAXPATHLEN], crypto_blkdev[MAXPATHLEN];
struct crypt_mnt_ftr sd_crypt_ftr;
struct stat statbuf;
int nr_sec, fd;
sprintf(real_blkdev, "/dev/block/vold/%d:%d", major, minor);
get_crypt_ftr_and_key(&sd_crypt_ftr);
/* Update the fs_size field to be the size of the volume */
fd = open(real_blkdev, O_RDONLY);
nr_sec = get_blkdev_size(fd);
close(fd);
if (nr_sec == 0) {
SLOGE("Cannot get size of volume %s\n", real_blkdev);
return -1;
}
sd_crypt_ftr.fs_size = nr_sec;
create_crypto_blk_dev(&sd_crypt_ftr, saved_master_key, real_blkdev,
crypto_blkdev, label);
stat(crypto_blkdev, &statbuf);
*new_major = MAJOR(statbuf.st_rdev);
*new_minor = MINOR(statbuf.st_rdev);
/* Create path to sys entry for this block device */
snprintf(crypto_sys_path, max_path, "/devices/virtual/block/%s", strrchr(crypto_blkdev, '/')+1);
return 0;
}
int cryptfs_crypto_complete(void)
{
return do_crypto_complete("/data");
}
int check_unmounted_and_get_ftr(struct crypt_mnt_ftr* crypt_ftr)
{
char encrypted_state[PROPERTY_VALUE_MAX];
property_get("ro.crypto.state", encrypted_state, "");
if ( master_key_saved || strcmp(encrypted_state, "encrypted") ) {
SLOGE("encrypted fs already validated or not running with encryption,"
" aborting");
return -1;
}
if (get_crypt_ftr_and_key(crypt_ftr)) {
SLOGE("Error getting crypt footer and key");
return -1;
}
return 0;
}
int cryptfs_check_passwd(char *passwd)
{
struct crypt_mnt_ftr crypt_ftr;
int rc;
rc = check_unmounted_and_get_ftr(&crypt_ftr);
if (rc)
return rc;
rc = test_mount_encrypted_fs(&crypt_ftr, passwd,
DATA_MNT_POINT, "userdata");
if (rc == 0 && crypt_ftr.crypt_type != CRYPT_TYPE_DEFAULT) {
cryptfs_clear_password();
password = strdup(passwd);
struct timespec now;
clock_gettime(CLOCK_BOOTTIME, &now);
password_expiry_time = now.tv_sec + password_max_age_seconds;
}
return rc;
}
int cryptfs_verify_passwd(char *passwd)
{
struct crypt_mnt_ftr crypt_ftr;
/* Allocate enough space for a 256 bit key, but we may use less */
unsigned char decrypted_master_key[32];
char encrypted_state[PROPERTY_VALUE_MAX];
int rc;
property_get("ro.crypto.state", encrypted_state, "");
if (strcmp(encrypted_state, "encrypted") ) {
SLOGE("device not encrypted, aborting");
return -2;
}
if (!master_key_saved) {
SLOGE("encrypted fs not yet mounted, aborting");
return -1;
}
if (!saved_mount_point) {
SLOGE("encrypted fs failed to save mount point, aborting");
return -1;
}
if (get_crypt_ftr_and_key(&crypt_ftr)) {
SLOGE("Error getting crypt footer and key\n");
return -1;
}
if (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) {
/* If the device has no password, then just say the password is valid */
rc = 0;
} else {
decrypt_master_key(passwd, decrypted_master_key, &crypt_ftr);
if (!memcmp(decrypted_master_key, saved_master_key, crypt_ftr.keysize)) {
/* They match, the password is correct */
rc = 0;
} else {
/* If incorrect, sleep for a bit to prevent dictionary attacks */
sleep(1);
rc = 1;
}
}
return rc;
}
/* Initialize a crypt_mnt_ftr structure. The keysize is
* defaulted to 16 bytes, and the filesystem size to 0.
* Presumably, at a minimum, the caller will update the
* filesystem size and crypto_type_name after calling this function.
*/
static int cryptfs_init_crypt_mnt_ftr(struct crypt_mnt_ftr *ftr)
{
off64_t off;
memset(ftr, 0, sizeof(struct crypt_mnt_ftr));
ftr->magic = CRYPT_MNT_MAGIC;
ftr->major_version = CURRENT_MAJOR_VERSION;
ftr->minor_version = CURRENT_MINOR_VERSION;
ftr->ftr_size = sizeof(struct crypt_mnt_ftr);
ftr->keysize = KEY_LEN_BYTES;
switch (keymaster_check_compatibility()) {
case 1:
ftr->kdf_type = KDF_SCRYPT_KEYMASTER;
break;
case 0:
ftr->kdf_type = KDF_SCRYPT;
break;
default:
SLOGE("keymaster_check_compatibility failed");
return -1;
}
get_device_scrypt_params(ftr);
ftr->persist_data_size = CRYPT_PERSIST_DATA_SIZE;
if (get_crypt_ftr_info(NULL, &off) == 0) {
ftr->persist_data_offset[0] = off + CRYPT_FOOTER_TO_PERSIST_OFFSET;
ftr->persist_data_offset[1] = off + CRYPT_FOOTER_TO_PERSIST_OFFSET +
ftr->persist_data_size;
}
return 0;
}
static int cryptfs_enable_wipe(char *crypto_blkdev, off64_t size, int type)
{
const char *args[10];
char size_str[32]; /* Must be large enough to hold a %lld and null byte */
int num_args;
int status;
int tmp;
int rc = -1;
if (type == EXT4_FS) {
args[0] = "/system/bin/make_ext4fs";
args[1] = "-a";
args[2] = "/data";
args[3] = "-l";
snprintf(size_str, sizeof(size_str), "%lld", size * 512);
args[4] = size_str;
args[5] = crypto_blkdev;
num_args = 6;
SLOGI("Making empty filesystem with command %s %s %s %s %s %s\n",
args[0], args[1], args[2], args[3], args[4], args[5]);
} else if (type== FAT_FS) {
args[0] = "/system/bin/newfs_msdos";
args[1] = "-F";
args[2] = "32";
args[3] = "-O";
args[4] = "android";
args[5] = "-c";
args[6] = "8";
args[7] = "-s";
snprintf(size_str, sizeof(size_str), "%lld", size);
args[8] = size_str;
args[9] = crypto_blkdev;
num_args = 10;
SLOGI("Making empty filesystem with command %s %s %s %s %s %s %s %s %s %s\n",
args[0], args[1], args[2], args[3], args[4], args[5],
args[6], args[7], args[8], args[9]);
} else {
SLOGE("cryptfs_enable_wipe(): unknown filesystem type %d\n", type);
return -1;
}
tmp = android_fork_execvp(num_args, (char **)args, &status, false, true);
if (tmp != 0) {
SLOGE("Error creating empty filesystem on %s due to logwrap error\n", crypto_blkdev);
} else {
if (WIFEXITED(status)) {
if (WEXITSTATUS(status)) {
SLOGE("Error creating filesystem on %s, exit status %d ",
crypto_blkdev, WEXITSTATUS(status));
} else {
SLOGD("Successfully created filesystem on %s\n", crypto_blkdev);
rc = 0;
}
} else {
SLOGE("Error creating filesystem on %s, did not exit normally\n", crypto_blkdev);
}
}
return rc;
}
#define CRYPT_INPLACE_BUFSIZE 4096
#define CRYPT_SECTORS_PER_BUFSIZE (CRYPT_INPLACE_BUFSIZE / CRYPT_SECTOR_SIZE)
#define CRYPT_SECTOR_SIZE 512
/* aligned 32K writes tends to make flash happy.
* SD card association recommends it.
*/
#define BLOCKS_AT_A_TIME 8
struct encryptGroupsData
{
int realfd;
int cryptofd;
off64_t numblocks;
off64_t one_pct, cur_pct, new_pct;
off64_t blocks_already_done, tot_numblocks;
char* real_blkdev, * crypto_blkdev;
int count;
off64_t offset;
char* buffer;
off64_t last_written_sector;
int completed;
};
static void update_progress(struct encryptGroupsData* data)
{
data->blocks_already_done++;
data->new_pct = data->blocks_already_done / data->one_pct;
if (data->new_pct > data->cur_pct) {
char buf[8];
data->cur_pct = data->new_pct;
snprintf(buf, sizeof(buf), "%lld", data->cur_pct);
property_set("vold.encrypt_progress", buf);
}
}
static int flush_outstanding_data(struct encryptGroupsData* data)
{
if (data->count == 0) {
return 0;
}
SLOGV("Copying %d blocks at offset %llx", data->count, data->offset);
if (pread64(data->realfd, data->buffer,
info.block_size * data->count, data->offset)
<= 0) {
SLOGE("Error reading real_blkdev %s for inplace encrypt",
data->real_blkdev);
return -1;
}
if (pwrite64(data->cryptofd, data->buffer,
info.block_size * data->count, data->offset)
<= 0) {
SLOGE("Error writing crypto_blkdev %s for inplace encrypt",
data->crypto_blkdev);
return -1;
} else {
SLOGI("Encrypted %d blocks at sector %lld",
data->count, data->offset / info.block_size * CRYPT_SECTOR_SIZE);
}
data->count = 0;
data->last_written_sector = (data->offset + data->count)
/ info.block_size * CRYPT_SECTOR_SIZE - 1;
return 0;
}
static int encrypt_groups(struct encryptGroupsData* data)
{
unsigned int i;
u8 *block_bitmap = 0;
unsigned int block;
off64_t ret;
int rc = -1;
data->buffer = malloc(info.block_size * BLOCKS_AT_A_TIME);
if (!data->buffer) {
SLOGE("Failed to allocate crypto buffer");
goto errout;
}
block_bitmap = malloc(info.block_size);
if (!block_bitmap) {
SLOGE("failed to allocate block bitmap");
goto errout;
}
for (i = 0; i < aux_info.groups; ++i) {
SLOGI("Encrypting group %d", i);
u32 first_block = aux_info.first_data_block + i * info.blocks_per_group;
u32 block_count = min(info.blocks_per_group,
aux_info.len_blocks - first_block);
off64_t offset = (u64)info.block_size
* aux_info.bg_desc[i].bg_block_bitmap;
ret = pread64(data->realfd, block_bitmap, info.block_size, offset);
if (ret != (int)info.block_size) {
SLOGE("failed to read all of block group bitmap %d", i);
goto errout;
}
offset = (u64)info.block_size * first_block;
data->count = 0;
for (block = 0; block < block_count; block++) {
update_progress(data);
if (bitmap_get_bit(block_bitmap, block)) {
if (data->count == 0) {
data->offset = offset;
}
data->count++;
} else {
if (flush_outstanding_data(data)) {
goto errout;
}
}
offset += info.block_size;
/* Write data if we are aligned or buffer size reached */
if (offset % (info.block_size * BLOCKS_AT_A_TIME) == 0
|| data->count == BLOCKS_AT_A_TIME) {
if (flush_outstanding_data(data)) {
goto errout;
}
}
if (!is_battery_ok()) {
SLOGE("Stopping encryption due to low battery");
rc = 0;
goto errout;
}
}
if (flush_outstanding_data(data)) {
goto errout;
}
}
data->completed = 1;
rc = 0;
errout:
free(data->buffer);
free(block_bitmap);
return rc;
}
static int cryptfs_enable_inplace_ext4(char *crypto_blkdev,
char *real_blkdev,
off64_t size,
off64_t *size_already_done,
off64_t tot_size,
off64_t previously_encrypted_upto)
{
int i;
struct encryptGroupsData data;
int rc = -1;
if (previously_encrypted_upto > *size_already_done) {
SLOGD("Not fast encrypting since resuming part way through");
return -1;
}
memset(&data, 0, sizeof(data));
data.real_blkdev = real_blkdev;
data.crypto_blkdev = crypto_blkdev;
if ( (data.realfd = open(real_blkdev, O_RDWR)) < 0) {
SLOGE("Error opening real_blkdev %s for inplace encrypt\n",
real_blkdev);
goto errout;
}
if ( (data.cryptofd = open(crypto_blkdev, O_WRONLY)) < 0) {
SLOGE("Error opening crypto_blkdev %s for inplace encrypt\n",
crypto_blkdev);
goto errout;
}
if (setjmp(setjmp_env)) {
SLOGE("Reading extent caused an exception");
goto errout;
}
if (read_ext(data.realfd, 0) != 0) {
SLOGE("Failed to read extent");
goto errout;
}
data.numblocks = size / CRYPT_SECTORS_PER_BUFSIZE;
data.tot_numblocks = tot_size / CRYPT_SECTORS_PER_BUFSIZE;
data.blocks_already_done = *size_already_done / CRYPT_SECTORS_PER_BUFSIZE;
SLOGI("Encrypting filesystem in place...");
data.one_pct = data.tot_numblocks / 100;
data.cur_pct = 0;
rc = encrypt_groups(&data);
if (rc) {
SLOGE("Error encrypting groups");
goto errout;
}
*size_already_done += data.completed ? size : data.last_written_sector;
rc = 0;
errout:
close(data.realfd);
close(data.cryptofd);
return rc;
}
static int cryptfs_enable_inplace_full(char *crypto_blkdev, char *real_blkdev,
off64_t size, off64_t *size_already_done,
off64_t tot_size,
off64_t previously_encrypted_upto)
{
int realfd, cryptofd;
char *buf[CRYPT_INPLACE_BUFSIZE];
int rc = -1;
off64_t numblocks, i, remainder;
off64_t one_pct, cur_pct, new_pct;
off64_t blocks_already_done, tot_numblocks;
if ( (realfd = open(real_blkdev, O_RDONLY)) < 0) {
SLOGE("Error opening real_blkdev %s for inplace encrypt\n", real_blkdev);
return -1;
}
if ( (cryptofd = open(crypto_blkdev, O_WRONLY)) < 0) {
SLOGE("Error opening crypto_blkdev %s for inplace encrypt\n", crypto_blkdev);
close(realfd);
return -1;
}
/* This is pretty much a simple loop of reading 4K, and writing 4K.
* The size passed in is the number of 512 byte sectors in the filesystem.
* So compute the number of whole 4K blocks we should read/write,
* and the remainder.
*/
numblocks = size / CRYPT_SECTORS_PER_BUFSIZE;
remainder = size % CRYPT_SECTORS_PER_BUFSIZE;
tot_numblocks = tot_size / CRYPT_SECTORS_PER_BUFSIZE;
blocks_already_done = *size_already_done / CRYPT_SECTORS_PER_BUFSIZE;
SLOGE("Encrypting filesystem in place...");
i = previously_encrypted_upto + 1 - *size_already_done;
if (lseek64(realfd, i * CRYPT_SECTOR_SIZE, SEEK_SET) < 0) {
SLOGE("Cannot seek to previously encrypted point on %s", real_blkdev);
goto errout;
}
if (lseek64(cryptofd, i * CRYPT_SECTOR_SIZE, SEEK_SET) < 0) {
SLOGE("Cannot seek to previously encrypted point on %s", crypto_blkdev);
goto errout;
}
for (;i < size && i % CRYPT_SECTORS_PER_BUFSIZE != 0; ++i) {
if (unix_read(realfd, buf, CRYPT_SECTOR_SIZE) <= 0) {
SLOGE("Error reading initial sectors from real_blkdev %s for "
"inplace encrypt\n", crypto_blkdev);
goto errout;
}
if (unix_write(cryptofd, buf, CRYPT_SECTOR_SIZE) <= 0) {
SLOGE("Error writing initial sectors to crypto_blkdev %s for "
"inplace encrypt\n", crypto_blkdev);
goto errout;
} else {
SLOGI("Encrypted 1 block at %lld", i);
}
}
one_pct = tot_numblocks / 100;
cur_pct = 0;
/* process the majority of the filesystem in blocks */
for (i/=CRYPT_SECTORS_PER_BUFSIZE; i<numblocks; i++) {
new_pct = (i + blocks_already_done) / one_pct;
if (new_pct > cur_pct) {
char buf[8];
cur_pct = new_pct;
snprintf(buf, sizeof(buf), "%lld", cur_pct);
property_set("vold.encrypt_progress", buf);
}
if (unix_read(realfd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) {
SLOGE("Error reading real_blkdev %s for inplace encrypt", crypto_blkdev);
goto errout;
}
if (unix_write(cryptofd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) {
SLOGE("Error writing crypto_blkdev %s for inplace encrypt", crypto_blkdev);
goto errout;
} else {
SLOGD("Encrypted %d block at %lld",
CRYPT_SECTORS_PER_BUFSIZE,
i * CRYPT_SECTORS_PER_BUFSIZE);
}
if (!is_battery_ok()) {
SLOGE("Stopping encryption due to low battery");
*size_already_done += (i + 1) * CRYPT_SECTORS_PER_BUFSIZE - 1;
rc = 0;
goto errout;
}
}
/* Do any remaining sectors */
for (i=0; i<remainder; i++) {
if (unix_read(realfd, buf, CRYPT_SECTOR_SIZE) <= 0) {
SLOGE("Error reading final sectors from real_blkdev %s for inplace encrypt", crypto_blkdev);
goto errout;
}
if (unix_write(cryptofd, buf, CRYPT_SECTOR_SIZE) <= 0) {
SLOGE("Error writing final sectors to crypto_blkdev %s for inplace encrypt", crypto_blkdev);
goto errout;
} else {
SLOGI("Encrypted 1 block at next location");
}
}
*size_already_done += size;
rc = 0;
errout:
close(realfd);
close(cryptofd);
return rc;
}
static int cryptfs_enable_inplace(char *crypto_blkdev, char *real_blkdev,
off64_t size, off64_t *size_already_done,
off64_t tot_size,
off64_t previously_encrypted_upto)
{
if (previously_encrypted_upto) {
SLOGD("Continuing encryption from %lld", previously_encrypted_upto);
}
if (*size_already_done + size < previously_encrypted_upto) {
*size_already_done += size;
return 0;
}
if (cryptfs_enable_inplace_ext4(crypto_blkdev, real_blkdev,
size, size_already_done,
tot_size, previously_encrypted_upto) == 0) {
return 0;
}
return cryptfs_enable_inplace_full(crypto_blkdev, real_blkdev,
size, size_already_done, tot_size,
previously_encrypted_upto);
}
#define CRYPTO_ENABLE_WIPE 1
#define CRYPTO_ENABLE_INPLACE 2
#define FRAMEWORK_BOOT_WAIT 60
static inline int should_encrypt(struct volume_info *volume)
{
return (volume->flags & (VOL_ENCRYPTABLE | VOL_NONREMOVABLE)) ==
(VOL_ENCRYPTABLE | VOL_NONREMOVABLE);
}
static int cryptfs_SHA256_fileblock(const char* filename, __le8* buf)
{
int fd = open(filename, O_RDONLY);
if (fd == -1) {
SLOGE("Error opening file %s", filename);
return -1;
}
char block[CRYPT_INPLACE_BUFSIZE];
memset(block, 0, sizeof(block));
if (unix_read(fd, block, sizeof(block)) < 0) {
SLOGE("Error reading file %s", filename);
close(fd);
return -1;
}
close(fd);
SHA256_CTX c;
SHA256_Init(&c);
SHA256_Update(&c, block, sizeof(block));
SHA256_Final(buf, &c);
return 0;
}
static int cryptfs_enable_all_volumes(struct crypt_mnt_ftr *crypt_ftr, int how,
char *crypto_blkdev, char *real_blkdev,
int previously_encrypted_upto)
{
off64_t cur_encryption_done=0, tot_encryption_size=0;
int i, rc = -1;
if (!is_battery_ok()) {
SLOGE("Stopping encryption due to low battery");
return 0;
}
/* The size of the userdata partition, and add in the vold volumes below */
tot_encryption_size = crypt_ftr->fs_size;
if (how == CRYPTO_ENABLE_WIPE) {
rc = cryptfs_enable_wipe(crypto_blkdev, crypt_ftr->fs_size, EXT4_FS);
} else if (how == CRYPTO_ENABLE_INPLACE) {
rc = cryptfs_enable_inplace(crypto_blkdev, real_blkdev,
crypt_ftr->fs_size, &cur_encryption_done,
tot_encryption_size,
previously_encrypted_upto);
if (!rc && cur_encryption_done != (off64_t)crypt_ftr->fs_size) {
crypt_ftr->encrypted_upto = cur_encryption_done;
}
if (!rc && !crypt_ftr->encrypted_upto) {
/* The inplace routine never actually sets the progress to 100% due
* to the round down nature of integer division, so set it here */
property_set("vold.encrypt_progress", "100");
}
} else {
/* Shouldn't happen */
SLOGE("cryptfs_enable: internal error, unknown option\n");
rc = -1;
}
return rc;
}
int cryptfs_enable_internal(char *howarg, int crypt_type, char *passwd,
int allow_reboot)
{
int how = 0;
char crypto_blkdev[MAXPATHLEN], real_blkdev[MAXPATHLEN];
unsigned long nr_sec;
unsigned char decrypted_master_key[KEY_LEN_BYTES];
int rc=-1, fd, i, ret;
struct crypt_mnt_ftr crypt_ftr;
struct crypt_persist_data *pdata;
char encrypted_state[PROPERTY_VALUE_MAX];
char lockid[32] = { 0 };
char key_loc[PROPERTY_VALUE_MAX];
char fuse_sdcard[PROPERTY_VALUE_MAX];
char *sd_mnt_point;
int num_vols;
struct volume_info *vol_list = 0;
off64_t previously_encrypted_upto = 0;
if (!strcmp(howarg, "wipe")) {
how = CRYPTO_ENABLE_WIPE;
} else if (! strcmp(howarg, "inplace")) {
how = CRYPTO_ENABLE_INPLACE;
} else {
/* Shouldn't happen, as CommandListener vets the args */
goto error_unencrypted;
}
/* See if an encryption was underway and interrupted */
if (how == CRYPTO_ENABLE_INPLACE
&& get_crypt_ftr_and_key(&crypt_ftr) == 0
&& (crypt_ftr.flags & CRYPT_ENCRYPTION_IN_PROGRESS)) {
previously_encrypted_upto = crypt_ftr.encrypted_upto;
crypt_ftr.encrypted_upto = 0;
}
property_get("ro.crypto.state", encrypted_state, "");
if (!strcmp(encrypted_state, "encrypted") && !previously_encrypted_upto) {
SLOGE("Device is already running encrypted, aborting");
goto error_unencrypted;
}
// TODO refactor fs_mgr_get_crypt_info to get both in one call
fs_mgr_get_crypt_info(fstab, key_loc, 0, sizeof(key_loc));
fs_mgr_get_crypt_info(fstab, 0, real_blkdev, sizeof(real_blkdev));
/* Get the size of the real block device */
fd = open(real_blkdev, O_RDONLY);
if ( (nr_sec = get_blkdev_size(fd)) == 0) {
SLOGE("Cannot get size of block device %s\n", real_blkdev);
goto error_unencrypted;
}
close(fd);
/* If doing inplace encryption, make sure the orig fs doesn't include the crypto footer */
if ((how == CRYPTO_ENABLE_INPLACE) && (!strcmp(key_loc, KEY_IN_FOOTER))) {
unsigned int fs_size_sec, max_fs_size_sec;
fs_size_sec = get_fs_size(real_blkdev);
max_fs_size_sec = nr_sec - (CRYPT_FOOTER_OFFSET / CRYPT_SECTOR_SIZE);
if (fs_size_sec > max_fs_size_sec) {
SLOGE("Orig filesystem overlaps crypto footer region. Cannot encrypt in place.");
goto error_unencrypted;
}
}
/* Get a wakelock as this may take a while, and we don't want the
* device to sleep on us. We'll grab a partial wakelock, and if the UI
* wants to keep the screen on, it can grab a full wakelock.
*/
snprintf(lockid, sizeof(lockid), "enablecrypto%d", (int) getpid());
acquire_wake_lock(PARTIAL_WAKE_LOCK, lockid);
/* Get the sdcard mount point */
sd_mnt_point = getenv("EMULATED_STORAGE_SOURCE");
if (!sd_mnt_point) {
sd_mnt_point = getenv("EXTERNAL_STORAGE");
}
if (!sd_mnt_point) {
sd_mnt_point = "/mnt/sdcard";
}
/* TODO
* Currently do not have test devices with multiple encryptable volumes.
* When we acquire some, re-add support.
*/
num_vols=vold_getNumDirectVolumes();
vol_list = malloc(sizeof(struct volume_info) * num_vols);
vold_getDirectVolumeList(vol_list);
for (i=0; i<num_vols; i++) {
if (should_encrypt(&vol_list[i])) {
SLOGE("Cannot encrypt if there are multiple encryptable volumes"
"%s\n", vol_list[i].label);
goto error_unencrypted;
}
}
/* The init files are setup to stop the class main and late start when
* vold sets trigger_shutdown_framework.
*/
property_set("vold.decrypt", "trigger_shutdown_framework");
SLOGD("Just asked init to shut down class main\n");
if (vold_unmountAllAsecs()) {
/* Just report the error. If any are left mounted,
* umounting /data below will fail and handle the error.
*/
SLOGE("Error unmounting internal asecs");
}
property_get("ro.crypto.fuse_sdcard", fuse_sdcard, "");
if (!strcmp(fuse_sdcard, "true")) {
/* This is a device using the fuse layer to emulate the sdcard semantics
* on top of the userdata partition. vold does not manage it, it is managed
* by the sdcard service. The sdcard service was killed by the property trigger
* above, so just unmount it now. We must do this _AFTER_ killing the framework,
* unlike the case for vold managed devices above.
*/
if (wait_and_unmount(sd_mnt_point)) {
goto error_shutting_down;
}
}
/* Now unmount the /data partition. */
if (wait_and_unmount(DATA_MNT_POINT)) {
if (allow_reboot) {
goto error_shutting_down;
} else {
goto error_unencrypted;
}
}
/* Do extra work for a better UX when doing the long inplace encryption */
if (how == CRYPTO_ENABLE_INPLACE) {
/* Now that /data is unmounted, we need to mount a tmpfs
* /data, set a property saying we're doing inplace encryption,
* and restart the framework.
*/
if (fs_mgr_do_tmpfs_mount(DATA_MNT_POINT)) {
goto error_shutting_down;
}
/* Tells the framework that inplace encryption is starting */
property_set("vold.encrypt_progress", "0");
/* restart the framework. */
/* Create necessary paths on /data */
if (prep_data_fs()) {
goto error_shutting_down;
}
/* Ugh, shutting down the framework is not synchronous, so until it
* can be fixed, this horrible hack will wait a moment for it all to
* shut down before proceeding. Without it, some devices cannot
* restart the graphics services.
*/
sleep(2);
/* startup service classes main and late_start */
property_set("vold.decrypt", "trigger_restart_min_framework");
SLOGD("Just triggered restart_min_framework\n");
/* OK, the framework is restarted and will soon be showing a
* progress bar. Time to setup an encrypted mapping, and
* either write a new filesystem, or encrypt in place updating
* the progress bar as we work.
*/
}
/* Start the actual work of making an encrypted filesystem */
/* Initialize a crypt_mnt_ftr for the partition */
if (previously_encrypted_upto == 0) {
if (cryptfs_init_crypt_mnt_ftr(&crypt_ftr)) {
goto error_shutting_down;
}
if (!strcmp(key_loc, KEY_IN_FOOTER)) {
crypt_ftr.fs_size = nr_sec
- (CRYPT_FOOTER_OFFSET / CRYPT_SECTOR_SIZE);
} else {
crypt_ftr.fs_size = nr_sec;
}
crypt_ftr.flags |= CRYPT_ENCRYPTION_IN_PROGRESS;
crypt_ftr.crypt_type = crypt_type;
strcpy((char *)crypt_ftr.crypto_type_name, "aes-cbc-essiv:sha256");
/* Make an encrypted master key */
if (create_encrypted_random_key(passwd, crypt_ftr.master_key, crypt_ftr.salt, &crypt_ftr)) {
SLOGE("Cannot create encrypted master key\n");
goto error_shutting_down;
}
/* Write the key to the end of the partition */
put_crypt_ftr_and_key(&crypt_ftr);
/* If any persistent data has been remembered, save it.
* If none, create a valid empty table and save that.
*/
if (!persist_data) {
pdata = malloc(CRYPT_PERSIST_DATA_SIZE);
if (pdata) {
init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE);
persist_data = pdata;
}
}
if (persist_data) {
save_persistent_data();
}
}
decrypt_master_key(passwd, decrypted_master_key, &crypt_ftr);
create_crypto_blk_dev(&crypt_ftr, decrypted_master_key, real_blkdev, crypto_blkdev,
"userdata");
/* If we are continuing, check checksums match */
rc = 0;
if (previously_encrypted_upto) {
__le8 hash_first_block[SHA256_DIGEST_LENGTH];
rc = cryptfs_SHA256_fileblock(crypto_blkdev, hash_first_block);
if (!rc && memcmp(hash_first_block, crypt_ftr.hash_first_block,
sizeof(hash_first_block)) != 0) {
SLOGE("Checksums do not match - trigger wipe");
rc = -1;
}
}
if (!rc) {
rc = cryptfs_enable_all_volumes(&crypt_ftr, how,
crypto_blkdev, real_blkdev,
previously_encrypted_upto);
}
/* Calculate checksum if we are not finished */
if (!rc && crypt_ftr.encrypted_upto) {
rc = cryptfs_SHA256_fileblock(crypto_blkdev,
crypt_ftr.hash_first_block);
if (!rc) {
SLOGE("Error calculating checksum for continuing encryption");
rc = -1;
}
}
/* Undo the dm-crypt mapping whether we succeed or not */
delete_crypto_blk_dev("userdata");
free(vol_list);
if (! rc) {
/* Success */
/* Clear the encryption in progres flag in the footer */
if (!crypt_ftr.encrypted_upto) {
crypt_ftr.flags &= ~CRYPT_ENCRYPTION_IN_PROGRESS;
} else {
SLOGD("Encrypted up to sector %lld - will continue after reboot",
crypt_ftr.encrypted_upto);
}
put_crypt_ftr_and_key(&crypt_ftr);
sleep(2); /* Give the UI a chance to show 100% progress */
/* Partially encrypted - ensure writes are flushed to ssd */
if (!crypt_ftr.encrypted_upto) {
cryptfs_reboot(reboot);
} else {
cryptfs_reboot(shutdown);
}
} else {
char value[PROPERTY_VALUE_MAX];
property_get("ro.vold.wipe_on_crypt_fail", value, "0");
if (!strcmp(value, "1")) {
/* wipe data if encryption failed */
SLOGE("encryption failed - rebooting into recovery to wipe data\n");
mkdir("/cache/recovery", 0700);
int fd = open("/cache/recovery/command", O_RDWR|O_CREAT|O_TRUNC, 0600);
if (fd >= 0) {
write(fd, "--wipe_data", strlen("--wipe_data") + 1);
close(fd);
} else {
SLOGE("could not open /cache/recovery/command\n");
}
cryptfs_reboot(recovery);
} else {
/* set property to trigger dialog */
property_set("vold.encrypt_progress", "error_partially_encrypted");
release_wake_lock(lockid);
}
return -1;
}
/* hrm, the encrypt step claims success, but the reboot failed.
* This should not happen.
* Set the property and return. Hope the framework can deal with it.
*/
property_set("vold.encrypt_progress", "error_reboot_failed");
release_wake_lock(lockid);
return rc;
error_unencrypted:
free(vol_list);
property_set("vold.encrypt_progress", "error_not_encrypted");
if (lockid[0]) {
release_wake_lock(lockid);
}
return -1;
error_shutting_down:
/* we failed, and have not encrypted anthing, so the users's data is still intact,
* but the framework is stopped and not restarted to show the error, so it's up to
* vold to restart the system.
*/
SLOGE("Error enabling encryption after framework is shutdown, no data changed, restarting system");
cryptfs_reboot(reboot);
/* shouldn't get here */
property_set("vold.encrypt_progress", "error_shutting_down");
free(vol_list);
if (lockid[0]) {
release_wake_lock(lockid);
}
return -1;
}
int cryptfs_enable(char *howarg, int type, char *passwd, int allow_reboot)
{
return cryptfs_enable_internal(howarg, type, passwd, allow_reboot);
}
int cryptfs_enable_default(char *howarg, int allow_reboot)
{
return cryptfs_enable_internal(howarg, CRYPT_TYPE_DEFAULT,
DEFAULT_PASSWORD, allow_reboot);
}
int cryptfs_changepw(int crypt_type, const char *newpw)
{
struct crypt_mnt_ftr crypt_ftr;
unsigned char decrypted_master_key[KEY_LEN_BYTES];
/* This is only allowed after we've successfully decrypted the master key */
if (!master_key_saved) {
SLOGE("Key not saved, aborting");
return -1;
}
if (crypt_type < 0 || crypt_type > CRYPT_TYPE_MAX_TYPE) {
SLOGE("Invalid crypt_type %d", crypt_type);
return -1;
}
/* get key */
if (get_crypt_ftr_and_key(&crypt_ftr)) {
SLOGE("Error getting crypt footer and key");
return -1;
}
crypt_ftr.crypt_type = crypt_type;
encrypt_master_key(crypt_type == CRYPT_TYPE_DEFAULT ? DEFAULT_PASSWORD
: newpw,
crypt_ftr.salt,
saved_master_key,
crypt_ftr.master_key,
&crypt_ftr);
/* save the key */
put_crypt_ftr_and_key(&crypt_ftr);
return 0;
}
static int persist_get_key(char *fieldname, char *value)
{
unsigned int i;
if (persist_data == NULL) {
return -1;
}
for (i = 0; i < persist_data->persist_valid_entries; i++) {
if (!strncmp(persist_data->persist_entry[i].key, fieldname, PROPERTY_KEY_MAX)) {
/* We found it! */
strlcpy(value, persist_data->persist_entry[i].val, PROPERTY_VALUE_MAX);
return 0;
}
}
return -1;
}
static int persist_set_key(char *fieldname, char *value, int encrypted)
{
unsigned int i;
unsigned int num;
struct crypt_mnt_ftr crypt_ftr;
unsigned int max_persistent_entries;
unsigned int dsize;
if (persist_data == NULL) {
return -1;
}
/* If encrypted, use the values from the crypt_ftr, otherwise
* use the values for the current spec.
*/
if (encrypted) {
if(get_crypt_ftr_and_key(&crypt_ftr)) {
return -1;
}
dsize = crypt_ftr.persist_data_size;
} else {
dsize = CRYPT_PERSIST_DATA_SIZE;
}
max_persistent_entries = (dsize - sizeof(struct crypt_persist_data)) /
sizeof(struct crypt_persist_entry);
num = persist_data->persist_valid_entries;
for (i = 0; i < num; i++) {
if (!strncmp(persist_data->persist_entry[i].key, fieldname, PROPERTY_KEY_MAX)) {
/* We found an existing entry, update it! */
memset(persist_data->persist_entry[i].val, 0, PROPERTY_VALUE_MAX);
strlcpy(persist_data->persist_entry[i].val, value, PROPERTY_VALUE_MAX);
return 0;
}
}
/* We didn't find it, add it to the end, if there is room */
if (persist_data->persist_valid_entries < max_persistent_entries) {
memset(&persist_data->persist_entry[num], 0, sizeof(struct crypt_persist_entry));
strlcpy(persist_data->persist_entry[num].key, fieldname, PROPERTY_KEY_MAX);
strlcpy(persist_data->persist_entry[num].val, value, PROPERTY_VALUE_MAX);
persist_data->persist_valid_entries++;
return 0;
}
return -1;
}
/* Return the value of the specified field. */
int cryptfs_getfield(char *fieldname, char *value, int len)
{
char temp_value[PROPERTY_VALUE_MAX];
char real_blkdev[MAXPATHLEN];
/* 0 is success, 1 is not encrypted,
* -1 is value not set, -2 is any other error
*/
int rc = -2;
if (persist_data == NULL) {
load_persistent_data();
if (persist_data == NULL) {
SLOGE("Getfield error, cannot load persistent data");
goto out;
}
}
if (!persist_get_key(fieldname, temp_value)) {
/* We found it, copy it to the caller's buffer and return */
strlcpy(value, temp_value, len);
rc = 0;
} else {
/* Sadness, it's not there. Return the error */
rc = -1;
}
out:
return rc;
}
/* Set the value of the specified field. */
int cryptfs_setfield(char *fieldname, char *value)
{
struct crypt_persist_data stored_pdata;
struct crypt_persist_data *pdata_p;
struct crypt_mnt_ftr crypt_ftr;
char encrypted_state[PROPERTY_VALUE_MAX];
/* 0 is success, -1 is an error */
int rc = -1;
int encrypted = 0;
if (persist_data == NULL) {
load_persistent_data();
if (persist_data == NULL) {
SLOGE("Setfield error, cannot load persistent data");
goto out;
}
}
property_get("ro.crypto.state", encrypted_state, "");
if (!strcmp(encrypted_state, "encrypted") ) {
encrypted = 1;
}
if (persist_set_key(fieldname, value, encrypted)) {
goto out;
}
/* If we are running encrypted, save the persistent data now */
if (encrypted) {
if (save_persistent_data()) {
SLOGE("Setfield error, cannot save persistent data");
goto out;
}
}
rc = 0;
out:
return rc;
}
/* Checks userdata. Attempt to mount the volume if default-
* encrypted.
* On success trigger next init phase and return 0.
* Currently do not handle failure - see TODO below.
*/
int cryptfs_mount_default_encrypted(void)
{
char decrypt_state[PROPERTY_VALUE_MAX];
property_get("vold.decrypt", decrypt_state, "0");
if (!strcmp(decrypt_state, "0")) {
SLOGE("Not encrypted - should not call here");
} else {
int crypt_type = cryptfs_get_password_type();
if (crypt_type < 0 || crypt_type > CRYPT_TYPE_MAX_TYPE) {
SLOGE("Bad crypt type - error");
} else if (crypt_type != CRYPT_TYPE_DEFAULT) {
SLOGD("Password is not default - "
"starting min framework to prompt");
property_set("vold.decrypt", "trigger_restart_min_framework");
return 0;
} else if (cryptfs_check_passwd(DEFAULT_PASSWORD) == 0) {
SLOGD("Password is default - restarting filesystem");
cryptfs_restart_internal(0);
return 0;
} else {
SLOGE("Encrypted, default crypt type but can't decrypt");
}
}
/** @TODO make sure we factory wipe in this situation
* In general if we got here there is no recovery
*/
return 0;
}
/* Returns type of the password, default, pattern, pin or password.
*/
int cryptfs_get_password_type(void)
{
struct crypt_mnt_ftr crypt_ftr;
if (get_crypt_ftr_and_key(&crypt_ftr)) {
SLOGE("Error getting crypt footer and key\n");
return -1;
}
return crypt_ftr.crypt_type;
}
char* cryptfs_get_password()
{
struct timespec now;
clock_gettime(CLOCK_MONOTONIC, &now);
if (now.tv_sec < password_expiry_time) {
return password;
} else {
cryptfs_clear_password();
return 0;
}
}
void cryptfs_clear_password()
{
if (password) {
size_t len = strlen(password);
memset(password, 0, len);
free(password);
password = 0;
password_expiry_time = 0;
}
}