platform_bootable_recovery/otautil/verifier.cpp
Jacky Liu 5ffad4b00b Fix wrong key indexes in package verification logs.
If the verification fails with the key, 'continue' will be performed and
the increment of the index at the end of the loop will be skipped.
This CL fixes it.

Test: check the log and see correct key indexes.
Change-Id: I3d1b2b8b4189f5fedbf8828f5e8e0d0b2e277c6a
2021-12-29 12:51:40 +08:00

471 lines
15 KiB
C++

/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "otautil/verifier.h"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#include <functional>
#include <memory>
#include <vector>
#include <android-base/logging.h>
#include <openssl/bio.h>
#include <openssl/bn.h>
#include <openssl/ecdsa.h>
#include <openssl/evp.h>
#include <openssl/obj_mac.h>
#include <openssl/pem.h>
#include <openssl/rsa.h>
#include <ziparchive/zip_archive.h>
#include "otautil/print_sha1.h"
#include "private/asn1_decoder.h"
/*
* Simple version of PKCS#7 SignedData extraction. This extracts the
* signature OCTET STRING to be used for signature verification.
*
* For full details, see http://www.ietf.org/rfc/rfc3852.txt
*
* The PKCS#7 structure looks like:
*
* SEQUENCE (ContentInfo)
* OID (ContentType)
* [0] (content)
* SEQUENCE (SignedData)
* INTEGER (version CMSVersion)
* SET (DigestAlgorithmIdentifiers)
* SEQUENCE (EncapsulatedContentInfo)
* [0] (CertificateSet OPTIONAL)
* [1] (RevocationInfoChoices OPTIONAL)
* SET (SignerInfos)
* SEQUENCE (SignerInfo)
* INTEGER (CMSVersion)
* SEQUENCE (SignerIdentifier)
* SEQUENCE (DigestAlgorithmIdentifier)
* SEQUENCE (SignatureAlgorithmIdentifier)
* OCTET STRING (SignatureValue)
*/
static bool read_pkcs7(const uint8_t* pkcs7_der, size_t pkcs7_der_len,
std::vector<uint8_t>* sig_der) {
CHECK(sig_der != nullptr);
sig_der->clear();
asn1_context ctx(pkcs7_der, pkcs7_der_len);
std::unique_ptr<asn1_context> pkcs7_seq(ctx.asn1_sequence_get());
if (pkcs7_seq == nullptr || !pkcs7_seq->asn1_sequence_next()) {
return false;
}
std::unique_ptr<asn1_context> signed_data_app(pkcs7_seq->asn1_constructed_get());
if (signed_data_app == nullptr) {
return false;
}
std::unique_ptr<asn1_context> signed_data_seq(signed_data_app->asn1_sequence_get());
if (signed_data_seq == nullptr || !signed_data_seq->asn1_sequence_next() ||
!signed_data_seq->asn1_sequence_next() || !signed_data_seq->asn1_sequence_next() ||
!signed_data_seq->asn1_constructed_skip_all()) {
return false;
}
std::unique_ptr<asn1_context> sig_set(signed_data_seq->asn1_set_get());
if (sig_set == nullptr) {
return false;
}
std::unique_ptr<asn1_context> sig_seq(sig_set->asn1_sequence_get());
if (sig_seq == nullptr || !sig_seq->asn1_sequence_next() || !sig_seq->asn1_sequence_next() ||
!sig_seq->asn1_sequence_next() || !sig_seq->asn1_sequence_next()) {
return false;
}
const uint8_t* sig_der_ptr;
size_t sig_der_length;
if (!sig_seq->asn1_octet_string_get(&sig_der_ptr, &sig_der_length)) {
return false;
}
sig_der->resize(sig_der_length);
std::copy(sig_der_ptr, sig_der_ptr + sig_der_length, sig_der->begin());
return true;
}
int verify_file(VerifierInterface* package, const std::vector<Certificate>& keys) {
CHECK(package);
package->SetProgress(0.0);
// An archive with a whole-file signature will end in six bytes:
//
// (2-byte signature start) $ff $ff (2-byte comment size)
//
// (As far as the ZIP format is concerned, these are part of the archive comment.) We start by
// reading this footer, this tells us how far back from the end we have to start reading to find
// the whole comment.
#define FOOTER_SIZE 6
uint64_t length = package->GetPackageSize();
if (length < FOOTER_SIZE) {
LOG(ERROR) << "not big enough to contain footer";
return VERIFY_FAILURE;
}
uint8_t footer[FOOTER_SIZE];
if (!package->ReadFullyAtOffset(footer, FOOTER_SIZE, length - FOOTER_SIZE)) {
LOG(ERROR) << "Failed to read footer";
return VERIFY_FAILURE;
}
if (footer[2] != 0xff || footer[3] != 0xff) {
LOG(ERROR) << "footer is wrong";
return VERIFY_FAILURE;
}
size_t comment_size = footer[4] + (footer[5] << 8);
size_t signature_start = footer[0] + (footer[1] << 8);
LOG(INFO) << "comment is " << comment_size << " bytes; signature is " << signature_start
<< " bytes from end";
if (signature_start > comment_size) {
LOG(ERROR) << "signature start: " << signature_start
<< " is larger than comment size: " << comment_size;
return VERIFY_FAILURE;
}
if (signature_start <= FOOTER_SIZE) {
LOG(ERROR) << "Signature start is in the footer";
return VERIFY_FAILURE;
}
#define EOCD_HEADER_SIZE 22
// The end-of-central-directory record is 22 bytes plus any comment length.
size_t eocd_size = comment_size + EOCD_HEADER_SIZE;
if (length < eocd_size) {
LOG(ERROR) << "not big enough to contain EOCD";
return VERIFY_FAILURE;
}
// Determine how much of the file is covered by the signature. This is everything except the
// signature data and length, which includes all of the EOCD except for the comment length field
// (2 bytes) and the comment data.
uint64_t signed_len = length - eocd_size + EOCD_HEADER_SIZE - 2;
uint8_t eocd[eocd_size];
if (!package->ReadFullyAtOffset(eocd, eocd_size, length - eocd_size)) {
LOG(ERROR) << "Failed to read EOCD of " << eocd_size << " bytes";
return VERIFY_FAILURE;
}
// If this is really is the EOCD record, it will begin with the magic number $50 $4b $05 $06.
if (eocd[0] != 0x50 || eocd[1] != 0x4b || eocd[2] != 0x05 || eocd[3] != 0x06) {
LOG(ERROR) << "signature length doesn't match EOCD marker";
return VERIFY_FAILURE;
}
for (size_t i = 4; i < eocd_size - 3; ++i) {
if (eocd[i] == 0x50 && eocd[i + 1] == 0x4b && eocd[i + 2] == 0x05 && eocd[i + 3] == 0x06) {
// If the sequence $50 $4b $05 $06 appears anywhere after the real one, libziparchive will
// find the later (wrong) one, which could be exploitable. Fail the verification if this
// sequence occurs anywhere after the real one.
LOG(ERROR) << "EOCD marker occurs after start of EOCD";
return VERIFY_FAILURE;
}
}
bool need_sha1 = false;
bool need_sha256 = false;
for (const auto& key : keys) {
switch (key.hash_len) {
case SHA_DIGEST_LENGTH:
need_sha1 = true;
break;
case SHA256_DIGEST_LENGTH:
need_sha256 = true;
break;
}
}
SHA_CTX sha1_ctx;
SHA256_CTX sha256_ctx;
SHA1_Init(&sha1_ctx);
SHA256_Init(&sha256_ctx);
std::vector<HasherUpdateCallback> hashers;
if (need_sha1) {
hashers.emplace_back(
std::bind(&SHA1_Update, &sha1_ctx, std::placeholders::_1, std::placeholders::_2));
}
if (need_sha256) {
hashers.emplace_back(
std::bind(&SHA256_Update, &sha256_ctx, std::placeholders::_1, std::placeholders::_2));
}
double frac = -1.0;
uint64_t so_far = 0;
while (so_far < signed_len) {
// On a Nexus 5X, experiment showed 16MiB beat 1MiB by 6% faster for a 1196MiB full OTA and
// 60% for an 89MiB incremental OTA. http://b/28135231.
uint64_t read_size = std::min<uint64_t>(signed_len - so_far, 16 * MiB);
package->UpdateHashAtOffset(hashers, so_far, read_size);
so_far += read_size;
double f = so_far / static_cast<double>(signed_len);
if (f > frac + 0.02 || read_size == so_far) {
package->SetProgress(f);
frac = f;
}
}
uint8_t sha1[SHA_DIGEST_LENGTH];
SHA1_Final(sha1, &sha1_ctx);
uint8_t sha256[SHA256_DIGEST_LENGTH];
SHA256_Final(sha256, &sha256_ctx);
const uint8_t* signature = eocd + eocd_size - signature_start;
size_t signature_size = signature_start - FOOTER_SIZE;
LOG(INFO) << "signature (offset: " << std::hex << (length - signature_start)
<< ", length: " << signature_size << "): " << print_hex(signature, signature_size);
std::vector<uint8_t> sig_der;
if (!read_pkcs7(signature, signature_size, &sig_der)) {
LOG(ERROR) << "Could not find signature DER block";
return VERIFY_FAILURE;
}
// Check to make sure at least one of the keys matches the signature. Since any key can match,
// we need to try each before determining a verification failure has happened.
for (size_t i = 0; i < keys.size(); i++) {
const auto& key = keys[i];
const uint8_t* hash;
int hash_nid;
switch (key.hash_len) {
case SHA_DIGEST_LENGTH:
hash = sha1;
hash_nid = NID_sha1;
break;
case SHA256_DIGEST_LENGTH:
hash = sha256;
hash_nid = NID_sha256;
break;
default:
continue;
}
// The 6 bytes is the "(signature_start) $ff $ff (comment_size)" that the signing tool appends
// after the signature itself.
if (key.key_type == Certificate::KEY_TYPE_RSA) {
if (!RSA_verify(hash_nid, hash, key.hash_len, sig_der.data(), sig_der.size(),
key.rsa.get())) {
LOG(INFO) << "failed to verify against RSA key " << i;
continue;
}
LOG(INFO) << "whole-file signature verified against RSA key " << i;
return VERIFY_SUCCESS;
} else if (key.key_type == Certificate::KEY_TYPE_EC && key.hash_len == SHA256_DIGEST_LENGTH) {
if (!ECDSA_verify(0, hash, key.hash_len, sig_der.data(), sig_der.size(), key.ec.get())) {
LOG(INFO) << "failed to verify against EC key " << i;
continue;
}
LOG(INFO) << "whole-file signature verified against EC key " << i;
return VERIFY_SUCCESS;
} else {
LOG(INFO) << "Unknown key type " << key.key_type;
}
}
if (need_sha1) {
LOG(INFO) << "SHA-1 digest: " << print_hex(sha1, SHA_DIGEST_LENGTH);
}
if (need_sha256) {
LOG(INFO) << "SHA-256 digest: " << print_hex(sha256, SHA256_DIGEST_LENGTH);
}
LOG(ERROR) << "failed to verify whole-file signature";
return VERIFY_FAILURE;
}
static std::vector<Certificate> IterateZipEntriesAndSearchForKeys(const ZipArchiveHandle& handle) {
void* cookie;
int32_t iter_status = StartIteration(handle, &cookie, "", "x509.pem");
if (iter_status != 0) {
LOG(ERROR) << "Failed to iterate over entries in the certificate zipfile: "
<< ErrorCodeString(iter_status);
return {};
}
std::vector<Certificate> result;
std::string_view name;
ZipEntry64 entry;
while ((iter_status = Next(cookie, &entry, &name)) == 0) {
if (entry.uncompressed_length > std::numeric_limits<size_t>::max()) {
LOG(ERROR) << "Failed to extract " << name
<< " because's uncompressed size exceeds size of address space. "
<< entry.uncompressed_length;
return {};
}
std::vector<uint8_t> pem_content(entry.uncompressed_length);
if (int32_t extract_status =
ExtractToMemory(handle, &entry, pem_content.data(), pem_content.size());
extract_status != 0) {
LOG(ERROR) << "Failed to extract " << name;
return {};
}
Certificate cert(0, Certificate::KEY_TYPE_RSA, nullptr, nullptr);
// Aborts the parsing if we fail to load one of the key file.
if (!LoadCertificateFromBuffer(pem_content, &cert)) {
LOG(ERROR) << "Failed to load keys from " << name;
return {};
}
result.emplace_back(std::move(cert));
}
if (iter_status != -1) {
LOG(ERROR) << "Error while iterating over zip entries: " << ErrorCodeString(iter_status);
return {};
}
return result;
}
std::vector<Certificate> LoadKeysFromZipfile(const std::string& zip_name) {
ZipArchiveHandle handle;
if (int32_t open_status = OpenArchive(zip_name.c_str(), &handle); open_status != 0) {
LOG(ERROR) << "Failed to open " << zip_name << ": " << ErrorCodeString(open_status);
return {};
}
std::vector<Certificate> result = IterateZipEntriesAndSearchForKeys(handle);
CloseArchive(handle);
return result;
}
bool CheckRSAKey(const std::unique_ptr<RSA, RSADeleter>& rsa) {
if (!rsa) {
return false;
}
const BIGNUM* out_n;
const BIGNUM* out_e;
RSA_get0_key(rsa.get(), &out_n, &out_e, nullptr /* private exponent */);
auto modulus_bits = BN_num_bits(out_n);
if (modulus_bits != 2048 && modulus_bits != 4096) {
LOG(ERROR) << "Modulus should be 2048 or 4096 bits long, actual: " << modulus_bits;
return false;
}
BN_ULONG exponent = BN_get_word(out_e);
if (exponent != 3 && exponent != 65537) {
LOG(ERROR) << "Public exponent should be 3 or 65537, actual: " << exponent;
return false;
}
return true;
}
bool CheckECKey(const std::unique_ptr<EC_KEY, ECKEYDeleter>& ec_key) {
if (!ec_key) {
return false;
}
const EC_GROUP* ec_group = EC_KEY_get0_group(ec_key.get());
if (!ec_group) {
LOG(ERROR) << "Failed to get the ec_group from the ec_key";
return false;
}
auto degree = EC_GROUP_get_degree(ec_group);
if (degree != 256) {
LOG(ERROR) << "Field size of the ec key should be 256 bits long, actual: " << degree;
return false;
}
return true;
}
bool LoadCertificateFromBuffer(const std::vector<uint8_t>& pem_content, Certificate* cert) {
std::unique_ptr<BIO, decltype(&BIO_free)> content(
BIO_new_mem_buf(pem_content.data(), pem_content.size()), BIO_free);
std::unique_ptr<X509, decltype(&X509_free)> x509(
PEM_read_bio_X509(content.get(), nullptr, nullptr, nullptr), X509_free);
if (!x509) {
LOG(ERROR) << "Failed to read x509 certificate";
return false;
}
int nid = X509_get_signature_nid(x509.get());
switch (nid) {
// SignApk has historically accepted md5WithRSA certificates, but treated them as
// sha1WithRSA anyway. Continue to do so for backwards compatibility.
case NID_md5WithRSA:
case NID_md5WithRSAEncryption:
case NID_sha1WithRSA:
case NID_sha1WithRSAEncryption:
cert->hash_len = SHA_DIGEST_LENGTH;
break;
case NID_sha256WithRSAEncryption:
case NID_ecdsa_with_SHA256:
cert->hash_len = SHA256_DIGEST_LENGTH;
break;
default:
LOG(ERROR) << "Unrecognized signature nid " << OBJ_nid2ln(nid);
return false;
}
std::unique_ptr<EVP_PKEY, decltype(&EVP_PKEY_free)> public_key(X509_get_pubkey(x509.get()),
EVP_PKEY_free);
if (!public_key) {
LOG(ERROR) << "Failed to extract the public key from x509 certificate";
return false;
}
int key_type = EVP_PKEY_id(public_key.get());
if (key_type == EVP_PKEY_RSA) {
cert->key_type = Certificate::KEY_TYPE_RSA;
cert->ec.reset();
cert->rsa.reset(EVP_PKEY_get1_RSA(public_key.get()));
if (!cert->rsa || !CheckRSAKey(cert->rsa)) {
LOG(ERROR) << "Failed to validate the rsa key info from public key";
return false;
}
} else if (key_type == EVP_PKEY_EC) {
cert->key_type = Certificate::KEY_TYPE_EC;
cert->rsa.reset();
cert->ec.reset(EVP_PKEY_get1_EC_KEY(public_key.get()));
if (!cert->ec || !CheckECKey(cert->ec)) {
LOG(ERROR) << "Failed to validate the ec key info from the public key";
return false;
}
} else {
LOG(ERROR) << "Unrecognized public key type " << OBJ_nid2ln(key_type);
return false;
}
return true;
}