5298593b1b
This allows us to resume rolling back in the event of an unexpected shutdown during the restore process. We save progress after we process each log sector, and whenever restarting the current log sector would result in invalid data. Test: Run restore, interrupt it, and attempt to resume Change-Id: I91cf0defb0d22fc5afdb9debc2963c956e9e171c
593 lines
23 KiB
C++
593 lines
23 KiB
C++
/*
|
|
* Copyright (C) 2018 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#define LOG_TAG "Checkpoint"
|
|
#include "Checkpoint.h"
|
|
#include "VoldUtil.h"
|
|
|
|
#include <fstream>
|
|
#include <list>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include <android-base/file.h>
|
|
#include <android-base/logging.h>
|
|
#include <android-base/parseint.h>
|
|
#include <android-base/properties.h>
|
|
#include <android-base/unique_fd.h>
|
|
#include <android/hardware/boot/1.0/IBootControl.h>
|
|
#include <cutils/android_reboot.h>
|
|
#include <fcntl.h>
|
|
#include <fs_mgr.h>
|
|
#include <linux/fs.h>
|
|
#include <mntent.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/stat.h>
|
|
|
|
using android::base::SetProperty;
|
|
using android::binder::Status;
|
|
using android::fs_mgr::Fstab;
|
|
using android::fs_mgr::ReadDefaultFstab;
|
|
using android::fs_mgr::ReadFstabFromFile;
|
|
using android::hardware::hidl_string;
|
|
using android::hardware::boot::V1_0::BoolResult;
|
|
using android::hardware::boot::V1_0::CommandResult;
|
|
using android::hardware::boot::V1_0::IBootControl;
|
|
using android::hardware::boot::V1_0::Slot;
|
|
|
|
namespace android {
|
|
namespace vold {
|
|
|
|
namespace {
|
|
const std::string kMetadataCPFile = "/metadata/vold/checkpoint";
|
|
|
|
bool setBowState(std::string const& block_device, std::string const& state) {
|
|
if (block_device.substr(0, 5) != "/dev/") {
|
|
LOG(ERROR) << "Expected block device, got " << block_device;
|
|
return false;
|
|
}
|
|
|
|
std::string state_filename = std::string("/sys/") + block_device.substr(5) + "/bow/state";
|
|
if (!android::base::WriteStringToFile(state, state_filename)) {
|
|
PLOG(ERROR) << "Failed to write to file " << state_filename;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
Status cp_supportsCheckpoint(bool& result) {
|
|
result = false;
|
|
|
|
for (const auto& entry : fstab_default) {
|
|
if (entry.fs_mgr_flags.checkpoint_blk || entry.fs_mgr_flags.checkpoint_fs) {
|
|
result = true;
|
|
return Status::ok();
|
|
}
|
|
}
|
|
return Status::ok();
|
|
}
|
|
|
|
Status cp_startCheckpoint(int retry) {
|
|
if (retry < -1) return Status::fromExceptionCode(EINVAL, "Retry count must be more than -1");
|
|
std::string content = std::to_string(retry + 1);
|
|
if (retry == -1) {
|
|
sp<IBootControl> module = IBootControl::getService();
|
|
if (module) {
|
|
std::string suffix;
|
|
auto cb = [&suffix](hidl_string s) { suffix = s; };
|
|
if (module->getSuffix(module->getCurrentSlot(), cb).isOk()) content += " " + suffix;
|
|
}
|
|
}
|
|
if (!android::base::WriteStringToFile(content, kMetadataCPFile))
|
|
return Status::fromExceptionCode(errno, "Failed to write checkpoint file");
|
|
return Status::ok();
|
|
}
|
|
|
|
namespace {
|
|
|
|
bool isCheckpointing = false;
|
|
}
|
|
|
|
Status cp_commitChanges() {
|
|
if (!isCheckpointing) {
|
|
return Status::ok();
|
|
}
|
|
sp<IBootControl> module = IBootControl::getService();
|
|
if (module) {
|
|
CommandResult cr;
|
|
module->markBootSuccessful([&cr](CommandResult result) { cr = result; });
|
|
if (!cr.success) {
|
|
std::string msg = "Error marking booted successfully: " + std::string(cr.errMsg);
|
|
return Status::fromExceptionCode(EINVAL, String8(msg.c_str()));
|
|
}
|
|
LOG(INFO) << "Marked slot as booted successfully.";
|
|
}
|
|
// Must take action for list of mounted checkpointed things here
|
|
// To do this, we walk the list of mounted file systems.
|
|
// But we also need to get the matching fstab entries to see
|
|
// the original flags
|
|
std::string err_str;
|
|
|
|
Fstab mounts;
|
|
if (!ReadFstabFromFile("/proc/mounts", &mounts)) {
|
|
return Status::fromExceptionCode(EINVAL, "Failed to get /proc/mounts");
|
|
}
|
|
|
|
// Walk mounted file systems
|
|
for (const auto& mount_rec : mounts) {
|
|
const auto fstab_rec = GetEntryForMountPoint(&fstab_default, mount_rec.mount_point);
|
|
if (!fstab_rec) continue;
|
|
|
|
if (fstab_rec->fs_mgr_flags.checkpoint_fs) {
|
|
if (fstab_rec->fs_type == "f2fs") {
|
|
std::string options = mount_rec.fs_options + ",checkpoint=enable";
|
|
if (mount(mount_rec.blk_device.c_str(), mount_rec.mount_point.c_str(), "none",
|
|
MS_REMOUNT | fstab_rec->flags, options.c_str())) {
|
|
return Status::fromExceptionCode(EINVAL, "Failed to remount");
|
|
}
|
|
}
|
|
} else if (fstab_rec->fs_mgr_flags.checkpoint_blk) {
|
|
if (!setBowState(mount_rec.blk_device, "2"))
|
|
return Status::fromExceptionCode(EINVAL, "Failed to set bow state");
|
|
}
|
|
}
|
|
SetProperty("vold.checkpoint_committed", "1");
|
|
LOG(INFO) << "Checkpoint has been committed.";
|
|
isCheckpointing = false;
|
|
if (!android::base::RemoveFileIfExists(kMetadataCPFile, &err_str))
|
|
return Status::fromExceptionCode(errno, err_str.c_str());
|
|
return Status::ok();
|
|
}
|
|
|
|
Status cp_abortChanges() {
|
|
android_reboot(ANDROID_RB_RESTART2, 0, nullptr);
|
|
return Status::ok();
|
|
}
|
|
|
|
bool cp_needsRollback() {
|
|
std::string content;
|
|
bool ret;
|
|
|
|
ret = android::base::ReadFileToString(kMetadataCPFile, &content);
|
|
if (ret) {
|
|
if (content == "0") return true;
|
|
if (content.substr(0, 3) == "-1 ") {
|
|
std::string oldSuffix = content.substr(3);
|
|
sp<IBootControl> module = IBootControl::getService();
|
|
std::string newSuffix;
|
|
|
|
if (module) {
|
|
auto cb = [&newSuffix](hidl_string s) { newSuffix = s; };
|
|
module->getSuffix(module->getCurrentSlot(), cb);
|
|
if (oldSuffix == newSuffix) return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool cp_needsCheckpoint() {
|
|
bool ret;
|
|
std::string content;
|
|
sp<IBootControl> module = IBootControl::getService();
|
|
|
|
if (module && module->isSlotMarkedSuccessful(module->getCurrentSlot()) == BoolResult::FALSE) {
|
|
isCheckpointing = true;
|
|
return true;
|
|
}
|
|
ret = android::base::ReadFileToString(kMetadataCPFile, &content);
|
|
if (ret) {
|
|
ret = content != "0";
|
|
isCheckpointing = ret;
|
|
return ret;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Status cp_prepareCheckpoint() {
|
|
if (!isCheckpointing) {
|
|
return Status::ok();
|
|
}
|
|
|
|
Fstab mounts;
|
|
if (!ReadFstabFromFile("/proc/mounts", &mounts)) {
|
|
return Status::fromExceptionCode(EINVAL, "Failed to get /proc/mounts");
|
|
}
|
|
|
|
for (const auto& mount_rec : mounts) {
|
|
const auto fstab_rec = GetEntryForMountPoint(&fstab_default, mount_rec.mount_point);
|
|
if (!fstab_rec) continue;
|
|
|
|
if (fstab_rec->fs_mgr_flags.checkpoint_blk) {
|
|
android::base::unique_fd fd(
|
|
TEMP_FAILURE_RETRY(open(mount_rec.mount_point.c_str(), O_RDONLY | O_CLOEXEC)));
|
|
if (!fd) {
|
|
PLOG(ERROR) << "Failed to open mount point" << mount_rec.mount_point;
|
|
continue;
|
|
}
|
|
|
|
struct fstrim_range range = {};
|
|
range.len = ULLONG_MAX;
|
|
if (ioctl(fd, FITRIM, &range)) {
|
|
PLOG(ERROR) << "Failed to trim " << mount_rec.mount_point;
|
|
continue;
|
|
}
|
|
|
|
setBowState(mount_rec.blk_device, "1");
|
|
}
|
|
}
|
|
return Status::ok();
|
|
}
|
|
|
|
namespace {
|
|
const int kSectorSize = 512;
|
|
|
|
typedef uint64_t sector_t;
|
|
|
|
struct log_entry {
|
|
sector_t source; // in sectors of size kSectorSize
|
|
sector_t dest; // in sectors of size kSectorSize
|
|
uint32_t size; // in bytes
|
|
uint32_t checksum;
|
|
} __attribute__((packed));
|
|
|
|
struct log_sector_v1_0 {
|
|
uint32_t magic;
|
|
uint16_t header_version;
|
|
uint16_t header_size;
|
|
uint32_t block_size;
|
|
uint32_t count;
|
|
uint32_t sequence;
|
|
uint64_t sector0;
|
|
} __attribute__((packed));
|
|
|
|
// MAGIC is BOW in ascii
|
|
const int kMagic = 0x00574f42;
|
|
// Partially restored MAGIC is WOB in ascii
|
|
const int kPartialRestoreMagic = 0x00424f57;
|
|
|
|
void crc32(const void* data, size_t n_bytes, uint32_t* crc) {
|
|
static uint32_t table[0x100] = {
|
|
0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F, 0xE963A535,
|
|
0x9E6495A3, 0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD,
|
|
0xE7B82D07, 0x90BF1D91, 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE, 0x1ADAD47D,
|
|
0x6DDDE4EB, 0xF4D4B551, 0x83D385C7, 0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC,
|
|
0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5, 0x3B6E20C8, 0x4C69105E, 0xD56041E4,
|
|
0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B, 0x35B5A8FA, 0x42B2986C,
|
|
0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59, 0x26D930AC,
|
|
0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F,
|
|
0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, 0x2F6F7C87, 0x58684C11, 0xC1611DAB,
|
|
0xB6662D3D,
|
|
|
|
0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5,
|
|
0xE8B8D433, 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D,
|
|
0x91646C97, 0xE6635C01, 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, 0x6C0695ED,
|
|
0x1B01A57B, 0x8208F4C1, 0xF50FC457, 0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C,
|
|
0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65, 0x4DB26158, 0x3AB551CE, 0xA3BC0074,
|
|
0xD4BB30E2, 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB, 0x4369E96A, 0x346ED9FC,
|
|
0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9, 0x5005713C,
|
|
0x270241AA, 0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F,
|
|
0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81, 0xB7BD5C3B,
|
|
0xC0BA6CAD,
|
|
|
|
0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A, 0xEAD54739, 0x9DD277AF, 0x04DB2615,
|
|
0x73DC1683, 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D,
|
|
0x0A00AE27, 0x7D079EB1, 0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D,
|
|
0x806567CB, 0x196C3671, 0x6E6B06E7, 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC,
|
|
0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5, 0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4,
|
|
0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B, 0xD80D2BDA, 0xAF0A1B4C,
|
|
0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79, 0xCB61B38C,
|
|
0xBC66831A, 0x256FD2A0, 0x5268E236, 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F,
|
|
0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B,
|
|
0x5BDEAE1D,
|
|
|
|
0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F, 0x72076785,
|
|
0x05005713, 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, 0x92D28E9B, 0xE5D5BE0D,
|
|
0x7CDCEFB7, 0x0BDBDF21, 0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E, 0x81BE16CD,
|
|
0xF6B9265B, 0x6FB077E1, 0x18B74777, 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C,
|
|
0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45, 0xA00AE278, 0xD70DD2EE, 0x4E048354,
|
|
0x3903B3C2, 0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB, 0xAED16A4A, 0xD9D65ADC,
|
|
0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9, 0xBDBDF21C,
|
|
0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF,
|
|
0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94, 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B,
|
|
0x2D02EF8D};
|
|
|
|
for (size_t i = 0; i < n_bytes; ++i) {
|
|
*crc ^= ((uint8_t*)data)[i];
|
|
*crc = table[(uint8_t)*crc] ^ *crc >> 8;
|
|
}
|
|
}
|
|
|
|
// A map of relocations.
|
|
// The map must be initialized so that relocations[0] = 0
|
|
// During restore, we replay the log records in reverse, copying from dest to
|
|
// source
|
|
// To validate, we must be able to read the 'dest' sectors as though they had
|
|
// been copied but without actually copying. This map represents how the sectors
|
|
// would have been moved. To read a sector s, find the index <= s and read
|
|
// relocations[index] + s - index
|
|
typedef std::map<sector_t, sector_t> Relocations;
|
|
|
|
void relocate(Relocations& relocations, sector_t dest, sector_t source, int count) {
|
|
// Find first one we're equal to or greater than
|
|
auto s = --relocations.upper_bound(source);
|
|
|
|
// Take slice
|
|
Relocations slice;
|
|
slice[dest] = source - s->first + s->second;
|
|
++s;
|
|
|
|
// Add rest of elements
|
|
for (; s != relocations.end() && s->first < source + count; ++s)
|
|
slice[dest - source + s->first] = s->second;
|
|
|
|
// Split range at end of dest
|
|
auto dest_end = --relocations.upper_bound(dest + count);
|
|
relocations[dest + count] = dest + count - dest_end->first + dest_end->second;
|
|
|
|
// Remove all elements in [dest, dest + count)
|
|
relocations.erase(relocations.lower_bound(dest), relocations.lower_bound(dest + count));
|
|
|
|
// Add new elements
|
|
relocations.insert(slice.begin(), slice.end());
|
|
}
|
|
|
|
// A map of sectors that have been written to.
|
|
// The final entry must always be False.
|
|
// When we restart the restore after an interruption, we must take care that
|
|
// when we copy from dest to source, that the block we copy to was not
|
|
// previously copied from.
|
|
// i e. A->B C->A; If we replay this sequence, we end up copying C->B
|
|
// We must save our partial result whenever we finish a page, or when we copy
|
|
// to a location that was copied from earlier (our source is an earlier dest)
|
|
typedef std::map<sector_t, bool> Used_Sectors;
|
|
|
|
bool checkCollision(Used_Sectors& used_sectors, sector_t start, sector_t end) {
|
|
auto second_overlap = used_sectors.upper_bound(start);
|
|
auto first_overlap = --second_overlap;
|
|
|
|
if (first_overlap->second) {
|
|
return true;
|
|
} else if (second_overlap != used_sectors.end() && second_overlap->first < end) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void markUsed(Used_Sectors& used_sectors, sector_t start, sector_t end) {
|
|
auto start_pos = used_sectors.insert_or_assign(start, true).first;
|
|
auto end_pos = used_sectors.insert_or_assign(end, false).first;
|
|
|
|
if (start_pos == used_sectors.begin() || !std::prev(start_pos)->second) {
|
|
start_pos++;
|
|
}
|
|
if (std::next(end_pos) != used_sectors.end() && !std::next(end_pos)->second) {
|
|
end_pos++;
|
|
}
|
|
if (start_pos->first < end_pos->first) {
|
|
used_sectors.erase(start_pos, end_pos);
|
|
}
|
|
}
|
|
|
|
// Restores the given log_entry's data from dest -> source
|
|
// If that entry is a log sector, set the magic to kPartialRestoreMagic and flush.
|
|
void restoreSector(int device_fd, Used_Sectors& used_sectors, std::vector<char>& ls_buffer,
|
|
log_entry* le, std::vector<char>& buffer) {
|
|
log_sector_v1_0& ls = *reinterpret_cast<log_sector_v1_0*>(&ls_buffer[0]);
|
|
uint32_t index = le - ((log_entry*)&ls_buffer[ls.header_size]);
|
|
int count = (le->size - 1) / kSectorSize + 1;
|
|
|
|
if (checkCollision(used_sectors, le->source, le->source + count)) {
|
|
fsync(device_fd);
|
|
lseek64(device_fd, 0, SEEK_SET);
|
|
ls.count = index + 1;
|
|
ls.magic = kPartialRestoreMagic;
|
|
write(device_fd, &ls_buffer[0], ls.block_size);
|
|
fsync(device_fd);
|
|
used_sectors.clear();
|
|
used_sectors[0] = false;
|
|
}
|
|
|
|
markUsed(used_sectors, le->dest, le->dest + count);
|
|
|
|
if (index == 0 && ls.sequence != 0) {
|
|
log_sector_v1_0* next = reinterpret_cast<log_sector_v1_0*>(&buffer[0]);
|
|
if (next->magic == kMagic) {
|
|
next->magic = kPartialRestoreMagic;
|
|
}
|
|
}
|
|
|
|
lseek64(device_fd, le->source * kSectorSize, SEEK_SET);
|
|
write(device_fd, &buffer[0], le->size);
|
|
|
|
if (index == 0) {
|
|
fsync(device_fd);
|
|
}
|
|
}
|
|
|
|
// Read from the device
|
|
// If we are validating, the read occurs as though the relocations had happened
|
|
std::vector<char> relocatedRead(int device_fd, Relocations const& relocations, bool validating,
|
|
sector_t sector, uint32_t size, uint32_t block_size) {
|
|
if (!validating) {
|
|
std::vector<char> buffer(size);
|
|
lseek64(device_fd, sector * kSectorSize, SEEK_SET);
|
|
read(device_fd, &buffer[0], size);
|
|
return buffer;
|
|
}
|
|
|
|
std::vector<char> buffer(size);
|
|
for (uint32_t i = 0; i < size; i += block_size, sector += block_size / kSectorSize) {
|
|
auto relocation = --relocations.upper_bound(sector);
|
|
lseek64(device_fd, (sector + relocation->second - relocation->first) * kSectorSize,
|
|
SEEK_SET);
|
|
read(device_fd, &buffer[i], block_size);
|
|
}
|
|
|
|
return buffer;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
Status cp_restoreCheckpoint(const std::string& blockDevice, int restore_limit) {
|
|
bool validating = true;
|
|
std::string action = "Validating";
|
|
int restore_count = 0;
|
|
|
|
for (;;) {
|
|
Relocations relocations;
|
|
relocations[0] = 0;
|
|
Status status = Status::ok();
|
|
|
|
LOG(INFO) << action << " checkpoint on " << blockDevice;
|
|
base::unique_fd device_fd(open(blockDevice.c_str(), O_RDWR));
|
|
if (device_fd < 0) {
|
|
PLOG(ERROR) << "Cannot open " << blockDevice;
|
|
return Status::fromExceptionCode(errno, ("Cannot open " + blockDevice).c_str());
|
|
}
|
|
|
|
log_sector_v1_0 original_ls;
|
|
read(device_fd, reinterpret_cast<char*>(&original_ls), sizeof(original_ls));
|
|
if (original_ls.magic == kPartialRestoreMagic) {
|
|
validating = false;
|
|
action = "Restoring";
|
|
} else if (original_ls.magic != kMagic) {
|
|
LOG(ERROR) << "No magic";
|
|
return Status::fromExceptionCode(EINVAL, "No magic");
|
|
}
|
|
|
|
LOG(INFO) << action << " " << original_ls.sequence << " log sectors";
|
|
|
|
for (int sequence = original_ls.sequence; sequence >= 0 && status.isOk(); sequence--) {
|
|
auto ls_buffer = relocatedRead(device_fd, relocations, validating, 0,
|
|
original_ls.block_size, original_ls.block_size);
|
|
log_sector_v1_0& ls = *reinterpret_cast<log_sector_v1_0*>(&ls_buffer[0]);
|
|
|
|
Used_Sectors used_sectors;
|
|
used_sectors[0] = false;
|
|
|
|
if (ls.magic != kMagic && (ls.magic != kPartialRestoreMagic || validating)) {
|
|
LOG(ERROR) << "No magic!";
|
|
status = Status::fromExceptionCode(EINVAL, "No magic");
|
|
break;
|
|
}
|
|
|
|
if (ls.block_size != original_ls.block_size) {
|
|
LOG(ERROR) << "Block size mismatch!";
|
|
status = Status::fromExceptionCode(EINVAL, "Block size mismatch");
|
|
break;
|
|
}
|
|
|
|
if ((int)ls.sequence != sequence) {
|
|
LOG(ERROR) << "Expecting log sector " << sequence << " but got " << ls.sequence;
|
|
status = Status::fromExceptionCode(
|
|
EINVAL, ("Expecting log sector " + std::to_string(sequence) + " but got " +
|
|
std::to_string(ls.sequence))
|
|
.c_str());
|
|
break;
|
|
}
|
|
|
|
LOG(INFO) << action << " from log sector " << ls.sequence;
|
|
for (log_entry* le =
|
|
reinterpret_cast<log_entry*>(&ls_buffer[ls.header_size]) + ls.count - 1;
|
|
le >= reinterpret_cast<log_entry*>(&ls_buffer[ls.header_size]); --le) {
|
|
// This is very noisy - limit to DEBUG only
|
|
LOG(VERBOSE) << action << " " << le->size << " bytes from sector " << le->dest
|
|
<< " to " << le->source << " with checksum " << std::hex
|
|
<< le->checksum;
|
|
|
|
auto buffer = relocatedRead(device_fd, relocations, validating, le->dest, le->size,
|
|
ls.block_size);
|
|
uint32_t checksum = le->source / (ls.block_size / kSectorSize);
|
|
for (size_t i = 0; i < le->size; i += ls.block_size) {
|
|
crc32(&buffer[i], ls.block_size, &checksum);
|
|
}
|
|
|
|
if (le->checksum && checksum != le->checksum) {
|
|
LOG(ERROR) << "Checksums don't match " << std::hex << checksum;
|
|
status = Status::fromExceptionCode(EINVAL, "Checksums don't match");
|
|
break;
|
|
}
|
|
|
|
if (validating) {
|
|
relocate(relocations, le->source, le->dest, (le->size - 1) / kSectorSize + 1);
|
|
} else {
|
|
restoreSector(device_fd, used_sectors, ls_buffer, le, buffer);
|
|
restore_count++;
|
|
if (restore_limit && restore_count >= restore_limit) {
|
|
LOG(WARNING) << "Hit the test limit";
|
|
status = Status::fromExceptionCode(EAGAIN, "Hit the test limit");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!status.isOk()) {
|
|
if (!validating) {
|
|
LOG(ERROR) << "Checkpoint restore failed even though checkpoint validation passed";
|
|
return status;
|
|
}
|
|
|
|
LOG(WARNING) << "Checkpoint validation failed - attempting to roll forward";
|
|
auto buffer = relocatedRead(device_fd, relocations, false, original_ls.sector0,
|
|
original_ls.block_size, original_ls.block_size);
|
|
lseek64(device_fd, 0, SEEK_SET);
|
|
write(device_fd, &buffer[0], original_ls.block_size);
|
|
return Status::ok();
|
|
}
|
|
|
|
if (!validating) break;
|
|
|
|
validating = false;
|
|
action = "Restoring";
|
|
}
|
|
|
|
return Status::ok();
|
|
}
|
|
|
|
Status cp_markBootAttempt() {
|
|
std::string oldContent, newContent;
|
|
int retry = 0;
|
|
struct stat st;
|
|
int result = stat(kMetadataCPFile.c_str(), &st);
|
|
|
|
// If the file doesn't exist, we aren't managing a checkpoint retry counter
|
|
if (result != 0) return Status::ok();
|
|
if (!android::base::ReadFileToString(kMetadataCPFile, &oldContent)) {
|
|
PLOG(ERROR) << "Failed to read checkpoint file";
|
|
return Status::fromExceptionCode(errno, "Failed to read checkpoint file");
|
|
}
|
|
std::string retryContent = oldContent.substr(0, oldContent.find_first_of(" "));
|
|
|
|
if (!android::base::ParseInt(retryContent, &retry))
|
|
return Status::fromExceptionCode(EINVAL, "Could not parse retry count");
|
|
if (retry > 0) {
|
|
retry--;
|
|
|
|
newContent = std::to_string(retry);
|
|
if (!android::base::WriteStringToFile(newContent, kMetadataCPFile))
|
|
return Status::fromExceptionCode(errno, "Could not write checkpoint file");
|
|
}
|
|
return Status::ok();
|
|
}
|
|
|
|
} // namespace vold
|
|
} // namespace android
|