platform_system_core/init/init.cpp

934 lines
34 KiB
C++
Raw Normal View History

2008-10-21 16:00:00 +02:00
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "init.h"
#include <dirent.h>
#include <fcntl.h>
#include <paths.h>
#include <pthread.h>
#include <signal.h>
2008-10-21 16:00:00 +02:00
#include <stdlib.h>
#include <string.h>
#include <sys/eventfd.h>
2008-10-21 16:00:00 +02:00
#include <sys/mount.h>
#include <sys/signalfd.h>
#include <sys/types.h>
#include <unistd.h>
#define _REALLY_INCLUDE_SYS__SYSTEM_PROPERTIES_H_
#include <sys/_system_properties.h>
#include <functional>
#include <map>
#include <memory>
#include <mutex>
#include <optional>
#include <thread>
#include <vector>
#include <android-base/chrono_utils.h>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/parseint.h>
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <backtrace/Backtrace.h>
#include <fs_avb/fs_avb.h>
#include <fs_mgr_vendor_overlay.h>
#include <keyutils.h>
#include <libavb/libavb.h>
#include <libgsi/libgsi.h>
#include <processgroup/processgroup.h>
#include <processgroup/setup.h>
#include <selinux/android.h>
2008-10-21 16:00:00 +02:00
#include "action_parser.h"
#include "builtins.h"
#include "epoll.h"
#include "first_stage_init.h"
#include "first_stage_mount.h"
#include "import_parser.h"
#include "keychords.h"
#include "lmkd_service.h"
#include "mount_handler.h"
Proper mount namespace configuration for bionic This CL fixes the design problem of the previous mechanism for providing the bootstrap bionic and the runtime bionic to the same path. Previously, bootstrap bionic was self-bind-mounted; i.e. /system/bin/libc.so is bind-mounted to itself. And the runtime bionic was bind-mounted on top of the bootstrap bionic. This has not only caused problems like `adb sync` not working(b/122737045), but also is quite difficult to understand due to the double-and-self mounting. This is the new design: Most importantly, these four are all distinct: 1) bootstrap bionic (/system/lib/bootstrap/libc.so) 2) runtime bionic (/apex/com.android.runtime/lib/bionic/libc.so) 3) mount point for 1) and 2) (/bionic/lib/libc.so) 4) symlink for 3) (/system/lib/libc.so -> /bionic/lib/libc.so) Inside the mount namespace of the pre-apexd processes, 1) is bind-mounted to 3). Likewise, inside the mount namespace of the post-apexd processes, 2) is bind-mounted to 3). In other words, there is no self-mount, and no double-mount. Another change is that mount points are under /bionic and the legacy paths become symlinks to the mount points. This is to make sure that there is no bind mounts under /system, which is breaking some apps. Finally, code for creating mount namespaces, mounting bionic, etc are refactored to mount_namespace.cpp Bug: 120266448 Bug: 123275379 Test: m, device boots, adb sync/push/pull works, especially with following paths: /bionic/lib64/libc.so /bionic/bin/linker64 /system/lib64/bootstrap/libc.so /system/bin/bootstrap/linker64 Change-Id: Icdfbdcc1efca540ac854d4df79e07ee61fca559f
2019-01-16 15:00:59 +01:00
#include "mount_namespace.h"
2008-10-21 16:00:00 +02:00
#include "property_service.h"
#include "proto_utils.h"
#include "reboot.h"
#include "reboot_utils.h"
#include "security.h"
#include "selabel.h"
#include "selinux.h"
#include "service.h"
#include "service_parser.h"
#include "sigchld_handler.h"
#include "subcontext.h"
#include "system/core/init/property_service.pb.h"
#include "util.h"
2008-10-21 16:00:00 +02:00
using namespace std::chrono_literals;
using namespace std::string_literals;
using android::base::boot_clock;
using android::base::ConsumePrefix;
using android::base::GetProperty;
using android::base::ReadFileToString;
using android::base::SetProperty;
using android::base::StringPrintf;
using android::base::Timer;
using android::base::Trim;
using android::fs_mgr::AvbHandle;
namespace android {
namespace init {
2008-10-21 16:00:00 +02:00
static int property_triggers_enabled = 0;
static int signal_fd = -1;
static int property_fd = -1;
struct PendingControlMessage {
std::string message;
std::string name;
pid_t pid;
int fd;
};
static std::mutex pending_control_messages_lock;
static std::queue<PendingControlMessage> pending_control_messages;
// Init epolls various FDs to wait for various inputs. It previously waited on property changes
// with a blocking socket that contained the information related to the change, however, it was easy
// to fill that socket and deadlock the system. Now we use locks to handle the property changes
// directly in the property thread, however we still must wake the epoll to inform init that there
// is a change to process, so we use this FD. It is non-blocking, since we do not care how many
// times WakeMainInitThread() is called, only that the epoll will wake.
static int wake_main_thread_fd = -1;
static void InstallInitNotifier(Epoll* epoll) {
wake_main_thread_fd = eventfd(0, EFD_CLOEXEC);
if (wake_main_thread_fd == -1) {
PLOG(FATAL) << "Failed to create eventfd for waking init";
}
auto clear_eventfd = [] {
uint64_t counter;
TEMP_FAILURE_RETRY(read(wake_main_thread_fd, &counter, sizeof(counter)));
};
if (auto result = epoll->RegisterHandler(wake_main_thread_fd, clear_eventfd); !result.ok()) {
LOG(FATAL) << result.error();
}
}
static void WakeMainInitThread() {
uint64_t counter = 1;
TEMP_FAILURE_RETRY(write(wake_main_thread_fd, &counter, sizeof(counter)));
}
static class PropWaiterState {
public:
bool StartWaiting(const char* name, const char* value) {
auto lock = std::lock_guard{lock_};
if (waiting_for_prop_) {
return false;
}
if (GetProperty(name, "") != value) {
// Current property value is not equal to expected value
wait_prop_name_ = name;
wait_prop_value_ = value;
waiting_for_prop_.reset(new Timer());
} else {
LOG(INFO) << "start_waiting_for_property(\"" << name << "\", \"" << value
<< "\"): already set";
}
return true;
}
void ResetWaitForProp() {
auto lock = std::lock_guard{lock_};
ResetWaitForPropLocked();
}
void CheckAndResetWait(const std::string& name, const std::string& value) {
auto lock = std::lock_guard{lock_};
// We always record how long init waited for ueventd to tell us cold boot finished.
// If we aren't waiting on this property, it means that ueventd finished before we even
// started to wait.
if (name == kColdBootDoneProp) {
auto time_waited = waiting_for_prop_ ? waiting_for_prop_->duration().count() : 0;
std::thread([time_waited] {
SetProperty("ro.boottime.init.cold_boot_wait", std::to_string(time_waited));
}).detach();
}
if (waiting_for_prop_) {
if (wait_prop_name_ == name && wait_prop_value_ == value) {
LOG(INFO) << "Wait for property '" << wait_prop_name_ << "=" << wait_prop_value_
<< "' took " << *waiting_for_prop_;
ResetWaitForPropLocked();
WakeMainInitThread();
}
}
}
// This is not thread safe because it releases the lock when it returns, so the waiting state
// may change. However, we only use this function to prevent running commands in the main
// thread loop when we are waiting, so we do not care about false positives; only false
// negatives. StartWaiting() and this function are always called from the same thread, so false
// negatives are not possible and therefore we're okay.
bool MightBeWaiting() {
auto lock = std::lock_guard{lock_};
return static_cast<bool>(waiting_for_prop_);
}
private:
void ResetWaitForPropLocked() {
wait_prop_name_.clear();
wait_prop_value_.clear();
waiting_for_prop_.reset();
}
std::mutex lock_;
std::unique_ptr<Timer> waiting_for_prop_{nullptr};
std::string wait_prop_name_;
std::string wait_prop_value_;
} prop_waiter_state;
bool start_waiting_for_property(const char* name, const char* value) {
return prop_waiter_state.StartWaiting(name, value);
}
void ResetWaitForProp() {
prop_waiter_state.ResetWaitForProp();
}
static class ShutdownState {
public:
void TriggerShutdown(const std::string& command) {
// We can't call HandlePowerctlMessage() directly in this function,
// because it modifies the contents of the action queue, which can cause the action queue
// to get into a bad state if this function is called from a command being executed by the
// action queue. Instead we set this flag and ensure that shutdown happens before the next
// command is run in the main init loop.
auto lock = std::lock_guard{shutdown_command_lock_};
shutdown_command_ = command;
do_shutdown_ = true;
WakeMainInitThread();
}
std::optional<std::string> CheckShutdown() {
auto lock = std::lock_guard{shutdown_command_lock_};
if (do_shutdown_ && !IsShuttingDown()) {
return shutdown_command_;
}
return {};
}
bool do_shutdown() const { return do_shutdown_; }
void set_do_shutdown(bool value) { do_shutdown_ = value; }
private:
std::mutex shutdown_command_lock_;
std::string shutdown_command_;
bool do_shutdown_ = false;
} shutdown_state;
static void UnwindMainThreadStack() {
std::unique_ptr<Backtrace> backtrace(Backtrace::Create(BACKTRACE_CURRENT_PROCESS, 1));
if (!backtrace->Unwind(0)) {
LOG(ERROR) << __FUNCTION__ << "sys.powerctl: Failed to unwind callstack.";
}
for (size_t i = 0; i < backtrace->NumFrames(); i++) {
LOG(ERROR) << "sys.powerctl: " << backtrace->FormatFrameData(i);
}
}
void DebugRebootLogging() {
LOG(INFO) << "sys.powerctl: do_shutdown: " << shutdown_state.do_shutdown()
<< " IsShuttingDown: " << IsShuttingDown();
if (shutdown_state.do_shutdown()) {
LOG(ERROR) << "sys.powerctl set while a previous shutdown command has not been handled";
UnwindMainThreadStack();
DumpShutdownDebugInformation();
}
if (IsShuttingDown()) {
LOG(ERROR) << "sys.powerctl set while init is already shutting down";
UnwindMainThreadStack();
DumpShutdownDebugInformation();
}
}
void DumpState() {
ServiceList::GetInstance().DumpState();
ActionManager::GetInstance().DumpState();
}
Parser CreateParser(ActionManager& action_manager, ServiceList& service_list) {
Parser parser;
parser.AddSectionParser("service", std::make_unique<ServiceParser>(
&service_list, GetSubcontext(), std::nullopt));
parser.AddSectionParser("on", std::make_unique<ActionParser>(&action_manager, GetSubcontext()));
parser.AddSectionParser("import", std::make_unique<ImportParser>(&parser));
return parser;
}
// parser that only accepts new services
Parser CreateServiceOnlyParser(ServiceList& service_list, bool from_apex) {
Parser parser;
parser.AddSectionParser(
"service", std::make_unique<ServiceParser>(&service_list, GetSubcontext(), std::nullopt,
from_apex));
return parser;
}
static void LoadBootScripts(ActionManager& action_manager, ServiceList& service_list) {
Parser parser = CreateParser(action_manager, service_list);
std::string bootscript = GetProperty("ro.boot.init_rc", "");
if (bootscript.empty()) {
parser.ParseConfig("/system/etc/init/hw/init.rc");
if (!parser.ParseConfig("/system/etc/init")) {
late_import_paths.emplace_back("/system/etc/init");
}
// late_import is available only in Q and earlier release. As we don't
// have system_ext in those versions, skip late_import for system_ext.
parser.ParseConfig("/system_ext/etc/init");
if (!parser.ParseConfig("/vendor/etc/init")) {
late_import_paths.emplace_back("/vendor/etc/init");
}
if (!parser.ParseConfig("/odm/etc/init")) {
late_import_paths.emplace_back("/odm/etc/init");
}
if (!parser.ParseConfig("/product/etc/init")) {
late_import_paths.emplace_back("/product/etc/init");
}
} else {
parser.ParseConfig(bootscript);
}
}
void PropertyChanged(const std::string& name, const std::string& value) {
// If the property is sys.powerctl, we bypass the event queue and immediately handle it.
// This is to ensure that init will always and immediately shutdown/reboot, regardless of
// if there are other pending events to process or if init is waiting on an exec service or
// waiting on a property.
// In non-thermal-shutdown case, 'shutdown' trigger will be fired to let device specific
// commands to be executed.
if (name == "sys.powerctl") {
trigger_shutdown(value);
}
if (property_triggers_enabled) {
ActionManager::GetInstance().QueuePropertyChange(name, value);
WakeMainInitThread();
}
prop_waiter_state.CheckAndResetWait(name, value);
2008-10-21 16:00:00 +02:00
}
static std::optional<boot_clock::time_point> HandleProcessActions() {
std::optional<boot_clock::time_point> next_process_action_time;
for (const auto& s : ServiceList::GetInstance()) {
if ((s->flags() & SVC_RUNNING) && s->timeout_period()) {
auto timeout_time = s->time_started() + *s->timeout_period();
if (boot_clock::now() > timeout_time) {
s->Timeout();
} else {
if (!next_process_action_time || timeout_time < *next_process_action_time) {
next_process_action_time = timeout_time;
}
}
}
if (!(s->flags() & SVC_RESTARTING)) continue;
auto restart_time = s->time_started() + s->restart_period();
if (boot_clock::now() > restart_time) {
if (auto result = s->Start(); !result.ok()) {
LOG(ERROR) << "Could not restart process '" << s->name() << "': " << result.error();
}
} else {
if (!next_process_action_time || restart_time < *next_process_action_time) {
next_process_action_time = restart_time;
}
}
}
return next_process_action_time;
2008-10-21 16:00:00 +02:00
}
static Result<void> DoControlStart(Service* service) {
return service->Start();
}
static Result<void> DoControlStop(Service* service) {
service->Stop();
return {};
}
static Result<void> DoControlRestart(Service* service) {
service->Restart();
return {};
}
enum class ControlTarget {
SERVICE, // function gets called for the named service
INTERFACE, // action gets called for every service that holds this interface
};
using ControlMessageFunction = std::function<Result<void>(Service*)>;
static const std::map<std::string, ControlMessageFunction, std::less<>>& GetControlMessageMap() {
// clang-format off
static const std::map<std::string, ControlMessageFunction, std::less<>> control_message_functions = {
{"sigstop_on", [](auto* service) { service->set_sigstop(true); return Result<void>{}; }},
{"sigstop_off", [](auto* service) { service->set_sigstop(false); return Result<void>{}; }},
{"oneshot_on", [](auto* service) { service->set_oneshot(true); return Result<void>{}; }},
{"oneshot_off", [](auto* service) { service->set_oneshot(false); return Result<void>{}; }},
{"start", DoControlStart},
{"stop", DoControlStop},
{"restart", DoControlRestart},
};
// clang-format on
return control_message_functions;
}
static bool HandleControlMessage(std::string_view message, const std::string& name,
pid_t from_pid) {
std::string cmdline_path = StringPrintf("proc/%d/cmdline", from_pid);
std::string process_cmdline;
if (ReadFileToString(cmdline_path, &process_cmdline)) {
std::replace(process_cmdline.begin(), process_cmdline.end(), '\0', ' ');
process_cmdline = Trim(process_cmdline);
} else {
process_cmdline = "unknown process";
}
Service* service = nullptr;
auto action = message;
if (ConsumePrefix(&action, "interface_")) {
service = ServiceList::GetInstance().FindInterface(name);
} else {
service = ServiceList::GetInstance().FindService(name);
}
if (service == nullptr) {
LOG(ERROR) << "Control message: Could not find '" << name << "' for ctl." << message
<< " from pid: " << from_pid << " (" << process_cmdline << ")";
return false;
}
const auto& map = GetControlMessageMap();
const auto it = map.find(action);
if (it == map.end()) {
LOG(ERROR) << "Unknown control msg '" << message << "'";
return false;
2008-10-21 16:00:00 +02:00
}
const auto& function = it->second;
if (auto result = function(service); !result.ok()) {
LOG(ERROR) << "Control message: Could not ctl." << message << " for '" << name
<< "' from pid: " << from_pid << " (" << process_cmdline
<< "): " << result.error();
return false;
}
LOG(INFO) << "Control message: Processed ctl." << message << " for '" << name
<< "' from pid: " << from_pid << " (" << process_cmdline << ")";
return true;
2008-10-21 16:00:00 +02:00
}
bool QueueControlMessage(const std::string& message, const std::string& name, pid_t pid, int fd) {
auto lock = std::lock_guard{pending_control_messages_lock};
if (pending_control_messages.size() > 100) {
LOG(ERROR) << "Too many pending control messages, dropped '" << message << "' for '" << name
<< "' from pid: " << pid;
return false;
}
pending_control_messages.push({message, name, pid, fd});
WakeMainInitThread();
return true;
}
static void HandleControlMessages() {
auto lock = std::unique_lock{pending_control_messages_lock};
// Init historically would only execute handle one property message, including control messages
// in each iteration of its main loop. We retain this behavior here to prevent starvation of
// other actions in the main loop.
if (!pending_control_messages.empty()) {
auto control_message = pending_control_messages.front();
pending_control_messages.pop();
lock.unlock();
bool success = HandleControlMessage(control_message.message, control_message.name,
control_message.pid);
uint32_t response = success ? PROP_SUCCESS : PROP_ERROR_HANDLE_CONTROL_MESSAGE;
if (control_message.fd != -1) {
TEMP_FAILURE_RETRY(send(control_message.fd, &response, sizeof(response), 0));
close(control_message.fd);
}
lock.lock();
}
// If we still have items to process, make sure we wake back up to do so.
if (!pending_control_messages.empty()) {
WakeMainInitThread();
}
}
static Result<void> wait_for_coldboot_done_action(const BuiltinArguments& args) {
if (!prop_waiter_state.StartWaiting(kColdBootDoneProp, "true")) {
LOG(FATAL) << "Could not wait for '" << kColdBootDoneProp << "'";
}
return {};
}
static Result<void> SetupCgroupsAction(const BuiltinArguments&) {
// Have to create <CGROUPS_RC_DIR> using make_dir function
// for appropriate sepolicy to be set for it
make_dir(android::base::Dirname(CGROUPS_RC_PATH), 0711);
if (!CgroupSetup()) {
return ErrnoError() << "Failed to setup cgroups";
}
return {};
}
static void export_oem_lock_status() {
if (!android::base::GetBoolProperty("ro.oem_unlock_supported", false)) {
return;
}
ImportKernelCmdline([](const std::string& key, const std::string& value) {
if (key == "androidboot.verifiedbootstate") {
SetProperty("ro.boot.flash.locked", value == "orange" ? "0" : "1");
}
});
}
static Result<void> property_enable_triggers_action(const BuiltinArguments& args) {
/* Enable property triggers. */
property_triggers_enabled = 1;
return {};
}
static Result<void> queue_property_triggers_action(const BuiltinArguments& args) {
ActionManager::GetInstance().QueueBuiltinAction(property_enable_triggers_action, "enable_property_trigger");
ActionManager::GetInstance().QueueAllPropertyActions();
return {};
}
// Set the UDC controller for the ConfigFS USB Gadgets.
// Read the UDC controller in use from "/sys/class/udc".
// In case of multiple UDC controllers select the first one.
static void SetUsbController() {
static auto controller_set = false;
if (controller_set) return;
std::unique_ptr<DIR, decltype(&closedir)>dir(opendir("/sys/class/udc"), closedir);
if (!dir) return;
dirent* dp;
while ((dp = readdir(dir.get())) != nullptr) {
if (dp->d_name[0] == '.') continue;
SetProperty("sys.usb.controller", dp->d_name);
controller_set = true;
break;
}
}
static void HandleSigtermSignal(const signalfd_siginfo& siginfo) {
if (siginfo.ssi_pid != 0) {
// Drop any userspace SIGTERM requests.
LOG(DEBUG) << "Ignoring SIGTERM from pid " << siginfo.ssi_pid;
return;
}
HandlePowerctlMessage("shutdown,container");
}
static void HandleSignalFd() {
signalfd_siginfo siginfo;
ssize_t bytes_read = TEMP_FAILURE_RETRY(read(signal_fd, &siginfo, sizeof(siginfo)));
if (bytes_read != sizeof(siginfo)) {
PLOG(ERROR) << "Failed to read siginfo from signal_fd";
return;
}
switch (siginfo.ssi_signo) {
case SIGCHLD:
ReapAnyOutstandingChildren();
break;
case SIGTERM:
HandleSigtermSignal(siginfo);
break;
default:
PLOG(ERROR) << "signal_fd: received unexpected signal " << siginfo.ssi_signo;
break;
}
}
static void UnblockSignals() {
const struct sigaction act { .sa_handler = SIG_DFL };
sigaction(SIGCHLD, &act, nullptr);
sigset_t mask;
sigemptyset(&mask);
sigaddset(&mask, SIGCHLD);
sigaddset(&mask, SIGTERM);
if (sigprocmask(SIG_UNBLOCK, &mask, nullptr) == -1) {
PLOG(FATAL) << "failed to unblock signals for PID " << getpid();
}
}
static void InstallSignalFdHandler(Epoll* epoll) {
// Applying SA_NOCLDSTOP to a defaulted SIGCHLD handler prevents the signalfd from receiving
// SIGCHLD when a child process stops or continues (b/77867680#comment9).
const struct sigaction act { .sa_handler = SIG_DFL, .sa_flags = SA_NOCLDSTOP };
sigaction(SIGCHLD, &act, nullptr);
sigset_t mask;
sigemptyset(&mask);
sigaddset(&mask, SIGCHLD);
if (!IsRebootCapable()) {
// If init does not have the CAP_SYS_BOOT capability, it is running in a container.
// In that case, receiving SIGTERM will cause the system to shut down.
sigaddset(&mask, SIGTERM);
}
if (sigprocmask(SIG_BLOCK, &mask, nullptr) == -1) {
PLOG(FATAL) << "failed to block signals";
}
// Register a handler to unblock signals in the child processes.
const int result = pthread_atfork(nullptr, nullptr, &UnblockSignals);
if (result != 0) {
LOG(FATAL) << "Failed to register a fork handler: " << strerror(result);
}
signal_fd = signalfd(-1, &mask, SFD_CLOEXEC);
if (signal_fd == -1) {
PLOG(FATAL) << "failed to create signalfd";
}
if (auto result = epoll->RegisterHandler(signal_fd, HandleSignalFd); !result.ok()) {
LOG(FATAL) << result.error();
}
}
void HandleKeychord(const std::vector<int>& keycodes) {
// Only handle keychords if adb is enabled.
std::string adb_enabled = android::base::GetProperty("init.svc.adbd", "");
if (adb_enabled != "running") {
LOG(WARNING) << "Not starting service for keychord " << android::base::Join(keycodes, ' ')
<< " because ADB is disabled";
return;
}
auto found = false;
for (const auto& service : ServiceList::GetInstance()) {
auto svc = service.get();
if (svc->keycodes() == keycodes) {
found = true;
LOG(INFO) << "Starting service '" << svc->name() << "' from keychord "
<< android::base::Join(keycodes, ' ');
if (auto result = svc->Start(); !result.ok()) {
LOG(ERROR) << "Could not start service '" << svc->name() << "' from keychord "
<< android::base::Join(keycodes, ' ') << ": " << result.error();
}
}
}
if (!found) {
LOG(ERROR) << "Service for keychord " << android::base::Join(keycodes, ' ') << " not found";
}
}
static void UmountDebugRamdisk() {
if (umount("/debug_ramdisk") != 0) {
PLOG(ERROR) << "Failed to umount /debug_ramdisk";
}
}
static void MountExtraFilesystems() {
#define CHECKCALL(x) \
if ((x) != 0) PLOG(FATAL) << #x " failed.";
// /apex is used to mount APEXes
CHECKCALL(mount("tmpfs", "/apex", "tmpfs", MS_NOEXEC | MS_NOSUID | MS_NODEV,
"mode=0755,uid=0,gid=0"));
// /linkerconfig is used to keep generated linker configuration
CHECKCALL(mount("tmpfs", "/linkerconfig", "tmpfs", MS_NOEXEC | MS_NOSUID | MS_NODEV,
"mode=0755,uid=0,gid=0"));
#undef CHECKCALL
}
static void RecordStageBoottimes(const boot_clock::time_point& second_stage_start_time) {
int64_t first_stage_start_time_ns = -1;
if (auto first_stage_start_time_str = getenv(kEnvFirstStageStartedAt);
first_stage_start_time_str) {
SetProperty("ro.boottime.init", first_stage_start_time_str);
android::base::ParseInt(first_stage_start_time_str, &first_stage_start_time_ns);
}
unsetenv(kEnvFirstStageStartedAt);
int64_t selinux_start_time_ns = -1;
if (auto selinux_start_time_str = getenv(kEnvSelinuxStartedAt); selinux_start_time_str) {
android::base::ParseInt(selinux_start_time_str, &selinux_start_time_ns);
}
unsetenv(kEnvSelinuxStartedAt);
if (selinux_start_time_ns == -1) return;
if (first_stage_start_time_ns == -1) return;
SetProperty("ro.boottime.init.first_stage",
std::to_string(selinux_start_time_ns - first_stage_start_time_ns));
SetProperty("ro.boottime.init.selinux",
std::to_string(second_stage_start_time.time_since_epoch().count() -
selinux_start_time_ns));
}
void SendLoadPersistentPropertiesMessage() {
auto init_message = InitMessage{};
init_message.set_load_persistent_properties(true);
if (auto result = SendMessage(property_fd, init_message); !result.ok()) {
LOG(ERROR) << "Failed to send load persistent properties message: " << result.error();
}
}
int SecondStageMain(int argc, char** argv) {
if (REBOOT_BOOTLOADER_ON_PANIC) {
InstallRebootSignalHandlers();
}
boot_clock::time_point start_time = boot_clock::now();
trigger_shutdown = [](const std::string& command) { shutdown_state.TriggerShutdown(command); };
SetStdioToDevNull(argv);
InitSecondStageLogging(argv);
LOG(INFO) << "init second stage started!";
// Update $PATH in the case the second stage init is newer than first stage init, where it is
// first set.
if (setenv("PATH", _PATH_DEFPATH, 1) != 0) {
PLOG(FATAL) << "Could not set $PATH to '" << _PATH_DEFPATH << "' in second stage";
}
// Init should not crash because of a dependence on any other process, therefore we ignore
// SIGPIPE and handle EPIPE at the call site directly. Note that setting a signal to SIG_IGN
// is inherited across exec, but custom signal handlers are not. Since we do not want to
// ignore SIGPIPE for child processes, we set a no-op function for the signal handler instead.
{
struct sigaction action = {.sa_flags = SA_RESTART};
action.sa_handler = [](int) {};
sigaction(SIGPIPE, &action, nullptr);
}
// Set init and its forked children's oom_adj.
if (auto result =
WriteFile("/proc/1/oom_score_adj", StringPrintf("%d", DEFAULT_OOM_SCORE_ADJUST));
!result.ok()) {
LOG(ERROR) << "Unable to write " << DEFAULT_OOM_SCORE_ADJUST
<< " to /proc/1/oom_score_adj: " << result.error();
}
// Set up a session keyring that all processes will have access to. It
// will hold things like FBE encryption keys. No process should override
// its session keyring.
keyctl_get_keyring_ID(KEY_SPEC_SESSION_KEYRING, 1);
// Indicate that booting is in progress to background fw loaders, etc.
close(open("/dev/.booting", O_WRONLY | O_CREAT | O_CLOEXEC, 0000));
// See if need to load debug props to allow adb root, when the device is unlocked.
const char* force_debuggable_env = getenv("INIT_FORCE_DEBUGGABLE");
bool load_debug_prop = false;
if (force_debuggable_env && AvbHandle::IsDeviceUnlocked()) {
load_debug_prop = "true"s == force_debuggable_env;
}
unsetenv("INIT_FORCE_DEBUGGABLE");
// Umount the debug ramdisk so property service doesn't read .prop files from there, when it
// is not meant to.
if (!load_debug_prop) {
UmountDebugRamdisk();
}
PropertyInit();
// Umount the debug ramdisk after property service has read the .prop files when it means to.
if (load_debug_prop) {
UmountDebugRamdisk();
}
// Mount extra filesystems required during second stage init
MountExtraFilesystems();
// Now set up SELinux for second stage.
SelinuxSetupKernelLogging();
SelabelInitialize();
SelinuxRestoreContext();
Epoll epoll;
if (auto result = epoll.Open(); !result.ok()) {
PLOG(FATAL) << result.error();
}
InstallSignalFdHandler(&epoll);
InstallInitNotifier(&epoll);
StartPropertyService(&property_fd);
// Make the time that init stages started available for bootstat to log.
RecordStageBoottimes(start_time);
// Set libavb version for Framework-only OTA match in Treble build.
if (const char* avb_version = getenv("INIT_AVB_VERSION"); avb_version != nullptr) {
SetProperty("ro.boot.avb_version", avb_version);
}
unsetenv("INIT_AVB_VERSION");
fs_mgr_vendor_overlay_mount_all();
export_oem_lock_status();
MountHandler mount_handler(&epoll);
SetUsbController();
const BuiltinFunctionMap& function_map = GetBuiltinFunctionMap();
Action::set_function_map(&function_map);
Proper mount namespace configuration for bionic This CL fixes the design problem of the previous mechanism for providing the bootstrap bionic and the runtime bionic to the same path. Previously, bootstrap bionic was self-bind-mounted; i.e. /system/bin/libc.so is bind-mounted to itself. And the runtime bionic was bind-mounted on top of the bootstrap bionic. This has not only caused problems like `adb sync` not working(b/122737045), but also is quite difficult to understand due to the double-and-self mounting. This is the new design: Most importantly, these four are all distinct: 1) bootstrap bionic (/system/lib/bootstrap/libc.so) 2) runtime bionic (/apex/com.android.runtime/lib/bionic/libc.so) 3) mount point for 1) and 2) (/bionic/lib/libc.so) 4) symlink for 3) (/system/lib/libc.so -> /bionic/lib/libc.so) Inside the mount namespace of the pre-apexd processes, 1) is bind-mounted to 3). Likewise, inside the mount namespace of the post-apexd processes, 2) is bind-mounted to 3). In other words, there is no self-mount, and no double-mount. Another change is that mount points are under /bionic and the legacy paths become symlinks to the mount points. This is to make sure that there is no bind mounts under /system, which is breaking some apps. Finally, code for creating mount namespaces, mounting bionic, etc are refactored to mount_namespace.cpp Bug: 120266448 Bug: 123275379 Test: m, device boots, adb sync/push/pull works, especially with following paths: /bionic/lib64/libc.so /bionic/bin/linker64 /system/lib64/bootstrap/libc.so /system/bin/bootstrap/linker64 Change-Id: Icdfbdcc1efca540ac854d4df79e07ee61fca559f
2019-01-16 15:00:59 +01:00
if (!SetupMountNamespaces()) {
PLOG(FATAL) << "SetupMountNamespaces failed";
}
InitializeSubcontext();
ActionManager& am = ActionManager::GetInstance();
ServiceList& sm = ServiceList::GetInstance();
LoadBootScripts(am, sm);
2008-10-21 16:00:00 +02:00
// Turning this on and letting the INFO logging be discarded adds 0.2s to
// Nexus 9 boot time, so it's disabled by default.
if (false) DumpState();
// Make the GSI status available before scripts start running.
auto is_running = android::gsi::IsGsiRunning() ? "1" : "0";
SetProperty(gsi::kGsiBootedProp, is_running);
auto is_installed = android::gsi::IsGsiInstalled() ? "1" : "0";
SetProperty(gsi::kGsiInstalledProp, is_installed);
am.QueueBuiltinAction(SetupCgroupsAction, "SetupCgroups");
am.QueueBuiltinAction(SetKptrRestrictAction, "SetKptrRestrict");
init: add builtin check for perf_event LSM hooks Historically, the syscall was controlled by a system-wide perf_event_paranoid sysctl, which is not flexible enough to allow only specific processes to use the syscall. However, SELinux support for the syscall has been upstreamed recently[1] (and is being backported to Android R release common kernels). [1] https://github.com/torvalds/linux/commit/da97e18458fb42d7c00fac5fd1c56a3896ec666e As the presence of these hooks is not guaranteed on all Android R platforms (since we support upgrades while keeping an older kernel), we need to test for the feature dynamically. The LSM hooks themselves have no way of being detected directly, so we instead test for their effects, so we perform several syscalls, and look for a specific success/failure combination, corresponding to the platform's SELinux policy. If hooks are detected, perf_event_paranoid is set to -1 (unrestricted), as the SELinux policy is then sufficient to control access. This is done within init for several reasons: * CAP_SYS_ADMIN side-steps perf_event_paranoid, so the tests can be done if non-root users aren't allowed to use the syscall (the default). * init is already the setter of the paranoid value (see init.rc), which is also a privileged operation. * the test itself is simple (couple of syscalls), so having a dedicated test binary/domain felt excessive. I decided to go through a new sysprop (set by a builtin test in second-stage init), and keeping the actuation in init.rc. We can change it to an immediate write to the paranoid value if a use-case comes up that requires the decision to be made earlier in the init sequence. Bug: 137092007 Change-Id: Ib13a31fee896f17a28910d993df57168a83a4b3d
2020-01-14 23:02:53 +01:00
am.QueueBuiltinAction(TestPerfEventSelinuxAction, "TestPerfEventSelinux");
am.QueueEventTrigger("early-init");
2008-10-21 16:00:00 +02:00
// Queue an action that waits for coldboot done so we know ueventd has set up all of /dev...
am.QueueBuiltinAction(wait_for_coldboot_done_action, "wait_for_coldboot_done");
// ... so that we can start queuing up actions that require stuff from /dev.
am.QueueBuiltinAction(MixHwrngIntoLinuxRngAction, "MixHwrngIntoLinuxRng");
am.QueueBuiltinAction(SetMmapRndBitsAction, "SetMmapRndBits");
Keychords keychords;
am.QueueBuiltinAction(
[&epoll, &keychords](const BuiltinArguments& args) -> Result<void> {
for (const auto& svc : ServiceList::GetInstance()) {
keychords.Register(svc->keycodes());
}
keychords.Start(&epoll, HandleKeychord);
return {};
},
"KeychordInit");
2008-10-21 16:00:00 +02:00
// Trigger all the boot actions to get us started.
am.QueueEventTrigger("init");
// Repeat mix_hwrng_into_linux_rng in case /dev/hw_random or /dev/random
// wasn't ready immediately after wait_for_coldboot_done
am.QueueBuiltinAction(MixHwrngIntoLinuxRngAction, "MixHwrngIntoLinuxRng");
2008-10-21 16:00:00 +02:00
// Don't mount filesystems or start core system services in charger mode.
std::string bootmode = GetProperty("ro.bootmode", "");
if (bootmode == "charger") {
am.QueueEventTrigger("charger");
} else {
am.QueueEventTrigger("late-init");
}
2008-10-21 16:00:00 +02:00
// Run all property triggers based on current state of the properties.
am.QueueBuiltinAction(queue_property_triggers_action, "queue_property_triggers");
// Restore prio before main loop
setpriority(PRIO_PROCESS, 0, 0);
while (true) {
// By default, sleep until something happens.
auto epoll_timeout = std::optional<std::chrono::milliseconds>{};
auto shutdown_command = shutdown_state.CheckShutdown();
if (shutdown_command) {
LOG(INFO) << "Got shutdown_command '" << *shutdown_command
<< "' Calling HandlePowerctlMessage()";
HandlePowerctlMessage(*shutdown_command);
shutdown_state.set_do_shutdown(false);
}
if (!(prop_waiter_state.MightBeWaiting() || Service::is_exec_service_running())) {
am.ExecuteOneCommand();
}
if (!IsShuttingDown()) {
auto next_process_action_time = HandleProcessActions();
// If there's a process that needs restarting, wake up in time for that.
if (next_process_action_time) {
epoll_timeout = std::chrono::ceil<std::chrono::milliseconds>(
*next_process_action_time - boot_clock::now());
if (*epoll_timeout < 0ms) epoll_timeout = 0ms;
}
}
if (!(prop_waiter_state.MightBeWaiting() || Service::is_exec_service_running())) {
// If there's more work to do, wake up again immediately.
if (am.HasMoreCommands()) epoll_timeout = 0ms;
}
auto pending_functions = epoll.Wait(epoll_timeout);
if (!pending_functions.ok()) {
LOG(ERROR) << pending_functions.error();
} else if (!pending_functions->empty()) {
// We always reap children before responding to the other pending functions. This is to
// prevent a race where other daemons see that a service has exited and ask init to
// start it again via ctl.start before init has reaped it.
ReapAnyOutstandingChildren();
for (const auto& function : *pending_functions) {
(*function)();
}
2008-10-21 16:00:00 +02:00
}
if (!IsShuttingDown()) {
HandleControlMessages();
SetUsbController();
}
2008-10-21 16:00:00 +02:00
}
return 0;
}
} // namespace init
} // namespace android