platform_bootable_recovery/applypatch/applypatch.cpp

568 lines
19 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "applypatch/applypatch.h"
#include <errno.h>
#include <fcntl.h>
#include <libgen.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <algorithm>
#include <functional>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/parseint.h>
#include <android-base/strings.h>
#include <android-base/unique_fd.h>
#include <openssl/sha.h>
#include "edify/expr.h"
#include "otautil/paths.h"
#include "otautil/print_sha1.h"
static int LoadPartitionContents(const std::string& filename, FileContents* file);
static int GenerateTarget(const FileContents& source_file, const std::unique_ptr<Value>& patch,
const std::string& target_filename,
const uint8_t target_sha1[SHA_DIGEST_LENGTH], const Value* bonus_data);
int LoadFileContents(const std::string& filename, FileContents* file) {
// A special 'filename' beginning with "EMMC:" means to load the contents of a partition.
if (android::base::StartsWith(filename, "EMMC:")) {
return LoadPartitionContents(filename, file);
}
std::string data;
if (!android::base::ReadFileToString(filename, &data)) {
PLOG(ERROR) << "Failed to read \"" << filename << "\"";
return -1;
}
file->data = std::vector<unsigned char>(data.begin(), data.end());
SHA1(file->data.data(), file->data.size(), file->sha1);
return 0;
}
// Loads the contents of an EMMC partition into the provided FileContents. filename should be a
// string of the form "EMMC:<partition_device>:...". The smallest size_n bytes for which that prefix
// of the partition contents has the corresponding sha1 hash will be loaded. It is acceptable for a
// size value to be repeated with different sha1s. Returns 0 on success.
//
// This complexity is needed because if an OTA installation is interrupted, the partition might
// contain either the source or the target data, which might be of different lengths. We need to
// know the length in order to read from a partition (there is no "end-of-file" marker), so the
// caller must specify the possible lengths and the hash of the data, and we'll do the load
// expecting to find one of those hashes.
static int LoadPartitionContents(const std::string& filename, FileContents* file) {
std::vector<std::string> pieces = android::base::Split(filename, ":");
if (pieces.size() < 4 || pieces.size() % 2 != 0 || pieces[0] != "EMMC") {
LOG(ERROR) << "LoadPartitionContents called with bad filename \"" << filename << "\"";
return -1;
}
size_t pair_count = (pieces.size() - 2) / 2; // # of (size, sha1) pairs in filename
std::vector<std::pair<size_t, std::string>> pairs;
for (size_t i = 0; i < pair_count; ++i) {
size_t size;
if (!android::base::ParseUint(pieces[i * 2 + 2], &size) || size == 0) {
LOG(ERROR) << "LoadPartitionContents called with bad size \"" << pieces[i * 2 + 2] << "\"";
return -1;
}
pairs.push_back({ size, pieces[i * 2 + 3] });
}
// Sort the pairs array so that they are in order of increasing size.
std::sort(pairs.begin(), pairs.end());
const char* partition = pieces[1].c_str();
android::base::unique_fd dev(open(partition, O_RDONLY));
if (dev == -1) {
PLOG(ERROR) << "Failed to open eMMC partition \"" << partition << "\"";
return -1;
}
SHA_CTX sha_ctx;
SHA1_Init(&sha_ctx);
// Allocate enough memory to hold the largest size.
std::vector<unsigned char> buffer(pairs[pair_count - 1].first);
size_t offset = 0; // # bytes read so far
bool found = false;
for (const auto& pair : pairs) {
size_t current_size = pair.first;
const std::string& current_sha1 = pair.second;
// Read enough additional bytes to get us up to the next size. (Again,
// we're trying the possibilities in order of increasing size).
if (current_size - offset > 0) {
if (!android::base::ReadFully(dev, buffer.data() + offset, current_size - offset)) {
PLOG(ERROR) << "Failed to read " << current_size - offset << " bytes of data at offset "
<< offset << " for partition " << partition;
return -1;
}
SHA1_Update(&sha_ctx, buffer.data() + offset, current_size - offset);
offset = current_size;
}
// Duplicate the SHA context and finalize the duplicate so we can
// check it against this pair's expected hash.
SHA_CTX temp_ctx;
memcpy(&temp_ctx, &sha_ctx, sizeof(SHA_CTX));
uint8_t sha_so_far[SHA_DIGEST_LENGTH];
SHA1_Final(sha_so_far, &temp_ctx);
uint8_t parsed_sha[SHA_DIGEST_LENGTH];
if (ParseSha1(current_sha1, parsed_sha) != 0) {
LOG(ERROR) << "Failed to parse SHA-1 \"" << current_sha1 << "\" in " << filename;
return -1;
}
if (memcmp(sha_so_far, parsed_sha, SHA_DIGEST_LENGTH) == 0) {
// We have a match. Stop reading the partition; we'll return the data we've read so far.
LOG(INFO) << "Partition read matched size " << current_size << " SHA-1 " << current_sha1;
found = true;
break;
}
}
if (!found) {
// Ran off the end of the list of (size, sha1) pairs without finding a match.
LOG(ERROR) << "Contents of partition \"" << partition << "\" didn't match " << filename;
return -1;
}
SHA1_Final(file->sha1, &sha_ctx);
buffer.resize(offset);
file->data = std::move(buffer);
return 0;
}
int SaveFileContents(const std::string& filename, const FileContents* file) {
android::base::unique_fd fd(
open(filename.c_str(), O_WRONLY | O_CREAT | O_TRUNC | O_SYNC, S_IRUSR | S_IWUSR));
if (fd == -1) {
PLOG(ERROR) << "Failed to open \"" << filename << "\" for write";
return -1;
}
if (!android::base::WriteFully(fd, file->data.data(), file->data.size())) {
PLOG(ERROR) << "Failed to write " << file->data.size() << " bytes of data to " << filename;
return -1;
}
if (fsync(fd) != 0) {
PLOG(ERROR) << "Failed to fsync \"" << filename << "\"";
return -1;
}
if (close(fd.release()) != 0) {
PLOG(ERROR) << "Failed to close \"" << filename << "\"";
return -1;
}
return 0;
}
// Writes a memory buffer to 'target' partition, a string of the form
// "EMMC:<partition_device>[:...]". The target name might contain multiple colons, but
// WriteToPartition() only uses the first two and ignores the rest. Returns 0 on success.
static int WriteToPartition(const unsigned char* data, size_t len, const std::string& target) {
std::vector<std::string> pieces = android::base::Split(target, ":");
if (pieces.size() < 2 || pieces[0] != "EMMC") {
LOG(ERROR) << "WriteToPartition called with bad target \"" << target << "\"";
return -1;
}
size_t start = 0;
bool success = false;
for (size_t attempt = 0; attempt < 2; ++attempt) {
std::string partition = pieces[1];
android::base::unique_fd fd(open(partition.c_str(), O_RDWR));
if (fd == -1) {
PLOG(ERROR) << "Failed to open \"" << partition << "\"";
return -1;
}
if (TEMP_FAILURE_RETRY(lseek(fd, start, SEEK_SET)) == -1) {
PLOG(ERROR) << "Failed to seek to " << start << " on \"" << partition << "\"";
return -1;
}
if (!android::base::WriteFully(fd, data + start, len - start)) {
PLOG(ERROR) << "Failed to write " << len - start << " bytes to \"" << partition << "\"";
return -1;
}
if (fsync(fd) != 0) {
PLOG(ERROR) << "Failed to sync \"" << partition << "\"";
return -1;
}
if (close(fd.release()) != 0) {
PLOG(ERROR) << "Failed to close \"" << partition << "\"";
return -1;
}
fd.reset(open(partition.c_str(), O_RDONLY));
if (fd == -1) {
PLOG(ERROR) << "Failed to reopen \"" << partition << "\" for verification";
return -1;
}
// Drop caches so our subsequent verification read won't just be reading the cache.
sync();
std::string drop_cache = "/proc/sys/vm/drop_caches";
if (!android::base::WriteStringToFile("3\n", drop_cache)) {
PLOG(ERROR) << "Failed to write to " << drop_cache;
} else {
LOG(INFO) << " caches dropped";
}
sleep(1);
// Verify.
if (TEMP_FAILURE_RETRY(lseek(fd, 0, SEEK_SET)) == -1) {
PLOG(ERROR) << "Failed to seek to 0 on " << partition;
return -1;
}
unsigned char buffer[4096];
start = len;
for (size_t p = 0; p < len; p += sizeof(buffer)) {
size_t to_read = len - p;
if (to_read > sizeof(buffer)) {
to_read = sizeof(buffer);
}
if (!android::base::ReadFully(fd, buffer, to_read)) {
PLOG(ERROR) << "Failed to verify-read " << partition << " at " << p;
return -1;
}
if (memcmp(buffer, data + p, to_read) != 0) {
LOG(ERROR) << "Verification failed starting at " << p;
start = p;
break;
}
}
if (start == len) {
LOG(INFO) << "Verification read succeeded (attempt " << attempt + 1 << ")";
success = true;
break;
}
if (close(fd.release()) != 0) {
PLOG(ERROR) << "Failed to close " << partition;
return -1;
}
}
if (!success) {
LOG(ERROR) << "Failed to verify after all attempts";
return -1;
}
sync();
return 0;
}
int ParseSha1(const std::string& str, uint8_t* digest) {
const char* ps = str.c_str();
uint8_t* pd = digest;
for (int i = 0; i < SHA_DIGEST_LENGTH * 2; ++i, ++ps) {
int digit;
if (*ps >= '0' && *ps <= '9') {
digit = *ps - '0';
} else if (*ps >= 'a' && *ps <= 'f') {
digit = *ps - 'a' + 10;
} else if (*ps >= 'A' && *ps <= 'F') {
digit = *ps - 'A' + 10;
} else {
return -1;
}
if (i % 2 == 0) {
*pd = digit << 4;
} else {
*pd |= digit;
++pd;
}
}
if (*ps != '\0') return -1;
return 0;
}
// Searches a vector of SHA-1 strings for one matching the given SHA-1. Returns the index of the
// match on success, or -1 if no match is found.
static int FindMatchingPatch(const uint8_t* sha1, const std::vector<std::string>& patch_sha1s) {
for (size_t i = 0; i < patch_sha1s.size(); ++i) {
uint8_t patch_sha1[SHA_DIGEST_LENGTH];
if (ParseSha1(patch_sha1s[i], patch_sha1) == 0 &&
memcmp(patch_sha1, sha1, SHA_DIGEST_LENGTH) == 0) {
return i;
}
}
return -1;
}
int applypatch_check(const std::string& filename, const std::vector<std::string>& sha1s) {
if (!android::base::StartsWith(filename, "EMMC:")) {
return 1;
}
// The check will pass if LoadPartitionContents is successful, because the filename already
// encodes the desired SHA-1s.
FileContents file;
if (LoadPartitionContents(filename, &file) != 0) {
LOG(INFO) << "\"" << filename << "\" doesn't have any of expected SHA-1 sums; checking cache";
// If the partition is corrupted, it might be because we were killed in the middle of patching
// it. A copy should have been made in cache_temp_source. If that file exists and matches the
// SHA-1 we're looking for, the check still passes.
if (LoadFileContents(Paths::Get().cache_temp_source(), &file) != 0) {
LOG(ERROR) << "Failed to load cache file";
return 1;
}
if (FindMatchingPatch(file.sha1, sha1s) < 0) {
LOG(ERROR) << "The cache bits don't match any SHA-1 for \"" << filename << "\"";
return 1;
}
}
return 0;
}
int ShowLicenses() {
ShowBSDiffLicense();
return 0;
}
int applypatch(const char* source_filename, const char* target_filename,
const char* target_sha1_str, size_t /* target_size */,
const std::vector<std::string>& patch_sha1s,
const std::vector<std::unique_ptr<Value>>& patch_data, const Value* bonus_data) {
LOG(INFO) << "Patching " << source_filename;
if (target_filename[0] == '-' && target_filename[1] == '\0') {
target_filename = source_filename;
}
if (strncmp(target_filename, "EMMC:", 5) != 0) {
LOG(ERROR) << "Supporting patching EMMC targets only";
return 1;
}
uint8_t target_sha1[SHA_DIGEST_LENGTH];
if (ParseSha1(target_sha1_str, target_sha1) != 0) {
LOG(ERROR) << "Failed to parse target SHA-1 \"" << target_sha1_str << "\"";
return 1;
}
// We try to load the target file into the source_file object.
FileContents source_file;
if (LoadFileContents(target_filename, &source_file) == 0) {
if (memcmp(source_file.sha1, target_sha1, SHA_DIGEST_LENGTH) == 0) {
// The early-exit case: the patch was already applied, this file has the desired hash, nothing
// for us to do.
LOG(INFO) << " already " << short_sha1(target_sha1);
return 0;
}
}
if (source_file.data.empty() ||
(target_filename != source_filename && strcmp(target_filename, source_filename) != 0)) {
// Need to load the source file: either we failed to load the target file, or we did but it's
// different from the expected.
source_file.data.clear();
LoadFileContents(source_filename, &source_file);
}
if (!source_file.data.empty()) {
int to_use = FindMatchingPatch(source_file.sha1, patch_sha1s);
if (to_use != -1) {
return GenerateTarget(source_file, patch_data[to_use], target_filename, target_sha1,
bonus_data);
}
}
LOG(INFO) << "Source file is bad; trying copy";
FileContents copy_file;
if (LoadFileContents(Paths::Get().cache_temp_source(), &copy_file) < 0) {
LOG(ERROR) << "Failed to read copy file";
return 1;
}
int to_use = FindMatchingPatch(copy_file.sha1, patch_sha1s);
if (to_use == -1) {
LOG(ERROR) << "The copy on /cache doesn't match source SHA-1s either";
return 1;
}
return GenerateTarget(copy_file, patch_data[to_use], target_filename, target_sha1, bonus_data);
}
int applypatch_flash(const char* source_filename, const char* target_filename,
const char* target_sha1_str, size_t target_size) {
LOG(INFO) << "Flashing " << target_filename;
uint8_t target_sha1[SHA_DIGEST_LENGTH];
if (ParseSha1(target_sha1_str, target_sha1) != 0) {
LOG(ERROR) << "Failed to parse target SHA-1 \"" << target_sha1_str << "\"";
return 1;
}
applypatch: Change applypatch command-line arguments. This applies to the standalone applypatch executable (/system/bin/applypatch on device). This executable is only used when installing (via patching or flashing) a recovery image on non-A/B device. This CL removes the support for patching non-eMMC targets from applypatch that has been deprecated as part of file-based OTA. For patching eMMC targets, it also drops the support for accepting multiple patches (not useful, since the source file must be fixed). This CL needs the matching change in the same topic, which writes the script of "/system/bin/install-recovery.sh". Note that this CL doesn't chanage the applypatch API signatures, in order to minimize the CL size. *BEFORE* usage: /system/bin/applypatch [-b <bonus-file>] <src-file> <tgt-file> <tgt-sha1> <tgt-size> [<src-sha1>:<patch> ...] or /system/bin/applypatch -c <file> [<sha1> ...] or /system/bin/applypatch -l Filenames may be of the form EMMC:<partition>:<len_1>:<sha1_1>:<len_2>:<sha1_2>:... to specify reading from or writing to an EMMC partition. *AFTER* Usage: check mode applypatch --check EMMC:<target-file>:<target-size>:<target-sha1> flash mode applypatch --flash <source-file> --target EMMC:<target-file>:<target-size>:<target-sha1> patch mode applypatch [--bonus <bonus-file>] --patch <patch-file> --target EMMC:<target-file>:<target-size>:<target-sha1> --source EMMC:<source-file>:<source-size>:<source-sha1> show license applypatch --license Bug: 110106408 Test: Run recovery_component_test and recovery_unit_test on marlin. Test: Build a non-A/B target that has /system/bin/install-recovery.sh. Verify that it installs recovery image successfully. Test: Build a non-A/B target that has /system/bin/install-recovery.sh in flashing mode. Verify that it installs recovery image successfully. Change-Id: I71f9a71fb457e6f663e0b5511946949e65b4b78c
2018-07-13 22:11:09 +02:00
std::vector<std::string> pieces = android::base::Split(target_filename, ":");
if (pieces.size() != 4 || pieces[0] != "EMMC") {
LOG(ERROR) << "Invalid target name \"" << target_filename << "\"";
return 1;
}
// Load the target into the source_file object to see if already applied.
FileContents source_file;
applypatch: Change applypatch command-line arguments. This applies to the standalone applypatch executable (/system/bin/applypatch on device). This executable is only used when installing (via patching or flashing) a recovery image on non-A/B device. This CL removes the support for patching non-eMMC targets from applypatch that has been deprecated as part of file-based OTA. For patching eMMC targets, it also drops the support for accepting multiple patches (not useful, since the source file must be fixed). This CL needs the matching change in the same topic, which writes the script of "/system/bin/install-recovery.sh". Note that this CL doesn't chanage the applypatch API signatures, in order to minimize the CL size. *BEFORE* usage: /system/bin/applypatch [-b <bonus-file>] <src-file> <tgt-file> <tgt-sha1> <tgt-size> [<src-sha1>:<patch> ...] or /system/bin/applypatch -c <file> [<sha1> ...] or /system/bin/applypatch -l Filenames may be of the form EMMC:<partition>:<len_1>:<sha1_1>:<len_2>:<sha1_2>:... to specify reading from or writing to an EMMC partition. *AFTER* Usage: check mode applypatch --check EMMC:<target-file>:<target-size>:<target-sha1> flash mode applypatch --flash <source-file> --target EMMC:<target-file>:<target-size>:<target-sha1> patch mode applypatch [--bonus <bonus-file>] --patch <patch-file> --target EMMC:<target-file>:<target-size>:<target-sha1> --source EMMC:<source-file>:<source-size>:<source-sha1> show license applypatch --license Bug: 110106408 Test: Run recovery_component_test and recovery_unit_test on marlin. Test: Build a non-A/B target that has /system/bin/install-recovery.sh. Verify that it installs recovery image successfully. Test: Build a non-A/B target that has /system/bin/install-recovery.sh in flashing mode. Verify that it installs recovery image successfully. Change-Id: I71f9a71fb457e6f663e0b5511946949e65b4b78c
2018-07-13 22:11:09 +02:00
if (LoadPartitionContents(target_filename, &source_file) == 0 &&
memcmp(source_file.sha1, target_sha1, SHA_DIGEST_LENGTH) == 0) {
// The early-exit case: the image was already applied, this partition has the desired hash,
// nothing for us to do.
LOG(INFO) << " already " << short_sha1(target_sha1);
return 0;
}
if (LoadFileContents(source_filename, &source_file) == 0) {
if (memcmp(source_file.sha1, target_sha1, SHA_DIGEST_LENGTH) != 0) {
// The source doesn't have desired checksum.
LOG(ERROR) << "source \"" << source_filename << "\" doesn't have expected SHA-1 sum";
LOG(ERROR) << "expected: " << short_sha1(target_sha1)
<< ", found: " << short_sha1(source_file.sha1);
return 1;
}
}
if (WriteToPartition(source_file.data.data(), target_size, target_filename) != 0) {
LOG(ERROR) << "Failed to write copied data to " << target_filename;
return 1;
}
return 0;
}
static int GenerateTarget(const FileContents& source_file, const std::unique_ptr<Value>& patch,
const std::string& target_filename,
const uint8_t target_sha1[SHA_DIGEST_LENGTH], const Value* bonus_data) {
if (patch->type != Value::Type::BLOB) {
LOG(ERROR) << "patch is not a blob";
return 1;
}
const char* header = &patch->data[0];
size_t header_bytes_read = patch->data.size();
bool use_bsdiff = false;
if (header_bytes_read >= 8 && memcmp(header, "BSDIFF40", 8) == 0) {
use_bsdiff = true;
} else if (header_bytes_read >= 8 && memcmp(header, "IMGDIFF2", 8) == 0) {
use_bsdiff = false;
} else {
LOG(ERROR) << "Unknown patch file format";
return 1;
}
CHECK(android::base::StartsWith(target_filename, "EMMC:"));
// We write the original source to cache, in case the partition write is interrupted.
if (!CheckAndFreeSpaceOnCache(source_file.data.size())) {
LOG(ERROR) << "Not enough free space on /cache";
return 1;
}
if (SaveFileContents(Paths::Get().cache_temp_source(), &source_file) < 0) {
LOG(ERROR) << "Failed to back up source file";
return 1;
}
// We store the decoded output in memory.
std::string memory_sink_str; // Don't need to reserve space.
SHA_CTX ctx;
SHA1_Init(&ctx);
SinkFn sink = [&memory_sink_str, &ctx](const unsigned char* data, size_t len) {
SHA1_Update(&ctx, data, len);
memory_sink_str.append(reinterpret_cast<const char*>(data), len);
return len;
};
int result;
if (use_bsdiff) {
result = ApplyBSDiffPatch(source_file.data.data(), source_file.data.size(), *patch, 0, sink);
} else {
result =
ApplyImagePatch(source_file.data.data(), source_file.data.size(), *patch, sink, bonus_data);
}
if (result != 0) {
LOG(ERROR) << "Failed to apply the patch: " << result;
return 1;
}
uint8_t current_target_sha1[SHA_DIGEST_LENGTH];
SHA1_Final(current_target_sha1, &ctx);
if (memcmp(current_target_sha1, target_sha1, SHA_DIGEST_LENGTH) != 0) {
LOG(ERROR) << "Patching did not produce the expected SHA-1 of " << short_sha1(target_sha1);
LOG(ERROR) << "target size " << memory_sink_str.size() << " SHA-1 "
<< short_sha1(current_target_sha1);
LOG(ERROR) << "source size " << source_file.data.size() << " SHA-1 "
<< short_sha1(source_file.sha1);
uint8_t patch_digest[SHA_DIGEST_LENGTH];
SHA1(reinterpret_cast<const uint8_t*>(patch->data.data()), patch->data.size(), patch_digest);
LOG(ERROR) << "patch size " << patch->data.size() << " SHA-1 " << short_sha1(patch_digest);
if (bonus_data != nullptr) {
uint8_t bonus_digest[SHA_DIGEST_LENGTH];
SHA1(reinterpret_cast<const uint8_t*>(bonus_data->data.data()), bonus_data->data.size(),
bonus_digest);
LOG(ERROR) << "bonus size " << bonus_data->data.size() << " SHA-1 "
<< short_sha1(bonus_digest);
}
return 1;
} else {
LOG(INFO) << " now " << short_sha1(target_sha1);
}
// Write back the temp file to the partition.
if (WriteToPartition(reinterpret_cast<const unsigned char*>(memory_sink_str.c_str()),
memory_sink_str.size(), target_filename) != 0) {
LOG(ERROR) << "Failed to write patched data to " << target_filename;
return 1;
}
// Delete the backup copy of the source.
unlink(Paths::Get().cache_temp_source().c_str());
// Success!
return 0;
}