platform_bionic/libc/bionic/pthread_create.cpp
Evgenii Stepanov b92d1c3a26 Block signals in pthread_create.
HWASan-instrumented code needs TLS_SLOT_SANITIZER set up to run, and
that is not done until the new thread calls __hwasan_thread_enter. Block
all signals until that time to prevent hwasan-instrumented signal
handlers running (and crashing) on the new thread.

Bug: 141893397
Test: seq 0 10000000 | xargs -n 1 -P 200 adb shell am instrument \
      -w -r -e command grant-all \
      com.android.permissionutils/.PermissionInstrumentation

(cherry picked from commit d181585dd5)

Change-Id: Id65fae836edcacdf057327ccf16cf0b5e0f9474a
2019-10-07 15:37:26 -07:00

462 lines
18 KiB
C++

/*
* Copyright (C) 2008 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <pthread.h>
#include <errno.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/prctl.h>
#include <sys/random.h>
#include <unistd.h>
#include "pthread_internal.h"
#include <async_safe/log.h>
#include "private/bionic_constants.h"
#include "private/bionic_defs.h"
#include "private/bionic_globals.h"
#include "private/bionic_macros.h"
#include "private/bionic_ssp.h"
#include "private/bionic_systrace.h"
#include "private/bionic_tls.h"
#include "private/ErrnoRestorer.h"
// x86 uses segment descriptors rather than a direct pointer to TLS.
#if defined(__i386__)
#include <asm/ldt.h>
void __init_user_desc(struct user_desc*, bool, void*);
#endif
// This code is used both by each new pthread and the code that initializes the main thread.
__attribute__((no_stack_protector))
void __init_tcb(bionic_tcb* tcb, pthread_internal_t* thread) {
#ifdef TLS_SLOT_SELF
// On x86, slot 0 must point to itself so code can read the thread pointer by
// loading %fs:0 or %gs:0.
tcb->tls_slot(TLS_SLOT_SELF) = &tcb->tls_slot(TLS_SLOT_SELF);
#endif
tcb->tls_slot(TLS_SLOT_THREAD_ID) = thread;
}
__attribute__((no_stack_protector))
void __init_tcb_stack_guard(bionic_tcb* tcb) {
// GCC looks in the TLS for the stack guard on x86, so copy it there from our global.
tcb->tls_slot(TLS_SLOT_STACK_GUARD) = reinterpret_cast<void*>(__stack_chk_guard);
}
__attribute__((no_stack_protector))
void __init_tcb_dtv(bionic_tcb* tcb) {
// Initialize the DTV slot to a statically-allocated empty DTV. The first
// access to a dynamic TLS variable allocates a new DTV.
static const TlsDtv zero_dtv = {};
__set_tcb_dtv(tcb, const_cast<TlsDtv*>(&zero_dtv));
}
void __init_bionic_tls_ptrs(bionic_tcb* tcb, bionic_tls* tls) {
tcb->thread()->bionic_tls = tls;
tcb->tls_slot(TLS_SLOT_BIONIC_TLS) = tls;
}
// Allocate a temporary bionic_tls that the dynamic linker's main thread can
// use while it's loading the initial set of ELF modules.
bionic_tls* __allocate_temp_bionic_tls() {
size_t allocation_size = __BIONIC_ALIGN(sizeof(bionic_tls), PAGE_SIZE);
void* allocation = mmap(nullptr, allocation_size,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS,
-1, 0);
if (allocation == MAP_FAILED) {
// Avoid strerror because it might need bionic_tls.
async_safe_fatal("failed to allocate bionic_tls: error %d", errno);
}
return static_cast<bionic_tls*>(allocation);
}
void __free_temp_bionic_tls(bionic_tls* tls) {
munmap(tls, __BIONIC_ALIGN(sizeof(bionic_tls), PAGE_SIZE));
}
static void __init_alternate_signal_stack(pthread_internal_t* thread) {
// Create and set an alternate signal stack.
void* stack_base = mmap(nullptr, SIGNAL_STACK_SIZE, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
if (stack_base != MAP_FAILED) {
// Create a guard to catch stack overflows in signal handlers.
if (mprotect(stack_base, PTHREAD_GUARD_SIZE, PROT_NONE) == -1) {
munmap(stack_base, SIGNAL_STACK_SIZE);
return;
}
stack_t ss;
ss.ss_sp = reinterpret_cast<uint8_t*>(stack_base) + PTHREAD_GUARD_SIZE;
ss.ss_size = SIGNAL_STACK_SIZE - PTHREAD_GUARD_SIZE;
ss.ss_flags = 0;
sigaltstack(&ss, nullptr);
thread->alternate_signal_stack = stack_base;
// We can only use const static allocated string for mapped region name, as Android kernel
// uses the string pointer directly when dumping /proc/pid/maps.
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, ss.ss_sp, ss.ss_size, "thread signal stack");
}
}
static void __init_shadow_call_stack(pthread_internal_t* thread __unused) {
#ifdef __aarch64__
// Allocate the stack and the guard region.
char* scs_guard_region = reinterpret_cast<char*>(
mmap(nullptr, SCS_GUARD_REGION_SIZE, 0, MAP_PRIVATE | MAP_ANON, -1, 0));
thread->shadow_call_stack_guard_region = scs_guard_region;
// The address is aligned to SCS_SIZE so that we only need to store the lower log2(SCS_SIZE) bits
// in jmp_buf.
char* scs_aligned_guard_region =
reinterpret_cast<char*>(align_up(reinterpret_cast<uintptr_t>(scs_guard_region), SCS_SIZE));
// We need to ensure that [scs_offset,scs_offset+SCS_SIZE) is in the guard region and that there
// is at least one unmapped page after the shadow call stack (to catch stack overflows). We can't
// use arc4random_uniform in init because /dev/urandom might not have been created yet.
size_t scs_offset =
(getpid() == 1) ? 0 : (arc4random_uniform(SCS_GUARD_REGION_SIZE / SCS_SIZE - 1) * SCS_SIZE);
// Make the stack readable and writable and store its address in register x18. This is
// deliberately the only place where the address is stored.
char *scs = scs_aligned_guard_region + scs_offset;
mprotect(scs, SCS_SIZE, PROT_READ | PROT_WRITE);
__asm__ __volatile__("mov x18, %0" ::"r"(scs));
#endif
}
void __init_additional_stacks(pthread_internal_t* thread) {
__init_alternate_signal_stack(thread);
__init_shadow_call_stack(thread);
}
int __init_thread(pthread_internal_t* thread) {
thread->cleanup_stack = nullptr;
if (__predict_true((thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) == 0)) {
atomic_init(&thread->join_state, THREAD_NOT_JOINED);
} else {
atomic_init(&thread->join_state, THREAD_DETACHED);
}
// Set the scheduling policy/priority of the thread if necessary.
bool need_set = true;
int policy;
sched_param param;
if ((thread->attr.flags & PTHREAD_ATTR_FLAG_INHERIT) != 0) {
// Unless the parent has SCHED_RESET_ON_FORK set, we've already inherited from the parent.
policy = sched_getscheduler(0);
need_set = ((policy & SCHED_RESET_ON_FORK) != 0);
if (need_set) {
if (policy == -1) {
async_safe_format_log(ANDROID_LOG_WARN, "libc",
"pthread_create sched_getscheduler failed: %s", strerror(errno));
return errno;
}
if (sched_getparam(0, &param) == -1) {
async_safe_format_log(ANDROID_LOG_WARN, "libc",
"pthread_create sched_getparam failed: %s", strerror(errno));
return errno;
}
}
} else {
policy = thread->attr.sched_policy;
param.sched_priority = thread->attr.sched_priority;
}
// Backwards compatibility: before P, Android didn't have pthread_attr_setinheritsched,
// and our behavior was neither of the POSIX behaviors.
if ((thread->attr.flags & (PTHREAD_ATTR_FLAG_INHERIT|PTHREAD_ATTR_FLAG_EXPLICIT)) == 0) {
need_set = (thread->attr.sched_policy != SCHED_NORMAL);
}
if (need_set) {
if (sched_setscheduler(thread->tid, policy, &param) == -1) {
async_safe_format_log(ANDROID_LOG_WARN, "libc",
"pthread_create sched_setscheduler(%d, {%d}) call failed: %s", policy,
param.sched_priority, strerror(errno));
#if defined(__LP64__)
// For backwards compatibility reasons, we only report failures on 64-bit devices.
return errno;
#endif
}
}
return 0;
}
// Allocate a thread's primary mapping. This mapping includes static TLS and
// optionally a stack. Static TLS includes ELF TLS segments and the bionic_tls
// struct.
//
// The stack_guard_size must be a multiple of the PAGE_SIZE.
ThreadMapping __allocate_thread_mapping(size_t stack_size, size_t stack_guard_size) {
const StaticTlsLayout& layout = __libc_shared_globals()->static_tls_layout;
// Allocate in order: stack guard, stack, static TLS, guard page.
size_t mmap_size;
if (__builtin_add_overflow(stack_size, stack_guard_size, &mmap_size)) return {};
if (__builtin_add_overflow(mmap_size, layout.size(), &mmap_size)) return {};
if (__builtin_add_overflow(mmap_size, PTHREAD_GUARD_SIZE, &mmap_size)) return {};
// Align the result to a page size.
const size_t unaligned_size = mmap_size;
mmap_size = __BIONIC_ALIGN(mmap_size, PAGE_SIZE);
if (mmap_size < unaligned_size) return {};
// Create a new private anonymous map. Make the entire mapping PROT_NONE, then carve out a
// read+write area in the middle.
const int flags = MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE;
char* const space = static_cast<char*>(mmap(nullptr, mmap_size, PROT_NONE, flags, -1, 0));
if (space == MAP_FAILED) {
async_safe_format_log(ANDROID_LOG_WARN,
"libc",
"pthread_create failed: couldn't allocate %zu-bytes mapped space: %s",
mmap_size, strerror(errno));
return {};
}
const size_t writable_size = mmap_size - stack_guard_size - PTHREAD_GUARD_SIZE;
if (mprotect(space + stack_guard_size,
writable_size,
PROT_READ | PROT_WRITE) != 0) {
async_safe_format_log(ANDROID_LOG_WARN, "libc",
"pthread_create failed: couldn't mprotect R+W %zu-byte thread mapping region: %s",
writable_size, strerror(errno));
munmap(space, mmap_size);
return {};
}
ThreadMapping result = {};
result.mmap_base = space;
result.mmap_size = mmap_size;
result.mmap_base_unguarded = space + stack_guard_size;
result.mmap_size_unguarded = mmap_size - stack_guard_size - PTHREAD_GUARD_SIZE;
result.static_tls = space + mmap_size - PTHREAD_GUARD_SIZE - layout.size();
result.stack_base = space;
result.stack_top = result.static_tls;
return result;
}
static int __allocate_thread(pthread_attr_t* attr, bionic_tcb** tcbp, void** child_stack) {
ThreadMapping mapping;
char* stack_top;
bool stack_clean = false;
if (attr->stack_base == nullptr) {
// The caller didn't provide a stack, so allocate one.
// Make sure the guard size is a multiple of PAGE_SIZE.
const size_t unaligned_guard_size = attr->guard_size;
attr->guard_size = __BIONIC_ALIGN(attr->guard_size, PAGE_SIZE);
if (attr->guard_size < unaligned_guard_size) return EAGAIN;
mapping = __allocate_thread_mapping(attr->stack_size, attr->guard_size);
if (mapping.mmap_base == nullptr) return EAGAIN;
stack_top = mapping.stack_top;
attr->stack_base = mapping.stack_base;
stack_clean = true;
} else {
mapping = __allocate_thread_mapping(0, PTHREAD_GUARD_SIZE);
if (mapping.mmap_base == nullptr) return EAGAIN;
stack_top = static_cast<char*>(attr->stack_base) + attr->stack_size;
}
// Carve out space from the stack for the thread's pthread_internal_t. This
// memory isn't counted in pthread_attr_getstacksize.
// To safely access the pthread_internal_t and thread stack, we need to find a 16-byte aligned boundary.
stack_top = align_down(stack_top - sizeof(pthread_internal_t), 16);
pthread_internal_t* thread = reinterpret_cast<pthread_internal_t*>(stack_top);
if (!stack_clean) {
// If thread was not allocated by mmap(), it may not have been cleared to zero.
// So assume the worst and zero it.
memset(thread, 0, sizeof(pthread_internal_t));
}
// Locate static TLS structures within the mapped region.
const StaticTlsLayout& layout = __libc_shared_globals()->static_tls_layout;
auto tcb = reinterpret_cast<bionic_tcb*>(mapping.static_tls + layout.offset_bionic_tcb());
auto tls = reinterpret_cast<bionic_tls*>(mapping.static_tls + layout.offset_bionic_tls());
// Initialize TLS memory.
__init_static_tls(mapping.static_tls);
__init_tcb(tcb, thread);
__init_tcb_dtv(tcb);
__init_tcb_stack_guard(tcb);
__init_bionic_tls_ptrs(tcb, tls);
attr->stack_size = stack_top - static_cast<char*>(attr->stack_base);
thread->attr = *attr;
thread->mmap_base = mapping.mmap_base;
thread->mmap_size = mapping.mmap_size;
thread->mmap_base_unguarded = mapping.mmap_base_unguarded;
thread->mmap_size_unguarded = mapping.mmap_size_unguarded;
*tcbp = tcb;
*child_stack = stack_top;
return 0;
}
void __set_stack_and_tls_vma_name(bool is_main_thread) {
// Name the thread's stack-and-tls area to help with debugging. This mapped area also includes
// static TLS data, which is typically a few pages (e.g. bionic_tls).
pthread_internal_t* thread = __get_thread();
const char* name;
if (is_main_thread) {
name = "stack_and_tls:main";
} else {
// The kernel doesn't copy the name string, but this variable will last at least as long as the
// mapped area. The mapped area's VMAs are unmapped with a single call to munmap.
auto& name_buffer = thread->vma_name_buffer;
static_assert(arraysize(name_buffer) >= arraysize("stack_and_tls:") + 11 + 1);
async_safe_format_buffer(name_buffer, arraysize(name_buffer), "stack_and_tls:%d", thread->tid);
name = name_buffer;
}
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, thread->mmap_base_unguarded, thread->mmap_size_unguarded,
name);
}
extern "C" int __rt_sigprocmask(int, const sigset64_t*, sigset64_t*, size_t);
__attribute__((no_sanitize("hwaddress")))
static int __pthread_start(void* arg) {
pthread_internal_t* thread = reinterpret_cast<pthread_internal_t*>(arg);
__hwasan_thread_enter();
// Wait for our creating thread to release us. This lets it have time to
// notify gdb about this thread before we start doing anything.
// This also provides the memory barrier needed to ensure that all memory
// accesses previously made by the creating thread are visible to us.
thread->startup_handshake_lock.lock();
__set_stack_and_tls_vma_name(false);
__init_additional_stacks(thread);
__rt_sigprocmask(SIG_SETMASK, &thread->start_mask, nullptr, sizeof(thread->start_mask));
void* result = thread->start_routine(thread->start_routine_arg);
pthread_exit(result);
return 0;
}
// A dummy start routine for pthread_create failures where we've created a thread but aren't
// going to run user code on it. We swap out the user's start routine for this and take advantage
// of the regular thread teardown to free up resources.
static void* __do_nothing(void*) {
return nullptr;
}
__BIONIC_WEAK_FOR_NATIVE_BRIDGE
int pthread_create(pthread_t* thread_out, pthread_attr_t const* attr,
void* (*start_routine)(void*), void* arg) {
ErrnoRestorer errno_restorer;
pthread_attr_t thread_attr;
ScopedTrace trace("pthread_create");
if (attr == nullptr) {
pthread_attr_init(&thread_attr);
} else {
thread_attr = *attr;
attr = nullptr; // Prevent misuse below.
}
bionic_tcb* tcb = nullptr;
void* child_stack = nullptr;
int result = __allocate_thread(&thread_attr, &tcb, &child_stack);
if (result != 0) {
return result;
}
pthread_internal_t* thread = tcb->thread();
// Create a lock for the thread to wait on once it starts so we can keep
// it from doing anything until after we notify the debugger about it
//
// This also provides the memory barrier we need to ensure that all
// memory accesses previously performed by this thread are visible to
// the new thread.
thread->startup_handshake_lock.init(false);
thread->startup_handshake_lock.lock();
thread->start_routine = start_routine;
thread->start_routine_arg = arg;
thread->set_cached_pid(getpid());
int flags = CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM |
CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_CHILD_CLEARTID;
void* tls = &tcb->tls_slot(0);
#if defined(__i386__)
// On x86 (but not x86-64), CLONE_SETTLS takes a pointer to a struct user_desc rather than
// a pointer to the TLS itself.
user_desc tls_descriptor;
__init_user_desc(&tls_descriptor, false, tls);
tls = &tls_descriptor;
#endif
sigset64_t block_all_mask;
sigfillset64(&block_all_mask);
__rt_sigprocmask(SIG_SETMASK, &block_all_mask, &thread->start_mask, sizeof(thread->start_mask));
int rc = clone(__pthread_start, child_stack, flags, thread, &(thread->tid), tls, &(thread->tid));
__rt_sigprocmask(SIG_SETMASK, &thread->start_mask, nullptr, sizeof(thread->start_mask));
if (rc == -1) {
int clone_errno = errno;
// We don't have to unlock the mutex at all because clone(2) failed so there's no child waiting to
// be unblocked, but we're about to unmap the memory the mutex is stored in, so this serves as a
// reminder that you can't rewrite this function to use a ScopedPthreadMutexLocker.
thread->startup_handshake_lock.unlock();
if (thread->mmap_size != 0) {
munmap(thread->mmap_base, thread->mmap_size);
}
async_safe_format_log(ANDROID_LOG_WARN, "libc", "pthread_create failed: clone failed: %s",
strerror(clone_errno));
return clone_errno;
}
int init_errno = __init_thread(thread);
if (init_errno != 0) {
// Mark the thread detached and replace its start_routine with a no-op.
// Letting the thread run is the easiest way to clean up its resources.
atomic_store(&thread->join_state, THREAD_DETACHED);
__pthread_internal_add(thread);
thread->start_routine = __do_nothing;
thread->startup_handshake_lock.unlock();
return init_errno;
}
// Publish the pthread_t and unlock the mutex to let the new thread start running.
*thread_out = __pthread_internal_add(thread);
thread->startup_handshake_lock.unlock();
return 0;
}